CN103826690B - 微流控药物递送装置 - Google Patents

微流控药物递送装置 Download PDF

Info

Publication number
CN103826690B
CN103826690B CN201280046268.8A CN201280046268A CN103826690B CN 103826690 B CN103826690 B CN 103826690B CN 201280046268 A CN201280046268 A CN 201280046268A CN 103826690 B CN103826690 B CN 103826690B
Authority
CN
China
Prior art keywords
fluid
method
device
portion
delivery
Prior art date
Application number
CN201280046268.8A
Other languages
English (en)
Other versions
CN103826690A (zh
Inventor
P·阿南德
德普阿琼·辛格
Original Assignee
亚克安娜生命科学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US61/513,961 priority Critical
Priority to US61/513,954 priority
Priority to US201161513961P priority
Priority to US201161513935P priority
Priority to US201161513943P priority
Priority to US201161513952P priority
Priority to US201161513948P priority
Priority to US201161513939P priority
Priority to US201161513954P priority
Priority to US61/513,948 priority
Priority to US61/513,952 priority
Priority to US61/513,935 priority
Priority to US61/513,939 priority
Priority to US61/513,943 priority
Priority to US61/615,939 priority
Priority to US201261615939P priority
Application filed by 亚克安娜生命科学有限公司 filed Critical 亚克安娜生命科学有限公司
Priority to PCT/US2012/049100 priority patent/WO2013019830A2/en
Publication of CN103826690A publication Critical patent/CN103826690A/zh
Application granted granted Critical
Publication of CN103826690B publication Critical patent/CN103826690B/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16804Flow controllers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/03Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs
    • A61B5/036Detecting, measuring or recording fluid pressure within the body other than blood pressure, e.g. cerebral pressure; Measuring pressure in body tissues or organs by means introduced into body tracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • A61B5/4839Diagnosis combined with treatment in closed-loop systems or methods combined with drug delivery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M2025/0042Microcatheters, cannula or the like having outside diameters around 1 mm or less
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/0021Catheters; Hollow probes characterised by the form of the tubing
    • A61M25/0023Catheters; Hollow probes characterised by the form of the tubing by the form of the lumen, e.g. cross-section, variable diameter
    • A61M25/0026Multi-lumen catheters with stationary elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic

Abstract

在本文中公开的方法、系统和装置一般地涉及将药物对流加强递送到患者的靶区域。公开了微流控导管装置,其尤其地适用于将药物通过对流进行靶向递送,所述装置包括能够进行多方向药物递送的装置、使用文丘里效应来控制流体压力和速度的装置和包括贴合气球的装置。还公开了使用该装置来治疗各种疾病的方法,所述方法包括治疗脑和脊髓海绵状畸形、海绵状瘤和血管瘤的方法,治疗神经疾病的方法,使用多重微流控递送装置来进行治疗的方法,治疗听觉障碍的方法,使用微流控装置来进行脊椎药物递送的方法和在胎儿外科手术过程中递送干细胞和治疗剂的方法。还公开了生产该装置的方法。

Description

微流控药物递送装置

[0001] 相关申请的交叉引用

[0002]本申请要求以下专利申请的优先权:2011年8月I日递交的第61/513,935号美国临时申请、2011年8月I日递交的第61/513,939号美国临时申请、2011年8月I日递交的第61/513,943号美国临时申请、2011年8月I日递交的第61/513,948号美国临时申请、2011年8月I日递交的第61/513,952号美国临时申请、2011年8月I日递交的第61/513,954号美国临时申请、2011年8月I日递交的第61/513,961号美国临时申请和2012年3月27日递交的第61/615,939号美国临时申请,将所述专利申请的全部内容引入本文作为参考。

技术领域

[0003]本发明涉及用于治疗人和兽类疾病的方法和用于递送治疗剂的装置,以及涉及通过抽吸术提供诊断数据从而使治疗和试验分层的装置。具体地,本发明涉及微流控药物递送装置以及相关的治疗方法。

背景技术

[0004] 在对流加强递送(CED)中,将药物通过插入到组织中的插管局部地灌输到组织中。被灌输的材料的运输受到对流的控制,所述对流与扩散介导的递送或者全身性递送相比,增强了向靶组织的药物渗透。

[0005] CED作为领先的临床研究性递送技术产生,其用于治疗几种障碍。例如,慢性神经病理学病症的治疗中的一种根本障碍为血脑屏障(BBB)。所述BBB通过非常选择性地仅仅允许非常小尺寸且可溶于脂肪的分子来保护大脑。具有治疗患有神经障碍的患者的潜力的较大分子的药物不能穿过BBB。可以使用直接靶向的实质内注射和/或通过CED,通过将化合物经针、插管或者微导管直接灌注到脑实质或者脑肿瘤中来绕开血脑屏障。使用现有装置的临床试验显示出了不同的结果,并且表明疗法的效果强力地取决于渗透的程度和药物在大脑中的分布,而这是由灌注的速度、对流的相对速率和CED过程中的消除以及靶组织的各种特性所决定的。

[0006]为了提高灌注的速度,已经构造了柔性的微导管设计来减少含药流体在组织和针-轴界面之间发生回流。为了减少消除的速率并且从而延长渗透距离,将灌注的化合物掺入到纳米颗粒如脂质体或聚合物珠中,其在运输过程中保护该化合物。然而在CED治疗的过程中,药物回流在临床实践中仍然是严重的问题,并且由于纳米颗粒的尺寸与细胞外空间一般的“孔”的尺寸是相当的,因此纳米颗粒通过大脑的运输受到阻碍。除此之外,大脑组织的多孔弹性性质促进了回流或者逆流。除此之外,当组织特性在治疗的区域内变化时,难以控制灌输的分子和纳米颗粒的空间分布,例如在大脑的不均匀组织中和在接近白质纤维束附近。因此需要改进的CED装置,例如渗透距离提高和/或在灌输药物的空间分布的控制上有提升的CED装置。

[0007] 发明概述

[0008]本文中公开的方法、系统和装置一般地涉及将药物对流加强递送到患者的靶区域。公开了微流控导管装置,其尤其地适合用于将药物通过对流进行靶向递送,所述装置包括能够进行多方向药物递送的装置、使用文丘里效应来控制流体压力和速度的装置。还公开了使用该装置来治疗各种疾病的方法,所述方法包括治疗脑和脊髓海绵状畸形、海绵状瘤和血管瘤的方法,治疗神经疾病的方法,使用多重微流控递送装置来进行治疗的方法,治疗听觉障碍的方法,使用微流控装置来进行脊椎药物递送的方法和在胎儿外科手术过程中递送干细胞和治疗剂的方法。还公开了生产该装置的方法。

[0009]公开了微流控对流加强递送(CED)装置和使用方法,其中所述装置具有插入支持支架和多个沿纵向延伸的流体递送导管,所述流体递送导管定向为将治疗剂沿不同的方向递送。所述导管还可以用于抽吸流体样品。在一些实施方案中,所述导管可以放置在支架的不同侧的表面上,例如沿圆周按照隔开的关系绕着支架的侧面来放置。在其他的实施方案中,各个导管还可以具有沿纵向彼此隔开的多个出口,并且所述出口定向为将治疗剂沿不同的方向递送。

[0010]公开了治疗神经障碍的方法,借助所述方法将微流控实质内递送、神经-心室递送或者对流加强递送(CED)探针植入到患者(例如人或者动物)的大脑中,所述探针包括半刚性的或者可降解的支架和流体递送导管;和包含至少一种治疗剂的流体在正压力下通过导管递送到大脑中。在各种实施方案中,所述治疗剂可以是化学治疗剂、抗体、核酸构建体、RNAi试剂、反义寡核苷酸或者基因疗法载体。在其他的实施方案中,可以将辅因子如皮质类固醇与治疗剂通过导管共同给予。所述神经障碍包括但不限于,中枢神经系统(CNS)肿瘤、癫痫症、帕金森氏病、运动障碍、亨廷顿氏病、ALS、爱茨海默氏病、中风、大脑损伤和神经疾病。

[0011]公开了将治疗剂直接地递送到患者的中枢神经系统区域的靶位点的方法,所述方法使用多个微流控对流加强递送(CED)探针,借以按照分开的关系沿着靶位点放置探针,从而使得在探针中形成的一个或多个流体出口与靶位点对齐;以及在正压力下通过所述多个探针中的每个中形成的一个或多个流体导管提供包含治疗剂的流体,以将所述流体通过一个或多个流体出口递送并进入到靶位点中。例如,靶位点可以是肿瘤,并且所述探针通过头骨上的单个或多个开口插入。在本发明的另一个方面中,可以根据放置在多个探针中至少一个中的微传感器的反馈来调节将流体提供到多个探针中的每一个的压力。

[0012]公开了治疗平衡或听力障碍的方法,其中在患者的头骨中形成开口来接入患者的耳朵的部分,将微流控对流加强递送(CED)探针植入到耳朵的部分中,并且将含有至少一种治疗剂的流体在正压力下通过导管递送到该耳朵的部分中。在一个实施方案中,所述探针可以包括可降解的支架和流体递送导管,并且疗法的靶区域可以是内耳、耳蜗、螺旋器或者基底膜。在另一个方面中,所述治疗剂可以是基因疗法载体,例如用以递送人的无调性的基因(human atonal gene)。该方法还可以包括将辅因子,例如皮质类固醇递送到耳朵的部分来提高流体递送。

[0013]公开了将治疗剂递送到患者的椎管中的靶区域的方法,其中将微流控对流加强递送(CED)探针植入到靶区域内,将包含治疗剂的流体在正压力下通过导管递送到靶区域内,并且递送的流体基本上都不与患者的脑脊液(CSF)混合。在一个实施方案中,所述探针包括可降解的支架和流体递送导管。在另一个方面中,所述治疗剂可以包括用于治疗ALS的干细胞。

[0014]公开了微流控对流加强递送(CED)装置,其具有基底;沉积在所述基底上的导管层,所述导管层在其中限定出至少一个流体递送导管,所述流体递送导管具有至少一个流体出口和流体限制件,所述流体限制件在至少一个流体递送导管内、在出口处或者邻近出口形成,所述流体限制件配置成调节引导通过至少一个流体递送导管的流体的压力。在某些实施方案中,所述流体限制件包括至少一个流体递送导管的收缩区域,所述收缩区域的横截面积比至少一个流体递送导管的紧密邻近部分的横截面积更低,优选地比紧密邻近部分的横截面积低至少约20%。

[0015]公开了在胎儿外科手术过程中递送治疗剂的方法,其中将微流控对流加强递送(CED)探针植入到胎儿或者胎儿所在的患者的靶区域,所述探针包括可降解的支架和流体递送导管。在一个实施方案中,所述方法还包括将包含治疗剂的流体在正压力下经导管递送到靶区域中。所述靶区域可以是或者可以包括脐带,脐动脉,脐静脉,胎盘和/或子宫壁。在一个实施方案中,所述治疗剂包括干细胞。

[0016]在一些实施方案中公开了微流控CED装置,其中提供的多个流体递送导管具有沿纵向交错分布的出口。可以将可膨胀的元件例如加强的贴合气球与一个或多个流体递送导管连接以及流体连通。在本文中还公开了向海绵状血管瘤递送药物例如抗血管形成因子的方法。在一些实施方案中,所述方法可以包括使用微流控CED装置将药物递送到海绵状血管瘤中,并且随后使海绵状血管瘤中的可膨胀的元件充气来将药物压缩到周围的组织中。

[0017] 海绵状血管瘤(CCM)是中枢神经系统(CNS)中的一些小血管(毛细血管)发生增大和结构异常。在CCM中,毛细血管壁比正常更薄、弹性更差并且容易渗漏。海绵状血管瘤可以在身体的任意位置产生,但是通常仅仅当其在大脑和脊椎中出现时才产生症状。一些患有CCM的人一一专家估计25%—一永远都不会经历任何相关的医学问题。其他人会具有严重的症状例如癫痫(最常见的)、头痛、麻痹、听力或视觉变化和脑内出血(脑溢血)。

[0018]没有CCM的有效疗法。一般使用抗癫痫药物来治疗癫痫。如果癫痫对给药没有反应,或者大脑中有复发性出血,有时候使用微外科手术技术来外科手术去除损伤(或多处损伤)是必须的。

[0019]在大部分的病例中偶发海绵状瘤(以非遗传的反式自发地发生),但是在一些病例中海绵状瘤可以证实有遗传性(家族性的,即阳性的或者强的海绵状血管瘤家族病史)。在家族病例中,证实了具体的第7号染色体的基因异常,以及据报道海绵状血管瘤在西班牙人(尤其是墨西哥美洲人)中更为普遍。在家族病例中,海绵状血管瘤更经常是多发性的(即诊断时有两处或多处的海绵状瘤),并且可能涉及到脊髓。

[0020]海绵状瘤可以是无症状的,或者可以与癫痫一起存在(60%)或者具有进展型神经损伤或者“缺陷”(50%)。一些可以具有脑积水或者颅内压力升高(头痛、恶心、呕吐、视力障碍、嗜睡),这取决于其尺寸和位置。海绵状瘤少见引起突发的灾难性或者毁灭性的神经损伤,但是与海绵状瘤相关的进展型大脑(或者脊椎)损伤可以随着时间使人严重地残疾。

[0021]这部分是由于海绵状瘤中出血的反复发作。不同的海绵状瘤空腔可以具有不同阶段的血液产物。血管壁是脆弱的,并且微血管在这些损伤中的生长导致了血液产物(血铁黄素)围绕吸附于海绵状瘤,并且海绵状血管瘤生长的周期经历出血和再次出血。所述出血罕见为大规模毁灭性出血。

[0022]抗血管形成疗法抑制新血管的生长。由于新血管的生长在多种疾病病症中起到关键的作用,所述疾病病症包括引起失明、关节炎和癌症的障碍,抗血管形成抑制在治疗这些疾病中是“共同的”方法。抗血管形成药物按照多种方式发挥其有益效果:通过使得活化和促进细胞生长的试剂失效,或者通过直接阻断生长的血管细胞。已经发现三百种以上的物质具有抗血管形成抑制特性,所述物质从天然地在动物和植物中产生的分子如绿茶提取物到实验室里合成的新化学品。美国食品和药物管理局(FDA)所批准的多种药物都发现具有抗血管形成的特性,包括赛来昔布(Celebrex)、硼替佐米(Velcade)和干扰素。目前多种抑制剂正在临床试验中针对人类患者的多种疾病进行测试,以及一些用于兽医环境中。

[0023]雷帕霉素(现在称作西罗莫斯)是用于使身体不排斥器官和骨髓移植物的药物。现在已知的是,雷帕霉素阻断特定的能够排斥外来组织和器官的白细胞(抗血管形成)。其还阻断涉及细胞分裂的蛋白质。其是一类抗生素、一类免疫抑制剂和一类丝氨酸/苏氨酸激酶抑制剂。

[0024]在本发明至少一个实施方案的一个方面中,提供了微流控对流加强递送(CED)装置,所述装置包括插入支持支架,所述支架具有近端和远端和多个流体递送导管,所述流体递送导管通过所述支架的纵向延伸,各个的导管具有入口和至少一个出口。所述多个导管可以放置在接近支架的远端处,并且方向为向多个方向递送治疗剂。所述多个导管可以配置为抽吸流体。

[0025]所述多个导管可以各个地结合到相应的支架的多个侧面表面之一和/或所述多个导管可以沿着支架的连续的圆周侧面表面间隔地放置。

[0026] 所述至少一个出口包括多个出口,所述出口在各个导管的近端和远端之间彼此间隔一定的距离。所述多个出口各自的面积可以大于位于邻近所述出口的任意出口的面积。所述多个导管是由聚对亚苯基二甲基组合物、硅橡胶组合物、聚氨酯组合物和PTFE组合物中的至少一种形成的,和/或可以放置在支架中形成的多个相对应的凹口中。

[0027]所述装置还可以包括储液室,所述储液室与所述多个导管的入口流体连通,并且配置为在正压力下向所述导管入口提供流体。所述多个导管可以是柔性的。

[0028]多个导管的至少一个可以包括嵌入的微传感器,所述嵌入的微传感器可以包括可询问式(interrogatable)传感器、压力传感器、谷氨酸传感器、pH传感器、温度传感器、离子浓度传感器、二氧化碳传感器、氧传感器、以及乳酸传感器中的至少一个。

[0029]所述支架可以是刚性的、半刚性的和/或可降解的,并且所述支架的远端可以具有防止损伤的形状,所述形状配置为刺入组织而不造成创口。所述支架可以由可降解的热塑性聚合物(例如可降解的热塑性聚酯和/或可降解的热塑性聚碳酸酯)形成。在一个实施方案中,所述支架由乳酸-乙醇酸共聚物(PLGA)形成。

[0030]所述支架可以包括一定量的药物,可以使用药物涂覆,和/或可以使用抗细菌剂和抗炎剂中的至少一种浸渍。例如,所述支架可以使用皮质类固醇浸渍,所述皮质类固醇例如地塞米松。

[0031]所述多个导管各自可以和相应的微毛细管流体连通。所述支架可以包括主体和延长的远端尖端,以及所述装置还可以包括放置在所述主体和所述远端尖端之间的界面的突出部(nose),以使所述突出部封装主体的远端部分。

[0032]在本发明的至少一个实施方案中的另一个方面中,提供了将治疗剂递送到患者的大脑的方法,所述方法包括形成通过患者的头骨的开口,使支架通过该头骨中的开口前进并进入大脑,以及在正压力下向多个流体递送导管提供包含治疗剂的流体,所述多个导管各自连接到支架的相应侧表面。该方法还包括从在所述多个导管的每一个中形成的一个或多个出口喷射流体,从而将所述流体按照放射状图案围绕该支架基本上360度地递送所述流体。

[0033]所述方法还包括使得支架能够在大脑中降解,并且从而释放出在支架中浸渍的皮质类固醇和/或将酶与流体一起通过多个导管进行递送,从而提高治疗剂向大脑内的渗透。

[0034]在本发明的至少一个实施方案的另一个方面中,提供了将治疗剂递送到患者的方法,所述方法可以包括使支架进入到患者的靶区域,在正压力下向多个流体递送导管提供包含治疗剂的流体,所述多个导管各自连接到支架的相应侧表面,并且从在所述多个导管的每个中形成的一个或多个出口喷射流体,从而将所述流体沿着多个方向递送到靶区域。

[0035]所述方法可以包括使支架能够降解,从而释放出在支架中浸渍的皮质类固醇。本发明可以包括将酶与流体一起通过多个导管进行递送,从而提高治疗剂向把区域内的渗透。在一些实施方案中,喷射流体可以包括将所述流体按照放射状图案围绕该支架基本上360度地递送到靶区域中。所述方法可以用于治疗选自中枢神经(CNS)肿瘤、顽固性癫痫、帕金森氏病、亨廷顿氏病、中风、溶酶体贮积症、慢性大脑损伤、爱茨海默氏病、肌萎缩性脊髓侧索硬化症、平衡障碍,听力障碍和海绵状血管瘤中的至少一种病症。

[0036]在本发明的至少一个实施方案的另一个方面中,提供了一种治疗中枢神经系统(CNS)肿瘤的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含至少一种治疗剂的流体在正压力下通过该导管递送到大脑中。

[0037]所述治疗剂可以包括抗体(例如抗表皮生长因子(EGF)受体单克隆抗体)和核酸构建体(例如核糖核酸干扰(RNAi)试剂,反义寡核苷酸、病毒载体、腺病毒和或腺相关的病毒载体)中的至少一种。所述方法还可以包括将辅因子递送到大脑从而改进流体递送。所述辅因子可以包括在装置的支架中浸渍的皮质类固醇、涂覆到支架上的皮质类固醇和传播增强酶中的至少一种。

[0038]在本发明的至少一个实施方案的另一个方面中,提供了治疗顽固性癫痫的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含抗惊厥剂的流体在正压力下通过该导管递送到大脑中。

[0039]在本发明的至少一个实施方案的另一个方面中,提供了治疗帕金森氏病的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含蛋白质的流体在正压力下通过该导管递送到大脑中。所述蛋白质可以包括胶质细胞源性神经营养因子(GDNF)或者脑源性神经营养因子(BDN1或者遗传材料。

[0040]在本发明的至少一个实施方案的另一个方面中,提供了治疗亨廷顿病的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含核酸构建体的流体在正压力下通过该导管递送到大脑中。所述核酸构建体可以包括核糖核酸干扰(RNAi)试剂和反义寡核苷酸中的至少一种。[0041 ]在本发明的至少一个实施方案的另一个方面中,提供了治疗中风的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含神经营养蛋白的流体在正压力下通过该导管递送到大脑中。

[0042]在本发明的至少一个实施方案的另一个方面中,提供了治疗溶酶体贮积症的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含蛋白质的流体在正压力下通过该导管递送到大脑中。所述蛋白质可以包括溶酶体酶。

[0043]在本发明的至少一个实施方案的另一个方面中,提供了治疗慢性脑损伤的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含蛋白质的流体在正压力下通过该导管递送到大脑中。所述蛋白质可以包括脑源性神经营养因子(BDMO和成纤维细胞生长因子(FGH。

[0044]在本发明的至少一个实施方案的另一个方面中,提供了治疗爱茨海默病的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将流体在正压力下通过该导管递送到大脑中,所述流体包含抗淀粉样蛋白和神经生长因子(NGF)或者基因或载体中的至少一种。

[0045]在本发明的至少一个实施方案的另一个方面中,提供了治疗肌萎缩性脊髓侧索硬化症的方法,所述方法包括将微流控对流加强递送(CED)探针植入到患者的大脑中,所述探针包括可降解的支架和流体递送导管,并且将包含蛋白质的流体在正压力下通过该导管递送到大脑中。所述蛋白质可以包括脑源性神经营养因子(BDNF)和睫状神经营养因子(CNTF)中的至少一种。

[0046]在本发明的至少一个实施方案的另一个方面中,提供了将治疗剂递送到患者的椎管内靶区域的方法,所述方法包括将微流控对流加强递送(CED)探针植入到靶区域中,所述探针包括可降解的支架和流体递送导管,并且将包含治疗剂的流体在正压力下通过该导管递送到靶区域中。在一个实施方案中,基本上没有流体与患者的脑脊液(CSF)混合。所述治疗剂可以包括用于治疗ALS的干细胞。

[0047]在本发明的至少一个实施方案的另一个方面中,提供了使用多个微流控对流加强递送(CED)探针将治疗剂递送到患者的大脑内的靶位点的方法。所述方法包括将多个探针沿靶位点按照隔开的关系放置,以使在多个探针中的每个中形成的一个或多个出口与靶位点对齐。该方法还包括了在正压力下通过在多个探针中的每个中形成的一个或多个流体导管提供包含治疗剂的流体,从而将该流体通过所述一个或多个流体出口递送并进入靶位点内。

[0048]在一个实施方案中,靶位点可以包括肿瘤。多个探针可以通过头骨的单个开口插入,或者可以通过头骨上分开的开口插入。所述方法还可以包括根据放置在多个探针中至少一个当中的微传感器的反馈来调节将流体提供到多个探针中的每一个的压力。所述微传感器可以包括可询问式传感器、压力传感器、谷氨酸传感器、PH传感器、温度传感器、离子浓度传感器、二氧化碳传感器、氧传感器、以及乳酸传感器中的至少一个。

[0049]在本发明的至少一个实施方案的另一个方面中,提供了微流控对流加强递送(CED)装置,所述装置包括基底;沉积在基底上的导管层,所述导管层具有在其中形成的至少一个流体递送导管,所述流体递送导管具有近端、远端、流体入口和至少一个流体出口;以及流动限制件,其在至少一个流体递送导管中、在其远端或接近远端处形成,所述流动限制件配置成调节引导通过至少一个流体递送导管的流体压力。

[0050]所述装置还可以包括插入支持支架,所述基底连接到所述插入支持支架。所述基底可以是由硅形成的,以及所述导管层是由聚对亚苯基二甲基形成的。在一个实施方案中,所述流动限制件包括至少一个流体递送导管的收缩区域,所述收缩区域的横截面积少于至少一个流体递送导管的紧密邻近部分的横截面积。

[0051]所述收缩区域的横截面积比紧密邻近部分的横截面积至少低大约20%、低大约30%,或者低大约40%。

[0052]在一个实施方案中,所述紧密邻近部分的高度为约I微米到约50微米,以及收缩区域的高度为约I微米到约25微米。在另一个实施方案中,所述紧密邻近部分的宽度为约10微米到约100微米,以及收缩区域的宽度为约5微米到约50微米。

[0053] 至少一个流体出口可以包括彼此隔开一定距离的多个出口,所述多个出口位于至少一个流体递送导管的近端和远端之间。多个出口中的每一个的面积可以大于紧密接近其的任意出口的面积。至少一个流体递送导管可以是由聚对亚苯基二甲基组合物、硅橡胶组合物、聚氨酯组合物和PTFE组合物中的至少一个形成的。所述装置还可以包括储液室,所述储液室与至少一个流体递送导管的流体入口流体连通,并且所述储液室经配置成在正压力下向所述流体递送导管提供流体。所述至少一个流体递送导管可以包括嵌入的微传感器。所述嵌入的微传感器可以包括可询问式传感器、压力传感器、谷氨酸传感器、PH传感器、温度传感器、离子浓度传感器、二氧化碳传感器、氧传感器以及乳酸传感器中的至少一个。所述至少一个流体递送导管可以配置成抽吸流体。

[0054]在本发明的至少一个实施方案的另一个方面中,提供了用于将治疗剂递送到患者的方法。所述方法可以包括使基底进入到患者的靶区域,所述基底具有至少一个流体递送导管,所述至少一个流体递送导管包括在其远端处或靠近其远端形成的流体限制件,所述流体限制件配置成调节引导通过至少一个流体递送导管的流体的压力。所述方法还可以包括将包含治疗剂的流体在正压力下提供到至少一个流体递送导管。所述方法还可以包括从至少一个流体递送导管中形成的一个或多个出口喷射流体,从而将所述流体递送到靶区域。所述方法还可以包括将酶与流体一起通过至少一个流体递送导管进行递送,从而提高治疗剂向靶区域内的渗透。在一些实施方案中,所述方法可以用于治疗选自中枢神经系统(CNS)肿瘤、顽固性癫痫、帕金森氏病、亨廷顿氏病、中风、溶酶体贮积症、慢性大脑损伤、爱茨海默氏病、肌萎缩性脊髓侧索硬化症、平衡障碍,听力障碍和海绵状血管瘤的至少一种病症。

[0055]在本发明的至少一个实施方案的另一个方面中,提供了治疗平衡或听力障碍的方法,所述方法包括在患者的头骨中形成开口来接入患者的耳朵的部分,并且将微流控对流加强递送(CED)探针植入到患者的耳朵的部分中,所述探针包括可降解的支架和流体递送导管。所述方法还包括将包括至少一种治疗剂的流体在正压力下通过导管递送到耳朵部分内。

[0056]所述耳朵的部分可以包括内耳、耳蜗、螺旋器和基底膜中的任意一种或多种。所述治疗剂可以包括人的无调性的基因。在一个实施方案中,所述方法还包括将辅因子递送到耳朵的部分来提高流体递送。所述辅因子可以包括在装置的支架中浸渍的皮质类固醇、涂覆到支架上的皮质类固醇和传播增强酶中的至少一种。在一个实施方案中,该方法还包括使支架能在耳朵的该部分中降解并从而释放该支架中浸渍的皮质类固醇。

[0057]在本发明的至少一个实施方案的另一个方面中,提供了一种在胎儿外科手术期间递送治疗剂的方法,所述方法包括将微流控对流加强递送(CED)探针植入到胎儿或携带胎儿的患者的靶区域,所述探针包括可降解的支架和流体递送导管。所述方法还包括将包含治疗剂的流体在正压力下通过该导管递送到靶区域中。

[0058]所述靶区域可以是或者可以包括脐带、脐动脉、脐静脉、胎盘和/或子宫壁。在一个实施方案中,所述治疗剂包括干细胞。

[0059]在本发明的至少一个实施方案的另一个方面中,提供了微流控对流加强递送(CED)装置,所述装置包括插入支持支架,其具有近端和远端;连接到支持支架的柄;第一流体递送导管,其通过具有入口和至少一个出口的柄沿纵向延伸;第二流体递送导管,其通过具有入口和至少一个出口的柄沿纵向延伸。所述第二流体递送导管的至少一个出口与第一流体递送导管的至少一个出口在纵向上间隔一定距离。

[0060] 在一些实施方案中,第二流体递送导管的至少一个出口放置在比第一流体递送导管的至少一个出口更为接近柄的远端处。所述支架的宽度为约0.02μηι到约2000μηι,和/或可以是刚性的、半刚性的和/或部分或完全地可降解的。第一和第二流体递送导管各自的直径可以为约0.02μπι到约500μπι。

[0061]在一些实施方案中,所述装置可以包括连接到柄的可膨胀元件,所述可膨胀元件的内部与第一流体递送导管通过所述第一流体递送导管的至少一个出口流体连通。所述可膨胀的元件可以是或者可以包括加强的贴合气球。所述可膨胀的元件可以具有至少一个占据第一体积的放气配置和占据第二体积的放气配置,所述第二体积大于所述第一体积。

[0062]所述装置可以是MRI并且是立体定向手术相容的,可以包括至少一个不透射线的标志物,和/或可以包括嵌入到第一和第二流体递送导管中至少一个中的微传感器。

[0063]在本发明的至少一个实施方案的另一个方面中,提供了用于将药物递送到患者中的海绵状血管瘤的方法。所述方法包括将微流控对流加强递送(CED)探针植入到海绵状血管瘤,所述探针包括插入支架和至少一个流体递送导管,并且将包含药物的流体在正压力下通过至少一个流体递送导管递送到海绵状血管瘤中。

[0064]在一些实施方案中,所述药物可以包括一种或多种抗血管形成的化合物,例如塞来昔布、硼替佐米、干扰素和/或雷帕霉素。所述药物可以包括封装了治疗剂分子或者抗血管形成化合物的纳米颗粒。

[0065]在一些实施方案中,至少一个流体递送导管包括具有在其中形成的出口的第一流体递送导管和具有在其中形成的出口的第二流体递送导管。可以植入探针以使得第一流体递送导管的出口放置在海绵状血管瘤的表面,并且第二流体递送导管的出口放置在海绵状血管瘤的核心中。所述方法可以包括将流体在正压力下经第一流体递送导管递送到海绵状血管瘤的表面,经第二流体递送导管递送到海绵状血管瘤的核心。

[0066]可以植入探针以使第一流体递送导管的出口放置在海绵状血管瘤的核心中,并且第二流体递送导管的出口放置在海绵状血管瘤的核心中。该方法还可以包括将流体在正压力下经第二流体递送导管递送到海绵状血管瘤的中心,并且随后使得与第一流体递送导管的出口流体连通的气球充气,来对流体施加压力并且使其进入到周围的海绵状血管瘤中。

[0067]在一些实施方案中,所述药物可以包括水凝胶或者其他具有粘合特性的物质。所述海绵状血管瘤可以在患者的中枢神经系统中形成。所述药物可以经配制来填塞和/或完全地覆盖海绵状血管瘤。所述探针可以在远端包括气球,所述气球可以操作地将药物压缩到海绵状血管瘤中。所述方法可以包括根据至少一个嵌入到探针中的微传感器的反馈来调节流体的递送。

[0068]在本发明的至少一个实施方案的另一个方面中,提供了将治疗剂递送到患者的方法。所述方法可以包括使微流控对流加强递送(CED)进入到患者的靶区域,所述CED装置包括具有近端和远端的插入支持支架,连接到所述支架的柄,通过具有入口和至少一个出口的柄沿纵向延伸第一流体递送导管和通过具有入口和至少一个出口的柄沿纵向延伸的第二流体递送导管,所述第二流体递送导管的至少一个出口与所述第一流体递送导管的至少一个出口在纵向上间隔一定距离。所述方法还可以包括将包含治疗剂的流体在正压力下提供到第一和第二流体递送导管中的至少一个。所述方法还可以包括从第一和第二流体递送导管中的至少一个喷射流体,以将流体递送到靶区域。所述方法还可以包括使靶区域中的可膨胀的元件膨胀来增强治疗剂的递送。

[0069]在一些实施方案中,所述方法可以包括使支架降解,从而释放支架中浸渍的皮质类固醇。所述方法可以用于治疗选自中枢神经系统(CNS)肿瘤、顽固性癫痫、帕金森氏病、亨廷顿氏病、中风、溶酶体贮积症、慢性脑损伤、爱茨海默氏病、肌萎缩性脊髓侧索硬化症、平衡障碍,听力障碍和海绵状血管瘤的至少一种病症。

[0070]在本发明的至少一个实施方案的另一个方面中,提供了制造具有至少一个流体通道的递送装置的方法。所述方法可以包括在硅片的背面沉积氧化物掩模,使所述氧化物掩模图案化来限定出递送装置的边界,在硅片的正面沉积聚酰亚胺层,在聚酰亚胺层上按照至少一个流体通道的形状沉淀牺牲抗蚀剂,在所述牺牲抗蚀剂和聚酰亚胺层上沉积聚对亚苯基二甲基层,在所述聚对亚苯基二甲基层上沉积铝掩模,并且将牺牲抗蚀剂使用溶剂除去,来在聚酰亚胺层和聚对亚苯基二甲基层之间形成至少一个流体通道。

[0071]在一些实施方案中,所述方法还可以包括将微毛细管连接到递送装置,以使所述微毛细管与至少一个流体通道流体连通。所述方法还可以包括在硅片的背面根据图案化的氧化物掩模来刻蚀沟槽。该方法还可以包括对沟槽的底面施加氧化物刻蚀终止层(oxideetch stop)。

[0072]在本发明的至少一个实施方案的另一个方面中,提供了制造具有至少一个流体通道的递送装置的方法。所述方法可以包括刻蚀硅片的正面来限定出递送装置的边界,在硅片的正面和硅片的背面施加聚酰亚胺涂层,按照至少一个流体通道的形状对聚酰亚胺涂层施加牺牲抗蚀剂,在所述牺牲抗蚀剂上施加聚对亚苯基二甲基层,在聚对亚苯基二甲基层上沉积铝掩模,并且使用溶剂来除去牺牲抗蚀剂来在聚酰亚胺涂层和聚对亚苯基二甲基层之间形成至少一个流体通道。

[0073]在一些实施方案中,所述方法还可以包括将微毛细管连接到递送装置,以使所述微毛细管与至少一个流体通道流体连通。

[0074]在本发明的至少一个实施方案的另一个方面中,提供了微流控对流加强递送(CED)装置,所述装置包括基底,其限定出主体、延长的远端尖端以及第一和第二近端支管(leg)。所述装置还可以包括第一流体通道,其沿着第一支管、沿着主体和沿着远端尖端延伸;和第二流体通道,其沿着第二支管、沿着主体以及沿着远端尖端延伸。所述装置还可以包括第一微毛细管,其连接到第一支管部分,并且与所述第一流体通道流体连通;和第二微毛细管,其连接到第二支管部分,并且与所述第二流体通道流体连通。所述装置还可以包括管状的护套,其封装第一和第二支管和至少部分的第一和第二微毛细管。

[0075] 在一些实施方案中,所述装置可以包括放置在远端尖端和主体之间的界面处的突出部,所述突出部封装主体的远端部分。所述突出部可以是圆锥形的或者半球形的。

[0076]本发明还提供了所要求权利的装置、系统和方法。

[0077]附图简要说明

[0078]随后的详细说明结合附图可以更完整地理解本发明,其中:

[0079]图1是微制造CED装置的一个示例性实施方案的透视示意图;①在回流最小的情况下,用于递送治疗上有意义的高流速的最小可能尺寸;②多个递送通道,使得能够进行360度的个体通道递送,组合疗法和/或生物反馈数据的收集;③递送通道,其由具有最高的可能强度的最软材料制造来承受高的内部压力并且使得生物稳定性最大化;④多个流体出口构型,来避免阻塞和使得360度的对流最大化;⑤刚性的或者半刚性的可降解或不可降解插入系统,所述系统在后方具有柔性的叶片,从而使得组织损伤最小(长期植入);

[0080]图2A是微制造CED装置的另一个示例性实施方案的透视示意图;

[0081 ]图2B是图2A的微制造CED装置的横截面视图;

[0082]图3A是微制造CED装置的另一个示例性实施方案的透视示意图;

[0083]图3B是图3A的微制造CED装置的横截面视图;

[0084]图4是可操作地连接到微制造的CED装置的流体递送系统的示意图解;

[0085]图5A是微制造的CED装置的流体递送导管的一个示例性实施方案的顶视图;

[0086]图5B是微制造的CED装置的流体递送导管的另一个示例性实施方案的顶视图;

[0087]图6是微制造的CED装置的另一个示例性实施方案的电子显微照片;

[0088]图7是植入到患者大脑中的微制造的CED装置的示意图;A:注射的介质;1: CED装置;48:环氧树脂;46:基架;44:头骨;40:大脑;

[0089]图8是连接到标准套管的微制造的CED装置的透视图;A:与立体定向框架整合的标准套管;B:微制造的套管界面;C:3.5-4cm的柄长;D:整合的微导管比其他用于CED的装置小5-6X;

[0090]图9是植入到患者大脑中的微制造的CED装置和相关的流体释放空间分布图案的不意图解;

[0091]图10是多个位于患者大脑中的靶位点周围的微制造的CED装置的示意图解;

[0092]图11是微制造的CED装置的另一个示例性实施方案的电子显微照片;

[0093]图12是植入到患者椎管中的微制造的CED装置的示意图解;

[0094]图13是植入到患者内耳中的微制造的CED装置的示意横截面视图;

[0095]图14是植入到患者内耳中的微制造的CED装置的示意侧视图;

[0096]图15是植入到大脑的不同区域中的微制造的CED装置的示意图;A:皮质;B:布洛卡区;C:皮质;D:运动皮层;E:感觉皮层;F:顶叶;G:味觉区;H:韦尼克氏区;1:初级视觉皮层;J:视放射;K:小脑;L:脑干;M:视觉听觉皮层;N:左侧大脑中动脉;O:左侧大脑半球;

[0097]图16是在胎儿外科手术期间植入到靶区域的微制造的CED装置的示意图;

[0098]图17A是具有带有沿纵向上错列的出口的流体递送导管的微制造的CED装置的示意图;

[0099]图17B是具有沿纵向上错列的出口并且可膨胀的微制造的CED装置的示意图;

[0100]图18A是插入到海绵状血管瘤中的图17B的装置的示意图;

[0101]图18B是可充气元件在海绵状血管瘤中膨胀的图17B的装置的示意图;

[0102]图19是描述了生产微制造的CED装置的示例性方法的流程图;

[0103]图20A-20L是图19的过程的不同阶段的CED装置的横截面视图;

[0104]图21A是微制造的CED装置的扫描电镜显微图像;

[0105]图21B是图21A的CED装置的远端尖端的扫描电镜显微图像;

[ΟΊΟό]图22Α是微制造的CED装置的不意顶视图;

[0107]图22Β是图22Α的CED装置的远端尖端的具体示意顶视图;

[0108]图23Α是包括了多个微制造的CED装置的片布局的示意图;

[0109]图23Β是在硅片上重复多次的图23Α的片布局示意图;

[0110]图23C是使用图23Α的布局制备的多个的微制造的CED装置的图像;

[0111]图24Α是在CED装置的生产过程中形成的硅基底的显微图像;

[0112]图24Β是图24Α的基底的另一个显微图像;

[0113]图24C是图24Α的基底的另一个显微图像;

[0114]图25Α是具有附加的导管部分的微制造的CED装置的示意顶视图;

[0115]图25Β是图25Α的装置的示意末端视图;

[0116]图25C是具有连接到其上的突出部部分和导管主体的图25Α的装置的示意顶视图;

[0117]图2®是图25C的装置的示意末端视图;

[0118]图26Α是组装的CED装置的顶视图图像;

[0119] 图26Β是图26Α的CED装置的透视视图图像;和

[0120]图26C是按参考尺度显示的图26Α的CED装置的顶视图图像。

[0121] 发明详述

[0122]现在通过描述某些示例性实施方案来为本文中公开的方法、系统和装置的结构、功能、制造和用途的原理提供总体上的理解。在所附的附图中图解了这些实施方案的一个或多个实例。本领域技术人员能够理解,在本文中具体描述并且在所附的附图中所图示的方法、系统和装置是非限定性的示例性实施方案,并且本发明的范围唯一地由权利要求所限定。结合一个示例性实施方案来图示或者描述的特征可以与其他实施方案的特征合并。这样的改变和变化意在包括在本发明的范围内。

[0123]在本文中公开的方法、系统和装置一般地涉及将药物对流加强递送到患者内的靶区域。公开了微流控导管装置,所述装置尤其地适用于将药物通过对流靶向递送,所述装置包括能够多方向药物递送的装置和使用文丘里效应来控制流体压力和速度的装置。还公开了使用该装置来治疗不同疾病的方法,所述方法包括治疗大脑和脊椎海绵状畸形、海绵状瘤和血管瘤,用于治疗神经疾病的方法,使用多个微流控递送装置治疗的方法,治疗听力障碍的方法,使用微流控装置来进行脊椎药物递送的方法,和在胎儿外科手术期间递送干细胞和治疗剂的方法。还公开了生产该装置的方法。

[0124]在本文中使用的术语“药物”是指任意的能够递送到人或者动物患者的功能性药剂,其包括激素、干细胞、基因治疗、化学品、化合物、小分子和大分子、染料、抗体、病毒、治疗剂等等。术语“微制造的CED装置”、“微流控递送装置”、“CED装置”、“探针”、“微探针”、“导管、”和“微导管”在本文中可交换地使用。

[0125]示例性的CED方法和装置公开于第2010/0098767号美国专利公开文本中,所述美国专利于2009年7月31日递交,将其全文引入本文作为参考。

[0126]图1图示了微制造的CED装置10的一个示例性的实施方案。所述装置10—般地包括支持支架12,一个或多个柄部分14连接到该支持支架。所述柄部分14可以包括一个或多个在其上或者在其中形成的流体递送导管16。

[0127]图示的支持支架12—般地是由延长的主体所形成,所述主体具有近端18、远端20和在其之间延伸的纵轴22。图示的支架12在与纵轴22垂直的平面中取的横截面具有大体上矩形的形状,然而,可以使用任意的不同的横截面形状,包括圆形、六角形和椭圆形。支架12可以为装置10提供结构上的刚性,来便于插入到靶位点。为了帮助组织渗透和引导,支持支架12的远端20可以是锥形的、尖的和/或尖锐的。在图示的实施方案中,提供了具有圆形的防止损坏的尖端的支架12,从而便于插入通过组织而不导致组织创伤。

[0128]支持支架12可以是刚性的或者半刚性的,并且可以由可降解的热塑性聚合物形成,所述热塑性聚合物例如为可降解的热塑性聚酯或者可降解的热塑性聚碳酸酯。在一个实施方案中,所述支持支架12是由乳酸-乙醇酸共聚物(PLGA)形成的,并且配置为在靶组织内生物降解。这可以在装置10放置在靶组织时有利地减少将支持支架12移除的需要,从而避免干扰流体递送导管16的定位的可能。可以使用任意的各种其他材料来形成支持支架12,包括硅或者本领域内已知的各种的陶瓷、金属和塑料。

[0129]支持支架12可以包括一定量的药物或者可以浸渍了一定量的药物。供选择地或者除此以外地,可以将支持支架12的表面涂覆药物。示例性的药物可以包括抗炎组分、药物渗透增加组分、缓释涂层等等。在一个实施方案中,可以将支架12涂覆或者浸渍皮质类固醇如地塞米松,所述皮质类固醇能够阻碍注射位点周围的肿胀和所述肿胀所导致的流体递送图案的破坏。

[0130]所述支架12可以具有约ΙΟΟμπι到约200μπι的宽度,并且具有根据靶位点变化的长度(例如,根据靶位点所处的深度)。在一个实施方案中,支架12的长度是2cm到3cm之间。

[0131]所述支架12还可以包括配置为保持或者匹配装置10的柄部分14的凹口或者架(shelf)部分24。除此之外,如下文进一步描述的,所述支架12可以包括多个凹口或者架部分来连接到多个柄部分14。在这种情况下,可以在支架的多个不同表面上形成凹口或者架部分。可以使用各种技术来将柄14连接到支持支架12,例如水滴的表面张力、粘合剂和/或生物相容的凡士林。

[0132] 装置10还可以包括一个或多个可以和支持支架12配对的柄部分14。所述柄部分14可以是柔性的基底,所述柔性的基底具有在其中或者其上形成的一个或多个流体递送导管

16。所述柄部分14可以由任意各种材料形成,例如硅或者聚对亚苯基二甲基。

[0133]可以在装置的柄部分14中或者在其上形成一个或多个流体递送导管16。所述导管16可以沿着柄部分14的表面按照大体上与支架12的纵轴22平行的方向延伸,并且其可以具有一个或者多个横向部分26,所述横向部分沿着与纵轴22形成非零度角的方向延伸。

[0134] 每个导管16可以包括流体入口(在图1中未显示)和一个或多个流体出口 28。所述流体入口可以位于装置10的近端处,并且可以使导管16可以与储液室流体连通,例如通过一个或多个栗、仪表、阀或者其他适合的控制装置。可以使用这样的控制装置来调节提供到装置10的流体压力,或者调节提供到装置10的流体速率或者体积。

[0135]通过流体入口提供到导管16的流体引导通过导管的内腔,并且通过一个或多个流体出口 28释放。所述流体出口 28可以是具有一定尺寸、形状的和/或将其放置用于控制流体的各种释放参数。例如,流体出口 28可以配置成控制流体从装置1中释放的方向、流体在靶组织内的分布和流体释放的速度或者压力。

[0136]在图示的实施方案中,柄部分14包括通过其延伸的第一和第二聚对亚苯基二甲基导管16A、16B。所述导管16A、16B包括纵向部分和多个流体出口 28在其中形成的横向延伸26。流体出口 28的尺寸朝向着装置10的远端20渐进地增大,这可以有利地补偿沿着装置长度的压力损失,从而从多个流体出口 28中的每个释放的流体处于大体上相同的压力。图示的流体出口28还经成形以控制流体的释放方向。端口28A和28C在侧面或者横向方向开口,然而端口 28B和28D朝向装置10的顶部开口。

[0137]所述装置还可以包括一个或多个传感器30,所述传感器安装在柄部分14中或者在柄部分14上或安装在支架12上。所述传感器30可以包括温度传感器、pH传感器、压力传感器、氧传感器、拉力传感器、可询问式传感器、谷氨酸传感器、离子浓度传感器、二氧化碳传感器、乳酸传感器、神经递质传感器或者任意各种其他传感器类型,并且可以向控制电路提供反馈,而所述控制电路可以反过来根据一个或多个所感应到的参数调节通过装置10的流体递送。可以提供位于柄部分14中或者在柄部分14上或在支持支架12上的一个或多个电极32,其用于向靶组织递送电能,从而例如来刺激靶组织或者来切除靶组织。在一个实施方案中,电能通过电极32来递送,而药物同时地通过流体递送导管16来递送。

[0138]可以将所述装置10用于药物的CED,以治疗大脑、耳朵、其他神经组织或者人或动物体的其他部分的障碍。当在大脑中使用时,装置10可以通过将药物在正压力下直接灌注到组织中来绕开血脑屏障(BBB )。装置1提供多个优点,例如I)与CED中使用的传统的针相比具有更小的横截面积;2)与传统的针相比,当插入到大脑中时对组织的干扰更小;3)消除了沿着插入部分的外部的回流或者逆流,这转而使得能够在装置10中进行比传统的针更高速率的药物递送;4)在插入到大脑的过程中流体递送导管16的阻塞很少或者没有;5)可以将多个聚对亚苯基二甲基导管16制造到硅柄14中,各自传导不同的流体(药物),这使得能够同时地、序贯地或者程序化地递送多种的药剂;6)装置10具有同时作为药物递送系统和作为配备了传感器的探针的作用,所述探针测量局部的组织特性,例如但不限于压力、pH、离子特异性浓度、位置和其他的参数;和7)所述装置10使得能够直接地控制药物释放图案。

[0139]所述装置10可以在功能上连接到长且细的插入工具如插管或者针的远端,在所述工具内或者所述工具上可以与装置的流体递送导管I6的流体入口形成流体连接。这在牵涉到相对厚的组织的穿透时(例如,通过人的头骨插入)是尤其地有利的。

[0140]除了递送含有药物的流体,还可以使用装置10来递送酶或者其他的材料从而改变组织的渗透性和改进靶组织内的药物分布。例如,可以通过将至少一个大脑细胞外基质组分进行酶消化和将纳米颗粒颅内灌注到大脑组织中来增强含有药物的纳米颗粒向大脑组织中的渗透。在另一个实施方案中,可以在酶消化的步骤中将至少一种酶固定到纳米粒子的表面。所述装置10可以提供递送能够例如改变药物递送位点的酶和/或其他材料的能力,以及提供递送治疗材料的能力,所述递送事实上采用任意的顺序、排列和/或时间,而不需要使用不同的递送装置,也没有涉及这样做时带来的潜在的并发症。

[0141] 所述装置10可以用于活检组织,例如通过使得口针或者抓握工具通过一个导管16到靶位点,并且随后从靶位点处将口针或者抓握工具与其中的活检样品一起取出。在一些实施方案中,柄部分14或者支持支架12可以具有在其中延伸的用于活检目的的更大直径的腔以及所述腔具有在其外部上形成的较小的流体导管16。

[0142]图2A和2B图示了微制造的CED装置110的另一个示例性实施方案。所述装置110包括矩形的支持支架112,所述支持支架具有柄部分114和伴随的连接到支架的四个侧表面中的每一个的流体递送导管116。如图2B的横截面视图中所显示的,柄部分114位于支持支架112的侧壁中形成的对应的凹口 124内。在供选择的的实施方案中,柄部分114可以表面安装在支架112上。将柄部分114和流体递送导管116放置在支架112的四个侧表面中的每一个上可以进一步促进来自装置110的含有药物的流体360度地对流流动。

[0143]装置110的结构和功能除此之外与前文所描述的装置10大体上相同,并且因此在此出于简洁的目的省略了进一步的描述。

[0144]图3A和3B图示了微制造的CED装置210的另一个示例性实施方案。所述装置210包括圆柱形的支持支架212,所述支持支架具有柄部分214以及按照间隔关系连接于支架212的外表面的伴随的流体递送导管216。如图3B的横截面视图所示的,柄部分214放置在支持支架212的侧壁中形成的对应凹口 2 24内。在供选择的实施方案中,柄部分214可以表面安装在支架212上。应当认识到的是,柄部分214和流体递送导管216的柔性性质使得其能够弯曲或者可以形成波状外观来匹配支架212的表面轮廓。柄部分214和流体递送导管216如所示地沿着支架212的外表面放置可以进一步地促进来自装置的含有药物的流体进行360度对流流动。

[0145]装置210的结构和功能与前文所描述的装置10大体上相同,并且因此在此出于简洁的目的省略了进一步的描述。

[0146]图4是药物递送系统300的示意图示,所述系统包括微导管CED装置310,所述装置可以是前文所描述的装置10、110和210中的任一种。系统300包括含有药物的流体的储液器302,所述储液器通过控制阀306连接到栗304。当控制阀开启时,储液器302中的流体在压力下通过栗304提供到压力调节器308中,所述压力调节器308能够调节流体递送到导管310中的压力。控制阀306、栗304和调节器308可以可操作地连接到控制器301,所述控制器301可以包括微处理器和存储器,并且可以配置成执行储存在永久的计算机可读储存介质中的药物递送控制程序。所述控制器301可以配置成打开或者关闭阀306、开启或者关闭栗304、改变栗304的输出压力,和/或调节调节器308的压力设定点。控制器301还可以通过反馈回路接收指示了感应到的参数的信息,所述回路包括安装在导管310内或者导管310上的一个或多个传感器330。因此,作为对植入到导管310的一个或多个传感器330的应答,控制器301可以开始或者停止向导管310的流体流动,提高或者降低流体提供到导管310的压力等等。在一个实施方案中,导管310包括压力传感器330,所述压力传感器测量导管310附近的流体压力并且控制器301配置成根据压力传感器330的反馈将流体提供压力保持在大体上恒定的水平。

[0147]图5A和5B图示了流体递送导管的供选择的实施方案,所述流体递送导管可以与本文中描述的装置一起使用。在图5A中,流体递送导管416包括第一和第二上游腔434、436,其合并到单一下游腔438中。合并的腔434、436的内部尺寸在合并处逐渐地减少,这可以有利地提高流体流动通过下游腔428的速度。在图示的实施方案中,下游腔438的横截面积比第一上游腔434的横截面积小,并且比第二上游腔436的横截面积小,从而在递送导管416中形成流体限制件。

[0148]优选地,由下游腔438形成的收缩区域的横截面积比递送导管416的紧密邻近部分的横截面积小大约20%。更优选地,收缩区域的横截面积比递送导管的紧密邻近部分的横截面积小大约30%。甚至更优选地,收缩区域的横截面积比递送导管的紧密邻近部分的横截面积小大约40%。

[0149]在一个实施方案中,紧密邻近部分的高度为约I微米到约50微米,以及收缩区域的高度为约I微米到约25微米。在另外一个实施方案中,紧密邻近部分的宽度为约10微米到约100微米,以及收缩区域的宽度为约5微米到约50微米。

[0150]在前文描述的“降低的优点”为装置的递送性能的调节提供了附加的压力和速度控制。如图5B中所显示的,可以使多个出口428与第一和第二上游腔434、436流体连通,和/或与下游腔438流体连通。

[0151]图6是微制造的CED装置510的一个示例性实施方案的电子显微照片,所述装置具有安装在可降解的支架512的单个表面上的单个流体递送导管516。如所显示的,流体递送导管516大约为25μπι宽以及流体出口 528在长度的方向上间隔约500μπι放置。

[0152]可以使用本文公开的装置来在正压力下将含有药物的流体递送到靶组织区域。图7图示了将药物对流加强递送到患者大脑40中的靶组织的示例性方法。在合适的位置制备和清洁之后,可以通过患者的头皮和头骨44形成组织开口从而暴露大脑40。在形成该组织开口之前或之后,可以将基架46任选地按照所显示的使用环氧树脂或者其他的粘合剂48安装到患者。所述基架46可以在CED装置10插入时支持所述装置,并且在长期植入中是尤其有用的。

[0153]如图8所示的那样,所述CED装置10可以使用微制造的界面任选地连接到插管50从而与CED装置10进行匹配。可以使用任意各种插管,包括配置成与导引式手术中的立体定向框架匹配的标准插管。在一些实施方案中,所述插管可以包括适合用于延长(例如30天)植入的柔性导管。所述导管可以为大约15cm长以及直径为约2cm。所述插管可以包括长度约为6英尺的管部分,该管部分在近端具有用于流体和生物传感器界面的连接器。

[0154] 再一次参考图7,可以使所述CED装置10通过组织开口进入大脑40中。如前文所解释的,CED装置10的支架12可以是刚性的,并且可以包括尖的或者尖锐的尖端20从而便于通过大脑组织向靶区域穿透。可以在CED装置10中包括一个或多个不透射线的标志物,从而使得能够进行放射摄影成像(例如,用于确认CED装置10合适地放置在靶组织或者接近靶组织)。在使用了可降解的支架12的实施方案中,所述支架12可以在插入之后很快地降解,仅仅留下安装在其上的柔性的柄部分14和流体递送导管16。柄14的柔性性质使得如果大脑40在头骨44内移位时(例如沿着箭头52的方向),CED装置10能够在大脑40中移动,这避免了邻近CED装置10的大脑组织的局部变形,而这对于刚性的装置而言可能会发生。所述变形可以导致加压流体沿着装置的表面回流,这不希望地阻碍了流体到达靶组织。

[0155] 一旦CED装置10位于靶组织内或者邻近靶组织,可以在正压力下将注射的介质(例如含有药物的流体)通过装置10的一个或多个流体递送导管16的一个或多个流体入口提供到CED装置10。如图9所显示的,在组织的靶区域,注射的介质在压力下从装置10的流体递送导管的流体出口驱出。递送分布图(prof ile)54可以通过改变参数如出口尺寸、出口形状、递送导管尺寸、递送导管形状、流体提供压力、流体速度等等来进行调节。

[0156]可以通过CED装置的策略定位和/或使用多个CED装置来进一步增强药物递送。例如在图10中所显示的,可以将多个CED探针10A、10B、1C和1D按照间隔的关系围绕靶位点56(例如肿瘤)进行放置,从而在多个CED装置中的每一个中形成的一个或多个流体出口与靶位点对准。在这个实例中,流体出口具有一定尺寸并且其放置用于方向性流体释放的CED装置可以定向(例如在放射摄影的帮助下)以使得释放的方向朝向靶组织。随后可以将一种或多种含有药物的流体在正压力下从多个CED装置中递送到靶位点中,以使药物基本上围绕靶位点并且使得靶位点饱和,或者药物递送到靶位点的几个侧面。可以针对多个CED装置中的每个独立地控制流体提供时的压力或者任意多个其他递送参数,例如基于放置在CED装置上的一个或多个微传感器的反馈来进行控制。例如,在其中四个CED装置植入以围绕靶位点的图示的实施方案中,可以将控制器配置成使四个CED装置中的每一个的流体压力根据固定到所述装置的压力传感器的反馈升高或降低,从而使得四个CED装置中的每一个的释放压力大体上保持在相同的水平上。

[0157] 可以将多个CED装置通过单一组织开口插入,或者可以形成多个分开的组织开口来便于将多个CED装置插入。

[0158]如图11中所示的,具有多个流体递送导管的CED装置可以有利地用于将一种或多种辅因子与含有药物的流体一起递送。例如,可以在通过主导管16A递送含有药物的流体之前、过程中或者之后将抗炎剂、酶和各种其他的功能药剂通过第二导管16B进行递送。还可以使用额外的流体递送导管来进行传感或者监控。

[0159]从前文应当认识到是,在本文中所公开的方法和装置可以将功能性药剂直接对流加强递送到患者内的靶组织。所述对流加强递送可以用于治疗广谱的疾病、病症、创伤、病痛等。

[0160]例如可以通过将抗体(例如抗表皮生长因子(EGF)受体单克隆抗体)或核酸构建体(例如核酸干扰(RNAi)药剂、反义寡核苷酸或者腺病毒、腺相关病毒载体或者其他病毒载体)递送到受影响的组织来治疗中枢神经系统(CNS)肿瘤。

[0161]在另一个示例性实施方案中,可以通过将抗癫痫药剂递送到大脑中的靶区域来治疗癫痫。在另一个实施方案中,可以通过递送蛋白质来治疗帕金森病,所述蛋白质例如为胶质细胞源性的神经营养因子(GDNF)。在另外的实施方案中,可以通过递送核酸构建体如核酸干扰(RNAi)药剂或者反义寡核苷酸来治疗亨廷顿病。

[0162]在本文中所公开的方法和装置还可以用于在正压力下递送神经营养因子从而治疗中风,和/或递送蛋白质如溶酶体酶来治疗溶酶体贮积症。

[0163]在另外的实施方案中,所公开的方法和装置可以通过在正压力下递送抗淀粉样蛋白和/或神经生长因子(NGF)来治疗爱茨海默病。在另外的实施方案中,可以通过将蛋白在正压力下递送到大脑、椎管或者中枢神经系统的其他位置来治疗肌萎缩性脊髓侧索硬化症,所述蛋白质如脑源性神经营养因子(BDNF)或者睫状神经营养因子(CNTF)。可以通过根据本文所公开的方法和装置在正压力下递送蛋白质来治疗慢性脑损伤,所述蛋白质例如为脑源性神经营养因子(BDN1和/或纤维母细胞生长因子(FGF)。

[0164]应当认识到的是,本文公开的装置和各种相关的治疗方法的使用不限于患者的大脑。与此相比,这些方法和装置可以用于将药物递送到患者身体的任意部分,包括脊椎。

[0165] 如图12中所示的,可以将CED装置10通过患者的脊椎58附近形成的组织开口插入从而便于将治疗剂递送到患者椎管60内的靶区域。将含有药物的流体递送到椎管的传统方法使得流体与患者的脑脊液(CSF)混合,这将药物从靶组织带走,并且当药物对患者的非靶区域起作用时可能导致并发症。另一方面,结合了含有药物的流体的高流速的在本文中所公开的CED装置的最小尺寸使得能够极度精确地靶向药物递送,从而可以避免向患者的脑脊液(CSF)中的递送,而仍然使得能够向椎管的特定靶区域中进行递送。在一个实施方案中,可以将干细胞递送到椎管或者中枢神经系统的其他位置,例如用来治疗ALS。

[0166]还可以使用在本文中所公开的方法和装置,通过将含有药物的流体直接地注射到患者的耳朵的部分中来治疗平衡或者听力障碍。将药物递送到内耳的现有技术需要通过外耳62和耳道64进入,这可能导致对耳朵的精细结构的损伤。在本实施方案中,如图13-14中所示的,可以在头骨44中患者的耳朵66后方形成组织开口,来使得CED装置10能够插入。可以将装置10通过组织开口插入并进入患者的耳朵的靶部分(例如内耳68、耳蜗70、螺旋器和/或基底膜)。随后可以将含有药物的流体在正压力下通过装置10递送到靶耳朵部分。可以使用任意多种药物的来治疗耳朵,包括人的无调性基因。

[0167]如图15中所示的,可以使用本文中所公开的方法和装置,通过将含有药物的流体递送到大脑皮层来治疗爱茨海默病或者其他的神经病症。可以将所述含有药物的流体递送到大脑的任意多个区域,所述递送是单独的或者共同的,以及是同时的或者序贯的。这些区域可以包括听觉皮层、颞下皮层、前额叶皮层、前运动皮层、初级运动皮层、辅助运动皮层、躯体感觉皮层、顶叶皮层、视觉皮层、味觉皮层等。

[0168]如图16中所显示的,本文中公开的方法和装置可以用于将治疗剂(例如干细胞)递送到胎儿或者携带胎儿的患者。这在胎儿外科手术过程中递送治疗剂中可以是尤其地有利的。如所显示的,可以使用微流控CED装置来将含有药物的流体递送到脐带、脐动脉、脐静脉、胎盘和/或子宫壁。

[0169]图17A图示了微流控CED装置610的另一个示例性实施方案,所述微流控装置610包括支持支架612,至少一个柄614和至少第一和第二流体递送导管616A、616B。所述流体递送导管616A、616B具有不同的长度,以使流体递送导管的出口 628A、628B沿着柄614在纵向上交错排列。换言之,第一和第二流体递送导管616A、616B在彼此距离为D处终止,以使其出口628A、628B沿纵向交错排列。在示例性的实施方案中,距离D为约0.02μπι到约10mm,以及优选地为约0.Ιμπι到约10mm。如前文所描述的,装置610还可以包括一个或多个传感器630和/或电极632。装置610的结构和功能与前文所描述的装置10大体上相同,并且因此在此出于简洁的目的省略了进一步的描述。

[0170]在使用中,可以将装置610插入到靶区域(例如,患者的中枢神经系统的海绵状血管瘤)内以使第二流体递送导管616B的出口 628B位于靶区域的中心部分(例如,所述海绵状血管瘤的核心),并且以使第一流体递送导管616A的出口 628A位于靶区域的外周部分(例如,所述海绵状血管瘤的外表面)。因此,可以由内而外和由外而内地治疗靶区域。在海绵状血管瘤的情况中,装置610使得能够将药物递送到海绵状神经瘤的核心中,以及将药物递送到血管型细胞增殖所在的海绵状神经瘤的表面上。

[0171]图17B图示了微流控CED装置710的另一个示例性实施方案。所述装置710大体上与图17A的装置610相同,除了在装置710中包括了可膨胀的元件772(例如加强的和/或贴合气球)。所述可膨胀的元件772可以与第一流体递送导管716A流体连通,从而可以将流体通过第一流体递送导管716A进行递送来使得可膨胀的元件772膨胀和提高可膨胀的元件772的体积,或者提高可膨胀的元件772中的压力。类似地,可以通过第一流体递送导管716A将流体从可膨胀的元件772中抽出,从而减少可膨胀的元件772的体积或者降低其中的压力。可以将可膨胀的元件772连接到装置710的外部(例如,以使其大体上围绕装置710的部分),或者所述可膨胀的元件772可以配置成从装置710中形成的凹口内展开。装置710的结构和功能与前文所描述的装置10大体上相同,并且因此在此出于简洁的目的省略了进一步的描述。

[0172]如图18A-18B中所显示的,可以使用本文所公开的方法和装置来治疗海绵状血管瘤,例如通过将一种或多种的药物向其递送。参考图18A,可以将CED装置,例如在前文中描述的装置710插入到海绵状血管瘤74中,以使第一流体递送导管716A的出口 728A和第二流体递送导管716B的出口 728B两者都位于海绵状血管瘤74之内。可以将含有药物如一种或多种抗血管形成因子的流体通过第二流体递送导管716B提供到海绵状血管瘤74的内部。与此同时或者短暂的时间之后,如图18B中所示的,可以通过第一流体递送导管716A提供流体从而使可膨胀的元件772膨胀和/或提高所述可膨胀的元件772内的压力。随着可膨胀的元件772在海绵状血管瘤74中膨胀和/或随着可膨胀的元件772中的压力提高,先前释放到海绵状血管瘤74中的含有药物的流体被施加了压缩力,从而将该流体压到周围的组织中。

[0173]可以使用多种技术中的任意一种来生产本文中所公开的微流控CED装置。例如,可以通过微制造硅基底,随后将完成的片连接到包括了一个或多个微毛细管的导管部分来生产所述装置。在一些实施方案中,可以使用平版印刷的微制造过程来生产CED装置。所述过程可以包括:(I)将硅基底背面刻蚀来形成柄和补白花饰(tailpiece)深度,(2)在所述硅基底的顶部旋转涂覆聚酰亚胺,(3)旋转涂覆牺牲抗蚀剂来限定出微通道,(4)将聚对亚苯基二甲基涂层施加到聚酰亚胺层上,(5)施加铝掩模来除去牺牲抗蚀剂并且从而形成聚对亚苯基二甲基通道,并且(6)正面刻蚀硅基底来形成装置主体。在其他实施方案中,该过程可以包括:(I)正面刻蚀硅基底来形成装置主体,(2)在硅基底的两个侧面都旋转涂覆聚酰亚胺而不进行掩模,(3)在聚酰亚胺上旋转涂覆牺牲抗蚀剂,(4)向顶部施加聚对亚苯基二甲基涂层,并且(5)施加铝掩模来除去牺牲抗蚀剂并且从而形成聚对亚苯基二甲基通道。

[0174]图19图示了典型的用于生产CED装置的微制造过程。尽管在本文中公开的各种方法或者过程可以结合流程图或者多个流程图来进行显示,应当认识的是,该流程图或者其描述所暗示的方法步骤的任意顺序都不应解释为限制方法按照那样的顺序来进行。与此相比,所公开的每个方法的各个步骤可以按照多种顺序的任意一种来进行。除此之外,由于图示的流程图(或者多个流程图)仅仅是示例性的实施方案,与图示相比包括了附加的步骤或者包括了更少的步骤的各种其他方法也在本发明的范围内。

[0175]在步骤S800中,可以在制造CED装置的硅片上进行清洁过程。例如,可以在50摄氏度下进行30分钟的热纳米剥离(nanostrip)清洁,随后进行去离子(“DI”)水的淋洗和旋转干燥(“SRD”),例如,使用VERTEQ旋转淋洗干燥器。在其他的实施方案中,使用NH40H:H20在70摄氏度下进行RCA清洁15分钟,接着使用HCL:H20在70摄氏度下进行15分钟,随后进行DI水淋洗和SRD。

[0176]在步骤S802中,片可以经历脱水烘烤。在一些实施方案中,可以将片使用接触式电炉在180摄氏度下烘烤5分钟。由于片在以下所述的等离子体加强的化学气相沉积(“PECVD”)步骤中可以被加热到400摄氏度,所述脱水烘烤在一些情况下可以省略。因此,可以延长PECVD过程中的步骤时间来提供额外的脱水时间。省略电炉脱水还可以减少由于此前使用电炉所留下的污染。

[0177]在步骤S804中,可以将氧化物硬掩模沉积在硅片上。在一些实施方案中,所述硬掩模可以通过PECVD氧化物沉积(2.5μπι,N1.46氧化物配方)来进行沉积,并且可以使用测量系统来进行确认,所述测量系统例如为FILMETRICS生产的那些。

[0178] 在步骤S806中,氧化物硬掩模902可以在硅片900上图案化,例如图20Α中显示的那样。示例性的图案化过程包括:

[0179] 在热剥离浴(hot strip bath)中清洁掩模(15分钟,70摄氏度,NMP/TMAH/PG,使用DI淋洗和SRD)。

[0180]抗蚀剂过程(背面)

[0181] 蒸汽引发(这可以在烘箱中进行,所述烘箱例如为YIELD ENGINEERING SYSTEMS("YES")所生产的那些并且对于湿刻蚀过程可以是重要的)

[0182]旋转抗蚀剂:51813(4000印111,1000印111/秒,30秒)

[0183]软烘烤:115摄氏度:90秒

[0184]丙酮拭子除去残留的背面抗蚀剂

[0185] 暴露:MA6:软接触:MASK1=DRIE(深反应性离子刻蚀)(背面)

[0186] PE等待:无

[0187] PE烘烤:115摄氏度:60秒

[0188]显影:HAMATECH726MIF60 秒 DP

[0189]硬烘烤:115摄氏度:60秒

[0190] 使用刻蚀机进行预处理,所述刻蚀机例如为0XF0RD80刻蚀机(Oxygen PlasmaClean, 150瓦特RF,50sccm 02,60mTorr, 15秒)

[0191 ] 缓冲氧化物刻蚀(“Β0Ε” )6:1刻蚀:30分钟,延长的DI淋洗和SRD

[0192]显微镜评价(使用储存的图像)

[0193] 氧化物刻蚀:0XF0RD80#2(CHF302氧化物刻蚀,240瓦特,100分钟(x5个二十分钟的周期),50sccm CHF3,2sccm 02,40mTorr, 10摄氏度,DC Biasll9伏特)

[0194]剥离抗蚀剂:0XF0RD80(Oxygen Plasma Clean,150瓦特RF,50sccm02,60mTorr,10分钟)

[0195] 剥离抗蚀剂:热剥离浴(15分钟70度NMP/TM AH/PG),DI淋洗和SRD

[0196]剥离抗蚀剂:丙酮浴,异丙醇(〃IPA〃)浴,有DI淋洗和SRD的DI水浴

[0197]剥离抗蚀剂,例如使用HAMATECH制造的热piranha清洁系统

[0198]由于BOE是各向同性的(即在所有的方向上按照相同的速率刻蚀),30分钟的B0E6:1刻蚀可以在周围导致大约3μηι的底切(undercut)。这可以提高关键的结构尺寸,使其超过在CAD布局中的结构尺寸。这可以在某些程度上补偿CAD的布局(例如使尺寸比实际想要的尺寸小3μπι)。

[0199]在一些实施方案中,可以使用CHF302反应性离子“干法”刻蚀,而不是使用湿法的BOE来使氧化物图案化。使用BOE的优点在于其相对不昂贵(没有工具的成本,以及可以同时刻蚀许多的片),以及可以使用更薄的抗蚀剂(例如S813)。然而一个缺点是尺寸会向四周延伸出3μπι。这当关键特征尺寸很大时不需要关注。另一个潜在的问题在于,BOE有时候可以毛细进入抗蚀剂层下方(因此需要良好的粘附力),并且刻蚀不希望刻蚀的区域。对于CHF302的反应性离子刻蚀(“RIE”),CAD布局的关键尺寸可以在片上更加可靠地重现,因此不需要在CAD中进行任何的一级尺寸补偿。与此同时,对于CHF302,可以要求更厚的抵抗层(SPR220-4.5)来通过2.5μπι的PECVD氧化物硬掩模进行刻蚀。

[0200]在一些实施方案中,在随后的Bosch DRIE中的最初的刻蚀步骤中,可以将抗蚀剂留下。可以通过首先02等离子体清除,随后湿法化学剥离,随后DI淋洗和干燥Ν2吹干来完成抗蚀剂的剥离。

[0201 ] 在步骤S808中,例如在图20Β中所显示的,硅可以经历深反应性离子刻蚀(“DRIE” )来按照氧化物硬掩模902所限定的图案从片900除去硅。首先,将边缘的珠子除去(如果抗蚀剂在此前没有除去)。随后,可以使用刻蚀系统如UNAXIS所制造的那些来透过片进行刻蚀,并在正面留下ΙΟΟμπι。在一些实施方案中,所述刻蚀可以使用以下的参数来进行:

[0202] Chamber Season:xl00圈的O-沟槽

[0203] 片刻蚀:〜800圈的O-沟槽(500μπι的片中,深度为400μπι)

[0204] 步骤1:沉积

[0205] RFl功率:0.I瓦特,流速:SF6: 2sccm,热刻蚀I: 22摄氏度

[0206] RF2功率:850瓦特,流速:C4F8:60sccm,热刻蚀2: 40摄氏度

[0207]压力:20m 1'01'1',流速:41':408(30]1,]^流速:2.768(30]1

[0208]时间:4.0秒,流速:O2:Osccm,He压力:3.0Torr

[0209] 步骤2:刻蚀I

[0210] RFl功率:8.0瓦特,流速:SF6:70sccm,热刻蚀1:22摄氏度[0211 ] RF2功率:850瓦特,流速:C4F8: 2sccm,热刻蚀2:40摄氏度

[0212]压力:23mTorr,流速:Ar:40sccm,He流速:2.76Sccm

[0213]时间:2.0秒,流速:02:0sccm,He压力:3.0Torr

[0214] 步骤3:刻蚀2

[0215] RFl功率:8.0瓦特,流速:SF6:1OOsccm,热刻蚀1:22摄氏度

[0216] RF2功率:850瓦特,流速:C4F8: 2sccm,热刻蚀2:40摄氏度

[0217]压力:241]11'01'1',流速:41':408(30]1,]^流速:2.768(30]1

[0218]时间:6.0秒,流速:02:0sccm,He压力:3.0Torr4

[0219] 在一些实施方案中,可以代替地进行0ERLIK0N刻蚀。在一些实施方案中可以使用更薄的片(例如与约500μηι相对地采用约300μηι的厚度)来减少刻蚀时间,然而这可能提高成本和破碎率。所述刻蚀过程之后可以是:

[0220]剥离抗蚀剂:0XF0RD80(0xygen Plasma Clean,150瓦特RF,50sccm02,60mTorr,10分钟)[0221 ] 剥离抗蚀剂:热剥离浴(15分钟70度NMP/TM AH/PG),DI淋洗和SRD

[0222] 在步骤S810中,可以在片的背面上进行PECVD氧化物刻蚀终止,例如在图20C中所显示的那样。在一些实施方案中,PECVD氧化物904可以沉积在步骤S808中形成的沟槽的最底部,例如在具有正面刻蚀终止的硅片的背面上使用1.0ym的PECVD氧化物沉积。在一些实施方案中,可以使用绝缘体硅片上的硅(“SOI”),在此情况中,SOI片上的包埋氧化物(“BOX”)层可以作为刻蚀终止起作用,从而使得背面的PECVD终止层和DRIE是不必要的。在这样的实施方案中可以使用蒸汽氟化氢(“ΗΓ )来从BOX释放最终的装置。

[0223] 在步骤S812中,可以在片900的正面使聚酰亚胺层906图案化,例如在图20D中所显示的。在一些实施方案中,使用以下的过程来使聚酰亚胺层图案化:

[0224] 旋转聚酰亚胺(4000rpm,500rpm/秒,45秒,〜2μηι)。这能够使用芳香聚酰亚胺前体溶液进行,所述芳香聚酰亚胺前体溶液例如TORAY生产的Photoneece Pff DC1000。

[0225]使用丙酮拭子清洁背面的残留

[0226]软烘烤:115摄氏度:3分钟(接触聚酰亚胺热板)

[0227]暴露:MA6:软接触:MASK2=P0LY (正面)

[0228] PE等待:无

[0229] PE烘烤:无

[0230]显影:HAMATECH726MIF90secDP

[0231]显微镜评价(使用储存的图像)

[0232]预处理:0XF0RD80(Oxygen Plasma Clean, 150瓦特RF,50sccm 02,60mTorr, 15秒)

[0233]交联聚酰亚胺:处方3: YES聚酰亚胺烘箱:300+摄氏度

[0234] —般的过程:氮气气氛下,170摄氏度下30分钟,以及320摄氏度下60分钟。

[0235]在步骤S814中,微流控通道可以使用牺牲抗蚀剂908来限定,例如图20E中所示的。在一些实施方案中,使用以下的过程来限定微流控通道:

[0236]旋转抗蚀剂:SPR220-7( 1600rpm 下 10ym,500rpm/秒,45 秒)

[0237]软烘烤1:65摄氏度:I分钟

[0238]软烘烤2:90摄氏度:I分钟

[0239]软烘烤3:115摄氏度:2分钟,或者

[0240]软烘烤:90摄氏度,30分钟(对流恒温烘箱)

[0241 ]暴露:MA6:软接触:MASK3=CHANNEL (正面)

[0242] PE等待:参见斯坦福过程

[0243] PE烘烤:参见斯坦佛过程

[0244]显影:HAMATECH726MIF120secDP

[0245]显微镜评价(使用储存的图像)

[0246]除去边缘的珠子

[0247]硬烘烤:115摄氏度:I分钟

[0248]显微镜评价(使用储存的图像)

[0249]预处理:0XF0RD80(Oxygen Plasma Clean,150瓦特RF,50sccm 02,60mTorr,60秒)

[0250] PlO表面光度计评价(测量通道的高度和宽度)

[0251 ]抗蚀剂层908的厚度可以确定微流控通道的高度。类似地,抗蚀剂层908的宽度(在暴露和显影之后)确定了微流控通道的宽度。为了避免抗蚀剂层908的破裂,可以将此步骤在缓慢升温和缓慢降温中完成。

[0252]在一些实施方案中,抗蚀剂908在硬烘烤步骤中可以有一些回流,这可以导致其具有倾斜的侧壁,所述倾斜的侧壁有利于铝的覆盖。然而,抗蚀剂的回流不是永远都必要的,这是由于片还可以使用保角蒸发(conformal evaporat1n)或者派射沉积来涂覆,这两种过程与非保角蒸发相比都使得更多的片同时涂覆。

[0253] 在步骤S816中,将聚对亚苯基二甲基层910沉积在聚酰亚胺层906和牺牲抗蚀剂908上,例如在图20F中所显示的。在一些实施方案中,聚对亚苯基二甲基层910的厚度可以是大约5μπι。可以使用以下的过程来进行聚对亚苯基二甲基的沉积:

[0254]使得抗蚀剂表面变得粗糙:0XF0RD80:150瓦特1^,508(3011 02,60mTorr,30 秒

[0255] 聚对亚苯基二甲基C沉积(3.5克=μπι)

[0256]聚对亚苯基二甲基可以是高度保角层并且因此可以在每个片的背面上涂覆一些材料。聚对亚苯基二甲基沉积可以同时在,例如三个片上进行。一般的聚对亚苯基二甲基沉积过程可以进行大约6小时。

[0257]在步骤S818中,可以进行铝硬掩模蒸发,以在聚对亚苯基二甲基层910上施加铝层912,如图20G中所示的那样。可以使用以下的步骤来进行铝硬掩模蒸发:

[0258] 使聚对亚苯基二甲基的表面粗糙:0XF0RD80:150瓦特RF,50sccm02,60mTorr,30秒

[0259]蒸发或者溅镀:铝:保角:150nm(2A/秒)

[0260] 在步骤S820中,铝硬掩模912可以是图案化的,例如图20H中所显示的。可以使用以下的过程来使铝硬掩模图案化:

[0261] 液体HMDS引发:10秒

[0262]旋转抗蚀剂914:SPR220-7( 1600rpm, 500rpm/秒,45秒,1qm)

[0263]软烘烤1:65摄氏度:1分钟

[0264]软烘烤2:90摄氏度:I分钟

[0265]软烘烤3:115摄氏度,或者

[0266]软烘烤:90摄氏度,30分钟(对流恒温烘箱)

[0267] 暴露:MA6:软接触:MAS K4=铝(正面)

[0268] PE等待:无

[0269] PE烘烤:无

[0270]显影:HAMATECH726MIF120secDP

[0271]显微镜评价(使用储存的图像)

[0272]湿法铝刻蚀(5分钟)一一湿法铝刻蚀可以将抗蚀剂刻蚀掩模914从底部切割,从而可以相应地调节CAD布局来适应此刻蚀。

[0273]显微镜评价(使用储存的图像)

[0274]剥离抗蚀剂:0XF0RD80(Oxygen Plasma Clean, 150瓦特RF,50sccm 02,60mTorr,10分钟)

[0275] 剥离抗蚀剂:热剥离浴(15分钟70度NMP/TMAH/PG),DI淋洗和SRD

[0276] 剥离抗蚀剂:丙酮浴,IPA浴,具有DI淋洗和SRD的DI水浴

[0277]在前文所述过程中,应当确认热剥离浴、丙酮和IPA与特定选定的聚酰亚胺的化学相容性。完成步骤S820时,已经将铝条912沉积在聚对亚苯基二甲基层910上,来作为图20H中的硬刻蚀掩模。

[0278] 在步骤S822中,可以将外周的聚对亚苯基二甲基刻蚀除去。例如,如在图201中显示的,将聚对亚苯基二甲基层910从片900的外周区域916除去。可以使用以下的过程来除去聚对亚苯基二甲基刻蚀:

[0279]旋转抗蚀剂:SPR220-7(1000rpm,100rpm/秒,45秒,DynamicDispense,FreshResist,〜12μηι)

[0280]软烘烤:90摄氏度:30分钟(对流恒温烘箱)

[0281 ] 暴露:ΜΑ6:软接触:MASK5=聚对亚苯基二甲基(正面)

[0282] PE等待:参见斯坦佛过程

[0283] PE Bake:参见斯坦佛过程

[0284]显影:HAMATECH726MIF90secDP

[0285]显微镜评价(使用储存的图像)

[0286]硬烘烤:90摄氏度:4-12小时(对流恒温烘箱过夜,缓慢变温)

[0287] Flood UV暴露:ABM:2分钟

[0288]聚对亚苯基二甲基刻蚀:0XF0RD80(正面,Oxygen Plasma Clean, 150瓦特RF,20-25分钟,完全除去5μπι聚对亚苯基二甲基层)

[0289] 聚对亚苯基二甲基刻蚀:0XF0RD80(背面,Oxygen Plasma Clean, 150瓦特RF,使用芯片进行10-15分钟)

[0290]当刻蚀片背面时,使用硅芯片来使片悬浮在压印盘的上方,以使片的正面不刮擦或者损坏。图201图示了聚对亚苯基二甲基刻蚀除去之后的系统。如所显示的,在周围的区域聚对亚苯基二甲基被完全刻蚀到硅表面,并且在各个装置周围有ΙΟΟμπι的硅将此设备保持固定到片。在刻蚀聚对亚苯基二甲基之后,保留至少4μπι的抗蚀剂可以是有帮助的,其可以随后用于刻蚀正面的ΙΟΟμπι的硅。因此,可以将抗蚀剂层做得足够厚,从而适应5μπι的聚对亚苯基二甲基刻蚀和ΙΟΟμπι的硅刻蚀。否则的话,可以施加新的抗蚀剂层。

[0291]在步骤S824中,装置的轮廓可以限定为图20J中所显示的。可以使用以下的过程来限定出装备的轮廓:

[0292]使用丙酮拭子来除去边缘的珠子

[0293]软烘烤:90摄氏度:90分钟(对流恒温烘箱)

[0294] PlO表面光度仪评价:确认剩余的抗蚀剂厚度>4μπι[0295 ] UNAXIS刻蚀:O-沟槽(用来清除I ΟΟμπι的S i)

[0296] 剥离抗蚀剂:20分钟丙酮浴,20分钟IPA浴,20分钟DI水浴和SRD

[0297]剥离抗蚀剂:0XF0RD80(Oxygen Plasma Clean, 150瓦特RF,50sccm 02,60mTorr,2分钟)

[0298] 剥离抗蚀剂:20分钟丙酮浴,20分钟IPA浴,20分钟DI水浴和SRD

[0299]在Mask5=聚对亚苯基二甲基的情况下可以提供两个小的抗蚀剂的“桥”来保护下方的聚对亚苯基二甲基并且所述“桥”可以用于将装置固定就位。完成时,使用镊子将这些装置从片上“取出”。优选地,这些桥可以连接到装置的主体(而不是杆或者肩部)。示例性的桥918显示在图21A中,位于装置主体920的近端。如图20K中所显示的,在抗蚀剂剥离之后,可以透过PECVD氧化物膜层904 “看到”各个的装置周围的范围。

[0300] 在步骤S826中,可以在聚对亚苯基二甲基通道(或多个通道)中开孔。在此步骤中,可以使用铝912作为硬掩模,来开放进入聚对亚苯基二甲基通道中的孔。在这里优选地采用过度刻蚀,从而确保聚对亚苯基二甲基910被清除并且牺牲抗蚀剂908可被达到。在此步骤之前,任何溶剂都无法达到通道内的牺牲抗蚀剂908。可以使用以下的过程来在聚对亚苯基二甲基通道中开孔:

[0301 ]聚对亚苯基二甲基刻蚀:0XF0RD80: Oxygen Plasma Clean: 150瓦特RF,50sccm

02,60mTorr,20-25分钟刻蚀)

[0302]显微镜评价(使用储存的图像)

[0303]在步骤S828中,可以进行湿法铝刻蚀来除去刻蚀掩模,例如使用以下的过程:

[0304] 湿法铝刻蚀,15分钟,DI清洗和SRD

[0305]显微镜评价(使用储存的图像)

[0306] 在步骤S830中,可以进行湿法BOE刻蚀来除去PECVD氧化物终止层904,例如使用以下的过程:

[0307] B0E6:1 刻蚀,10-15 分钟

[0308]在一些实施方案中,在BOE刻蚀之后,将各个装置仅通过Ιμπι的硅层中的装置“凸片”或者“桥”固定就位。

[0309] 在步骤S832中,如图20L所示的,可以将牺牲抗蚀剂908清除。可以使用以下的过程来清除牺牲抗蚀剂:

[0310]清除抗蚀剂:丙酮浴:4小时(保持湿润)

[0311]清除抗蚀剂:IPA浴:1小时(保持湿润)

[0312]清除抗蚀剂:DI水浴:12小时

[0313]在一些实施方案中,在这些浴步骤之间使得片不干燥,这可以避免抗蚀剂残留物在入口/出口处结晶。在牺牲抗蚀剂被除去后,装置的横截面如图20L所示。在一些实施方案中,所述牺牲抗蚀剂在从片中收集(即取出)单个装备之前除去,从而使得抗蚀剂的除去过程不那么繁琐及消耗时间。

[0314]在步骤S834中,可以从片收集所述装置。可以如此地操作,例如,通过使用镊子来推动各个装置的主体直到凸片破裂并且装置从片上落到洁净的揩巾上为止。一旦从片分离,可以将该装置从洁净的揩巾上捡起,并且放置在粘性的GelBox中,优选地将进入端口向上。

[0315]在步骤S836中,将所述装置与PEEK管装配来形成完成的CED装置。将PEEK管的接触表面使用02等离子体和机械粗化来处理,以得到更好的粘附性,随后使用粘合剂如MILLER-STEPHENS0N生产的Epoxy907将该接触表面连接到所述装置。

[0316]在示例性的实施方案中,完成的装置可以具有1850μπι的导管尖端长度,1750μπι的方形主体,1750μπι的肩宽和25μπι的标称导管尖端宽度。在外周的周围留有留空的试验区域时,可以在单个4英寸片上制造100个或更多个该装置。

[0317]图21Β图示了完成的CED装置924的尖端922的扫描电子显微镜(SEM)图像。在图像中显示的侧壁的粗糙度可以通过在前文所述过程中加入湿法快速刻蚀的硅来降低,所述粗糙度不希望地导致裂纹扩展。

[0318]多腔CED装置1000(例如使用前文所述方法来制造)的微制造部分1002在图22A中示意地图示。如所显示的,微制造部分1002包括具有柄或者尖端1006的主体部分1004和第一和第二支管1008、1010,所述柄或者尖端1006从那里向远端延伸,所述第二支管从那里向近端延伸。在示例性的实施方案中,主体部分可以具有约1.5mm的长度。第一和第二聚对亚苯基二甲基通道1012、1014在硅基底上形成。所述第一聚对亚苯基二甲基通道1012沿着第一支管1008延伸,所述延伸穿过主体部分1004并且沿着尖端1006。所述第二聚对亚苯基二甲基通道1014沿着第二支管1010延伸,所述延伸穿过主体部分1004并且沿着尖端1006。如图22B中所显示的,聚对亚苯基二甲基通道1012、1014可以在其远端包括90度的转折,以使通道的出口 1016、1018朝向垂直于尖端1006的纵轴的方向。

[0319]图23A图示了八个具有不同长度的微制造部分1002的布局。如图23B中所显示的,图23A的布局可以在硅片的可用表面上重复。图23C图示了从片上收集之后的一组八个微制造部分1002。

[0320] 图24A-24C图示了在产生聚对亚苯基二甲基通道1012、1014之前,装置1000的微制造部分1002的SEM图像。

[0321]如图25A中所显示的,多腔CED装置1000还包括邻近的导管部分1020,其可以与微制造部分1002组装。所述导管部分1020可以包括石英双孔主体1022,所述双孔主体具有通过其延伸的第一和第二 PEEK微毛细管1024、1026。可以通过将第一和第二支管1008、1010插入到主体1022中来使所述导管部分1020与微制造部分1002匹配,以使第一和第二微毛细管1024、1026与第一和第二聚对亚苯基二甲基通道1012、1014流体连通。可以使用如前文所描述的粘合剂来将装置1000的两个部分1002、1020彼此连接并且形成液密密封。

[0322]在这一组装阶段,装置1000的近端视图显示在图25B中。如所显示的,从导管部分1020延伸的硅主体部分1004具有平的、一般地为矩形的形状,所述硅主体部分如果暴露,可以使得装置1000的组织渗透更为困难。如图25C中显示的,可以将突出部部分1028连接到装置1000,从而封装平坦的片主体1004。突出部部分1028可以具有任意各种形状,包括圆锥形、圆柱形、半球形等等,并且可以是锋利的或者是钝的。突出部部分1028所提供的缓变切面可以便于将装置1000插入到组织中并且可以与周围组织形成更好的密封,从而减少在压力下通过装置1000递送的流体沿着装置的外表面从靶治疗区域迀移回去。在示例性的实施方案中,突出部部分1028具有约Imm到约1.5mm的最大外部直径。所述突出部部分1028可以使用环氧树脂来形成或者其可以是组装到微制造部分1002上的独立的微机械部件。如图25C中所显示的,导管/插管主体1030可以在装置1000的导管部分1020上延伸,从而将微制造部分1002的近端和微毛细管1024、1026封装。在此组装阶段的装置1000的近端视图显示在图2®中。示例性的组装的装置的图像显示在图26A-26C中。

[0323] 在一些实施方案中,装置1000可以配置成按照约5yL每分钟到约1yL每分钟的流速递送流体。为了达到该流速,通道1012、1014可以在矩形通道的情况下各自具有约10微米的高度和约20微米的宽度,或者在圆形的通道的情况下各自具有约20微米的直径。

[0324]在本文中所描述的任意各种治疗可以进一步包括向靶组织递送辅因子,例如在装置的支架中浸渍的皮质类固醇,涂覆到支架上的皮质类固醇和/或传播增强酶。除此之外,在本文中描述的任意各种治疗都可以进一步地包括长期植入该装置(例如长达数小时或者数天)以便于长期的治疗和疗法。

[0325]尽管本发明已经参考具体的实施方案进行了描述,但应当理解的是,可以在所描述的发明构思的精神和范围内进行大量的变化。因此,期待的是本发明不限于所描述的实施方案,而是其具有随后的权利要求的语言所限定的全部范围。

Claims (22)

1.一种微流控对流加强递送(CED)装置,其包括: 基底,其限定出主体、延长的远端尖端以及第一和第二近端的支管; 第一流体通道,其沿着第一支管、沿着主体和沿着远端尖端延伸; 第二流体通道,其沿着第二支管、沿着主体以及沿着远端尖端延伸; 第一微毛细管,其连接到第一支管部分,并且与所述第一流体通道流体连通; 第二微毛细管,其连接到第二支管部分,并且与所述第二流体通道流体连通;和 管状的护套,其封装第一和第二支管以及第一和第二微毛细管的至少部分。
2.权利要求1所述的装置,其进一步地包括设置在远端尖端和主体之间的界面上的突出部,所述突出部封装主体的远端部分。
3.权利要求2所述的装置,其中所述突出部是圆锥形的或者半球形的。
4.权利要求1所述的装置,其中所述第一和第二流体通道中的至少一个包括在其远端或接近远端处形成的流动限制件,所述流动限制件配置成调节被引导通过所述流体通道的流体的压力; 其中所述流动限制件包括所述流体通道的收缩区域,所述收缩区域的横截面积比所述流体通道的紧密邻近部分的横截面积小。
5.权利要求4所述的装置,其还包括插入支持支架,所述基底连接到所述插入支持支架。
6.权利要求4所述的装置,其中所述基底是由硅形成的,以及所述第一和第二流体通道是由聚对二甲苯形成的。
7.权利要求4所述的装置,其中所述收缩区域的横截面积比紧密邻近部分的横截面积小至少20 %。
8.权利要求4所述的装置,其中所述收缩区域的横截面积比紧密邻近部分的横截面积小至少30 %。
9.权利要求4所述的装置,其中所述收缩区域的横截面积比紧密邻近部分的横截面积小至少40 %。
10.权利要求4所述的装置,其中所述紧密邻近部分的高度为I微米到50微米,以及收缩区域的高度为I微米到25微米。
11.权利要求4所述的装置,其中所述紧密邻近部分的宽度为10微米到100微米,以及收缩区域的宽度为5微米到50微米。
12.权利要求4所述的装置,其中所述第一和第二流体通道各包括多个出口,所述多个出口在所述流体通道的近端和远端之间彼此间隔一定距离。
13.权利要求12所述的装置,其中多个出口中的每个的面积大于位置最接近其的任意出口的面积。
14.权利要求4所述的装置,其中所述第一和第二流体通道是由聚对二甲苯组合物、硅橡胶组合物、聚氨酯组合物和PTFE组合物中的至少一种形成的。
15.权利要求4所述的装置,其还包括储液室,所述储液室与所述第一和第二流体通道的流体入口流体连通,并且所述储液室配置成在正压力下向所述第一和第二流体通道提供流体。
16.权利要求4所述的装置,其中所述第一和第二流体通道中的至少一个包括嵌入的微传感器。
17.权利要求16所述的装置,其中所述嵌入的微传感器包括可询问式传感器、压力传感器、谷氨酸传感器、PH传感器、温度传感器、离子浓度传感器、二氧化碳传感器、氧传感器以及乳酸传感器中的至少一种。
18.权利要求4所述的装置,其中所述第一和第二流体通道中的至少一个配置成抽吸流体。
19.一种用于制造具有至少一个流体通道的递送装置的方法,其包括: 将氧化物掩模沉积在硅片的背面; 使所述氧化物掩模图案化来限定出递送装置的边界; 将聚酰亚胺层沉积在所述硅片的正面; 按照至少一个流体通道的形状将牺牲抗蚀剂沉积在聚亚酰胺层上; 在所述牺牲抗蚀剂和聚酰亚胺层上方沉积聚对二甲苯层; 在聚对二甲苯层上方沉积铝掩模; 将牺牲抗蚀剂使用溶剂除去,以在聚酰亚胺层和聚对二甲苯层之间形成至少一个流体通道;和 将微毛细管连接到所述递送装置,以使所述微毛细管与所述至少一个流体通道流体连通。
20.权利要求19所述的方法,其还包括在硅片的背面根据图案化的氧化物掩模刻蚀出沟槽。
21.权利要求20所述的方法,其还包括在沟槽的底面上施加氧化物刻蚀终止。
22.—种用于制造具有至少一个流体通道的递送装置的方法,该方法包括: 刻蚀硅片的正面来限定出递送装置的边界; 向硅片的正面和硅片的背面施加聚酰亚胺涂层; 按照至少一个流体通道的形状将牺牲抗蚀剂施加在聚亚酰胺涂层上; 在所述牺牲抗蚀剂上方施加聚对二甲苯层; 在聚对二甲苯层上方沉积铝掩模; 将牺牲抗蚀剂使用溶剂除去,以在聚酰亚胺涂层和聚对二甲苯层之间形成至少一个流体通道;和 将微毛细管与递送装置连接,使得所述微毛细管与所述至少一个流体通道流体连通。
CN201280046268.8A 2011-08-01 2012-08-01 微流控药物递送装置 CN103826690B (zh)

Priority Applications (17)

Application Number Priority Date Filing Date Title
US201161513961P true 2011-08-01 2011-08-01
US201161513935P true 2011-08-01 2011-08-01
US201161513943P true 2011-08-01 2011-08-01
US201161513952P true 2011-08-01 2011-08-01
US201161513948P true 2011-08-01 2011-08-01
US201161513939P true 2011-08-01 2011-08-01
US201161513954P true 2011-08-01 2011-08-01
US61/513,948 2011-08-01
US61/513,952 2011-08-01
US61/513,935 2011-08-01
US61/513,939 2011-08-01
US61/513,943 2011-08-01
US61/513,954 2011-08-01
US61/513,961 2011-08-01
US201261615939P true 2012-03-27 2012-03-27
US61/615,939 2012-03-27
PCT/US2012/049100 WO2013019830A2 (en) 2011-08-01 2012-08-01 Microfluidic drug delivery devices

Publications (2)

Publication Number Publication Date
CN103826690A CN103826690A (zh) 2014-05-28
CN103826690B true CN103826690B (zh) 2016-11-02

Family

ID=47627379

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280046268.8A CN103826690B (zh) 2011-08-01 2012-08-01 微流控药物递送装置

Country Status (8)

Country Link
US (4) US10137244B2 (zh)
EP (1) EP2739341A4 (zh)
JP (1) JP6230996B2 (zh)
KR (1) KR20140092802A (zh)
CN (1) CN103826690B (zh)
AU (3) AU2012290129B2 (zh)
CA (1) CA2843587A1 (zh)
WO (1) WO2013019830A2 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103826690B (zh) * 2011-08-01 2016-11-02 亚克安娜生命科学有限公司 微流控药物递送装置
US8992458B2 (en) 2012-12-18 2015-03-31 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
CA2920014A1 (en) * 2013-07-31 2015-02-05 Alcyone Lifesciences, Inc. Systems and methods for drug delivery, treatment, and monitoring
KR101562865B1 (ko) * 2014-01-24 2015-10-26 한국과학기술연구원 신경 영양인자를 감지하기 위한 초소형 센서 시스템
US10213564B2 (en) 2014-05-19 2019-02-26 Frank J. Cain Biomedical aural delivery systems and methods
US9907941B2 (en) 2014-07-21 2018-03-06 The Cleveland Clinic Foundation Convection enhanced delivery device and system
US9968765B2 (en) 2014-07-21 2018-05-15 The Cleveland Clinic Foundation Convection enhanced delivery device and system
US10143811B2 (en) * 2015-03-17 2018-12-04 Wells Johnson Company Fluid management of adipose tissue
US10286128B2 (en) * 2015-05-22 2019-05-14 Wells Johnson Company Pressure control during processing of adipose tissue
US10130740B2 (en) * 2015-03-17 2018-11-20 Wells Johnson Company Pressure control during processing of adipose tissue
US20180036522A1 (en) 2016-08-03 2018-02-08 Neil S. Davey Adjustable rate drug delivery implantable device
US20180169271A1 (en) 2016-12-21 2018-06-21 Memgen, Llc Armed replication-competent oncolytic adenoviruses
US20180185058A1 (en) * 2016-12-21 2018-07-05 Alcyone Lifesciences, Inc. Drug delivery systems and methods
US20180264191A1 (en) * 2017-03-14 2018-09-20 Massachusetts Institute Of Technology Systems and methods for neural drug delivery and modulation of brain activity
WO2019028306A2 (en) 2017-08-03 2019-02-07 Voyager Therapeutics, Inc. Compositions and methods for delivery of aav

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123919A (zh) * 2004-10-05 2008-02-13 建新公司;加利福尼亚大学董事会 台阶式插管
CN101657189A (zh) * 2007-02-13 2010-02-24 康奈尔大学;耶鲁大学 对流增强型递送装置,方法和应用
CN102573979A (zh) * 2009-08-25 2012-07-11 加利福尼亚大学董事会 用于向大脑递送治疗剂的导管优化配置

Family Cites Families (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3460537A (en) 1966-09-26 1969-08-12 Donald C Zeis Stereotactic guide for use in the creation of destructive brain lesions
US3886948A (en) 1972-08-14 1975-06-03 Hakim Co Ltd Ventricular shunt having a variable pressure valve
US4146029A (en) * 1974-04-23 1979-03-27 Ellinwood Jr Everett H Self-powered implanted programmable medication system and method
US4692146A (en) 1985-10-24 1987-09-08 Cormed, Inc. Multiple vascular access port
US4917686A (en) 1985-12-16 1990-04-17 Colorado Biomedical, Inc. Antimicrobial device and method
DE3872226D1 (de) 1987-12-05 1992-07-23 Renishaw Plc Taster-wechsel-vorrichtung.
US4885945A (en) * 1988-02-23 1989-12-12 Activational Systems, Inc. Micropipettes and fabrication thereof
JPH03502608A (zh) 1988-10-11 1991-06-13
US5407431A (en) 1989-07-11 1995-04-18 Med-Design Inc. Intravenous catheter insertion device with retractable needle
US5695518A (en) 1990-12-28 1997-12-09 Laerum; Frode Filtering device for preventing embolism and/or distension of blood vessel walls
US5868711A (en) 1991-04-29 1999-02-09 Board Of Regents, The University Of Texas System Implantable intraosseous device for rapid vascular access
US5190046A (en) * 1992-05-01 1993-03-02 Shturman Cardiology Systems, Inc. Ultrasound imaging balloon catheter
US5620479A (en) 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
US5415648A (en) 1993-07-08 1995-05-16 Malay; Manuel R. Multiple purpose syringe
US5954651A (en) 1993-08-18 1999-09-21 Scimed Life Systems, Inc. Catheter having a high tensile strength braid wire constraint
AU7676894A (en) 1993-08-27 1995-03-21 Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services, The Convection-enhanced drug delivery
US5509910A (en) 1994-05-02 1996-04-23 Medtronic, Inc. Method of soft tip attachment for thin walled catheters
US5604976A (en) 1994-10-18 1997-02-25 Pi Medical Corporation Method of making percutaneous connector for multi-conductor electrical cables
US6176842B1 (en) 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
US5954687A (en) 1995-04-28 1999-09-21 Medtronic, Inc. Burr hole ring with catheter for use as an injection port
DE69628016D1 (de) * 1995-06-16 2003-06-12 Univ Washington Seattle Miniaturisierte differentielle extraktionsvorrichtung und verfahren
US6454945B1 (en) 1995-06-16 2002-09-24 University Of Washington Microfabricated devices and methods
US5624396A (en) 1995-10-30 1997-04-29 Micro Therapeutics, Inc. Longitudinally extendable infusion device
US5590657A (en) 1995-11-06 1997-01-07 The Regents Of The University Of Michigan Phased array ultrasound system and method for cardiac ablation
US5979453A (en) 1995-11-09 1999-11-09 Femrx, Inc. Needle myolysis system for uterine fibriods
US5735814A (en) 1996-04-30 1998-04-07 Medtronic, Inc. Techniques of treating neurodegenerative disorders by brain infusion
BR9601849A (pt) 1996-06-18 1998-09-01 Newton Paes Aperfeiçoamento em cateter de dupla via para lavagem drenagem monitoração e controle de pressão intracraniana
US6193963B1 (en) 1996-10-17 2001-02-27 The Regents Of The University Of California Method of treating tumor-bearing patients with human plasma hyaluronidase
US7048716B1 (en) 1997-05-15 2006-05-23 Stanford University MR-compatible devices
CA2289837A1 (en) 1997-05-15 1998-11-19 Michael E. Moseley Method and apparatus for targeted drug delivery into a living patient using magnetic resonance imaging
US6610235B1 (en) * 1997-06-30 2003-08-26 The Regents Of The University Of California Method of fabricating epidermal abrasion device
US6471993B1 (en) * 1997-08-01 2002-10-29 Massachusetts Institute Of Technology Three-dimensional polymer matrices
US5963367A (en) 1997-09-23 1999-10-05 Lucent Technologies, Inc. Micromechanical xyz stage for use with optical elements
US5843150A (en) 1997-10-08 1998-12-01 Medtronic, Inc. System and method for providing electrical and/or fluid treatment within a patient's brain
WO1999021584A1 (en) 1997-10-24 1999-05-06 Children's Medical Center Corporation METHODS FOR PROMOTING CELL TRANSFECTION $i(IN VIVO)
US20020055702A1 (en) 1998-02-10 2002-05-09 Anthony Atala Ultrasound-mediated drug delivery
US5957912A (en) 1998-04-16 1999-09-28 Camino Neurocare, Inc. Catheter having distal stylet opening and connector
DE69929600T2 (de) 1998-05-27 2006-09-07 Avigen Inc., Alameda Konvektion-erhöhte verabreichung aadc-kodierende aav vektoren
US6547779B2 (en) * 1998-07-22 2003-04-15 Endovasix, Inc. Flexible flow apparatus and method for the disruption of occlusions
US20030009153A1 (en) 1998-07-29 2003-01-09 Pharmasonics, Inc. Ultrasonic enhancement of drug injection
BR0008656A (pt) 1999-03-03 2002-04-09 Uab Research Foundation Cateter direto para uso no sistema nervoso central e sistema de controle de temperatura
US6464687B1 (en) 1999-03-09 2002-10-15 Ball Semiconductor, Inc. Implantable drug delivery system
US6224566B1 (en) 1999-05-04 2001-05-01 Cardiodyne, Inc. Method and devices for creating a trap for confining therapeutic drugs and/or genes in the myocardium
US6743211B1 (en) 1999-11-23 2004-06-01 Georgia Tech Research Corporation Devices and methods for enhanced microneedle penetration of biological barriers
US6599274B1 (en) * 2000-01-20 2003-07-29 John Kucharczyk Cell delivery catheter and method
DE10008825C2 (de) * 2000-02-25 2002-11-21 Disetronic Licensing Ag Mikroperfusionsvorrichtung
US6626902B1 (en) * 2000-04-12 2003-09-30 University Of Virginia Patent Foundation Multi-probe system
US7473244B2 (en) * 2000-06-02 2009-01-06 The University Of Utah Research Foundation Active needle devices with integrated functionality
US6994781B2 (en) 2000-07-07 2006-02-07 Baxter International Inc. Medical system, method and apparatus employing MEMS
US6464662B1 (en) 2000-07-26 2002-10-15 Image-Guided Neurologics, Inc. Drug delivery and catheter systems, apparatus and processes
GB0019200D0 (en) 2000-08-05 2000-09-27 Renishaw Plc Bearing arrangement
US7445619B2 (en) * 2000-08-18 2008-11-04 Map Technologies Llc Devices for electrosurgery
WO2002068036A1 (en) 2000-12-27 2002-09-06 The General Hospital Corporation Dual balloon catheter with sensor for continuosu transvenous measurmentof intracranial pressure
US7914470B2 (en) 2001-01-12 2011-03-29 Celleration, Inc. Ultrasonic method and device for wound treatment
US20020099356A1 (en) 2001-01-19 2002-07-25 Unger Evan C. Transmembrane transport apparatus and method
US7029697B2 (en) 2001-02-14 2006-04-18 Northwestern University Controlled surface-associated delivery of genes and oligonucleotides
US6623444B2 (en) * 2001-03-21 2003-09-23 Advanced Medical Applications, Inc. Ultrasonic catheter drug delivery method and device
US20030065309A1 (en) 2001-04-24 2003-04-03 Barnitz James C. Method of delivering liquid through cerebral spinal pathway
US6740058B2 (en) * 2001-06-08 2004-05-25 Wisconsin Alumni Research Foundation Surgical tool with integrated pressure and flow sensors
US20030138403A1 (en) * 2001-06-29 2003-07-24 Maxygen Aps Interferon formulations
US7150737B2 (en) 2001-07-13 2006-12-19 Sci/Med Life Systems, Inc. Methods and apparatuses for navigating the subarachnoid space
US6902564B2 (en) * 2001-08-15 2005-06-07 Roy E. Morgan Methods and devices for electrosurgery
US6803568B2 (en) 2001-09-19 2004-10-12 Predicant Biosciences, Inc. Multi-channel microfluidic chip for electrospray ionization
US20030148539A1 (en) * 2001-11-05 2003-08-07 California Institute Of Technology Micro fabricated fountain pen apparatus and method for ultra high density biological arrays
US6971999B2 (en) 2001-11-14 2005-12-06 Medical Instill Technologies, Inc. Intradermal delivery device and method
US6958040B2 (en) 2001-12-28 2005-10-25 Ekos Corporation Multi-resonant ultrasonic catheter
US20070005017A1 (en) 2002-02-04 2007-01-04 Becton, Dickinson And Company Intradermal delivery device with crenellated skin engaging surface geometry
WO2003067251A2 (en) 2002-02-05 2003-08-14 The University Court Of The University Of Glasgow Device for performing cell assays
GB0205772D0 (en) 2002-03-12 2002-04-24 Gill Steven S Catheter
GB0205773D0 (en) 2002-03-12 2002-04-24 Gill Steven S Clamp
US20030199831A1 (en) 2002-04-23 2003-10-23 Morris Mary M. Catheter anchor system and method
GB2389791B (en) 2002-04-30 2006-12-13 Steven Gill Implantable drug delivery pump
US6784600B2 (en) 2002-05-01 2004-08-31 Koninklijke Philips Electronics N.V. Ultrasonic membrane transducer for an ultrasonic diagnostic probe
US7771387B2 (en) * 2002-05-17 2010-08-10 Boston Scientific Scimed, Inc. Liquid embolic composition delivery devices and methods
US7316676B2 (en) 2002-08-20 2008-01-08 Gholam A. Peyman Treatment of retinal detachment
US7034854B2 (en) * 2002-11-12 2006-04-25 Nanoink, Inc. Methods and apparatus for ink delivery to nanolithographic probe systems
AT423584T (de) 2002-12-23 2009-03-15 Medtronic Inc Systeme und methoden zum einstellen der dichte einer medizinischen lösung
US8946151B2 (en) 2003-02-24 2015-02-03 Northern Bristol N.H.S. Trust Frenchay Hospital Method of treating Parkinson's disease in humans by convection-enhanced infusion of glial cell-line derived neurotrophic factor to the putamen
US7775087B2 (en) 2004-03-16 2010-08-17 Northwestern University Microchannel forming method and nanotipped dispensing device having a microchannel
EP1462141B1 (en) 2003-03-26 2006-09-20 Terumo Kabushiki Kaisha Catheter with puncture sensor
US7963956B2 (en) * 2003-04-22 2011-06-21 Antisense Pharma Gmbh Portable equipment for administration of fluids into tissues and tumors by convection enhanced delivery technique
US8886273B2 (en) 2003-08-01 2014-11-11 Dexcom, Inc. Analyte sensor
GB0324519D0 (en) 2003-10-21 2003-11-26 Renishaw Plc Metrology instruments
EP1684861B1 (en) * 2003-10-21 2014-12-03 The Regents Of The University Of Michigan Intracranial neural interface system
EP1691848B1 (en) 2003-10-23 2012-08-22 TRANS1, Inc. Tools and tool kits for performing minimally invasive procedures on the spine
WO2005083390A1 (en) 2004-02-20 2005-09-09 Research Foundation Of The State University Of New York Method and device for manipulating liquids in microfluidic systems
US20050236566A1 (en) * 2004-04-26 2005-10-27 Chang Liu Scanning probe microscope probe with integrated capillary channel
JP2007535681A (ja) * 2004-04-30 2007-12-06 バイオフォース・ナノサイエンシィズ・インコーポレーテッド 物質を表面上に堆積させるための方法と装置
US8992454B2 (en) 2004-06-09 2015-03-31 Bard Access Systems, Inc. Splitable tip catheter with bioresorbable adhesive
US7727225B2 (en) 2004-07-28 2010-06-01 University Of Virginia Patent Foundation Coaxial catheter systems for transference of medium
EP2572661A1 (en) 2004-10-05 2013-03-27 Genzyme Corporation Stepped cannula
US7729780B2 (en) 2004-10-21 2010-06-01 Vardiman Arnold B Various apparatus and methods for deep brain stimulating electrodes
WO2007133545A2 (en) 2006-05-11 2007-11-22 Ceramoptec Industries, Inc. Device and method for improved vascular laser treatment
AU2006200951B2 (en) 2005-03-13 2012-01-19 Integra LifeSciences Switzerland Sarl Pressure sensing devices
US7510533B2 (en) 2005-03-15 2009-03-31 Codman & Shurtleff, Inc. Pressure sensing valve
US20060211945A1 (en) 2005-03-15 2006-09-21 Codman & Shurtleff, Inc. Pressure sensing methods
US20060211944A1 (en) 2005-03-15 2006-09-21 Codman & Shurtleff, Inc. Pressure sensing devices
GB0512078D0 (en) 2005-06-14 2005-07-20 Gill Steven S RF Coil structure
US7717853B2 (en) 2005-06-24 2010-05-18 Henry Nita Methods and apparatus for intracranial ultrasound delivery
US7615050B2 (en) 2005-06-27 2009-11-10 Boston Scientific Scimed, Inc. Systems and methods for creating a lesion using transjugular approach
US20070128083A1 (en) 2005-07-18 2007-06-07 U.S. Genomics, Inc. Microfluidic methods and apparatuses for sample preparation and analysis
AU2006283189B2 (en) 2005-08-23 2013-01-31 The Regents Of The University Of California Reflux resistant cannula and system for chronic delivery of therapeutic agents using convection-enhanced delivery
US7967763B2 (en) 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
US20070191767A1 (en) 2005-12-16 2007-08-16 Medtronic Vascular, Inc. Bifurcated Catheter Joints
US8206334B2 (en) 2006-01-31 2012-06-26 Kralick Francis A Implantable micro-system for treatment of hydrocephalus
GB0603037D0 (en) 2006-02-15 2006-03-29 Renishaw Plc Implantable fluid distribution device and a method of drug delivery
GB0604952D0 (en) 2006-03-13 2006-04-19 Renishaw Plc A fluid connector for fluid delivery apparatus
GB0604929D0 (en) 2006-03-13 2006-04-19 Renishaw Plc Method and apparatus for fluid delivery
US8795270B2 (en) 2006-04-24 2014-08-05 Covidien Ag System and method for ablating tissue
US20100030102A1 (en) 2006-05-15 2010-02-04 David Poston Active Delivery and Flow Redirections: Novel Devices and Method of Delivery of Materials to Patients
US7998128B2 (en) 2006-05-15 2011-08-16 Therataxis, LLC. Active delivery and flow redirection: novel devices and method of delivery of materials to patients
WO2008005440A2 (en) 2006-06-30 2008-01-10 University Of Illinois Monitoring and controlling hydrocephalus
GB0612979D0 (en) 2006-06-30 2006-08-09 Renishaw Plc Gas bearing fabrication method
GB0612980D0 (en) 2006-06-30 2006-08-09 Renishaw Plc Gas bearings
GB0616411D0 (en) 2006-08-18 2006-09-27 Renishaw Plc Neurosurgical instruments
US8403858B2 (en) * 2006-10-12 2013-03-26 Perceptive Navigation Llc Image guided catheters and methods of use
KR101335200B1 (ko) 2006-11-03 2013-11-29 리써치 트라이앵글 인스티튜트 굴곡 모드 압전 트랜스듀서를 사용하는 보강된 초음파 촬영 프로브
US7842006B2 (en) * 2006-11-17 2010-11-30 Cfd Research Corporation Thrombectomy microcatheter
GB0623395D0 (en) 2006-11-23 2007-01-03 Renishaw Plc Port
AU2008219461B2 (en) * 2007-02-27 2013-10-03 Regents Of The University Of Minnesota Thermochemical ablation of bodily tissue
US20080275466A1 (en) 2007-05-01 2008-11-06 James Grant Skakoon Dual cannula system and method for using same
US7870616B2 (en) * 2007-05-11 2011-01-11 Csem Centre Suisse D'electronique Et De Microtechnique Sa Probe arrangement
DK2152346T3 (en) 2007-05-17 2016-01-18 Medgenesis Therapeutix Inc Konvektionsforstærket indgivelseskateter with removable support element
US20100121307A1 (en) 2007-08-24 2010-05-13 Microfabrica Inc. Microneedles, Microneedle Arrays, Methods for Making, and Transdermal and/or Intradermal Applications
US8147480B2 (en) 2007-09-28 2012-04-03 Codman & Shurtleff, Inc. Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent
US7766875B2 (en) 2007-09-28 2010-08-03 Codman & Shurtleff, Inc. Catheter for reduced reflux in targeted tissue delivery of a therapeutic agent
US8015887B2 (en) 2007-09-29 2011-09-13 E I Spectra, LLC Instrumented pipette tip
CA2701132A1 (en) 2007-10-08 2009-04-16 Renishaw (Ireland) Limited Apparatus for stereotactic neurosurgery
GB0719608D0 (en) 2007-10-08 2007-11-14 Renishaw Plc Medical Apparatus
JP2010540200A (ja) 2007-10-08 2010-12-24 レニショウ (アイルランド) リミテッド カテーテル
US20090112278A1 (en) 2007-10-30 2009-04-30 Neuropace, Inc. Systems, Methods and Devices for a Skull/Brain Interface
EP2060287B1 (de) * 2007-11-14 2011-06-15 BrainLAB AG Medikamentenzuführungssystem für CED (Convection Enhanced Delivery)-Katheterinfusionen
US8480626B2 (en) * 2007-11-30 2013-07-09 Medtronic, Inc. Infusion catheter assembly with reduced backflow
EP2240401A1 (en) 2008-01-04 2010-10-20 The Royal Institution for the Advancement of Learning/McGill University Microfluidic microarray system and method for the multiplexed analysis of biomolecules
CN102006882B (zh) 2008-01-16 2017-06-06 神经动力公司 利用颗粒体蛋白前体(pgrn)治疗神经变性疾病
GB0802634D0 (en) 2008-02-13 2008-03-19 Renishaw Plc Catheter
US20110184503A1 (en) 2008-06-16 2011-07-28 Yong Xu Method of making 3-dimensional neural probes having electrical and chemical interfaces
US9138559B2 (en) 2008-06-16 2015-09-22 Twin Star Medical, Inc Flexible catheter
US9024507B2 (en) 2008-07-10 2015-05-05 Cornell University Ultrasound wave generating apparatus
US8539905B2 (en) * 2008-11-07 2013-09-24 The Research Foundation For The State University Of New York Polymeric micro-cantilevers for ultra-low volume fluid and living cell deposition
US8540667B2 (en) * 2008-11-12 2013-09-24 Sanovas, Inc. Multi-balloon catheter for extravasated drug delivery
GB0820839D0 (en) 2008-11-13 2008-12-24 Renishaw Plc Assessing and/or correcting tomogram errors
WO2010081072A2 (en) * 2009-01-12 2010-07-15 Becton, Dickinson And Company Optimized intracranial catheters for convection-enhanced delivery of therapeutics
WO2010090858A2 (en) 2009-01-21 2010-08-12 Medtronic, Inc. Catheter systems having flow restrictors
US20100185179A1 (en) * 2009-01-21 2010-07-22 Abbott Cardiovascular Systems Inc. Needled cannula with filter device
TWI449551B (en) 2009-01-30 2014-08-21 Terumo Corp Injection needle assembly and drug injection device
WO2010096920A1 (en) 2009-02-24 2010-09-02 George Klein Anchoring catheter sheath
EP2403572B1 (en) 2009-03-03 2019-01-16 Becton, Dickinson and Company Pen needle assembly for delivering drug solutions
US8602644B2 (en) * 2009-05-08 2013-12-10 University Of North Texas Multifunctional micropipette biological sensor
GB0908787D0 (en) 2009-05-21 2009-07-01 Renishaw Plc Head clamp for imaging and neurosurgery
GB0908784D0 (en) 2009-05-21 2009-07-01 Renishaw Plc Apparatus for imaging a body part
WO2011005778A1 (en) 2009-07-06 2011-01-13 Sony Corporation Microfluidic device
US9936884B2 (en) 2009-10-28 2018-04-10 Megan Mikhail Method and system for treating hypotension
US9498271B2 (en) * 2009-10-29 2016-11-22 Cook Medical Technologies Llc Coaxial needle cannula with distal spiral mixer and side ports for fluid injection
US8814853B2 (en) 2009-10-29 2014-08-26 Cook Medical Technologies Llc Thermochemical ablation needle
WO2011069002A1 (en) * 2009-12-02 2011-06-09 Alquest Therapeutics, Inc. Organoselenium compounds and uses thereof
GB201002370D0 (en) 2010-02-12 2010-03-31 Renishaw Ireland Ltd Percutaneous drug delivery apparatus
US20130046230A1 (en) 2010-03-05 2013-02-21 Cornell University Ultrasound-assisted convection enhanced delivery of compounds in vivo with a transducer cannula assembly
WO2011125560A1 (ja) 2010-03-31 2011-10-13 テルモ株式会社 プレフィルドシリンジ
WO2011135298A1 (en) 2010-04-30 2011-11-03 Renishaw Plc Metrology apparatus
US20120019270A1 (en) 2010-07-21 2012-01-26 Amodei Dario G Microfabricated pipette and method of manufacture
US9113949B2 (en) 2010-10-05 2015-08-25 Medtronic, Inc. Cannula system and method for immobilizing an implanted catheter during catheter anchoring
WO2012068283A1 (en) * 2010-11-16 2012-05-24 C2C Development, Llc Seal tip catheter devices or methods
CA2827044A1 (en) 2011-02-10 2012-08-16 Actuated Medical, Inc. Medical tool with electromechanical control and feedback
WO2012145652A1 (en) 2011-04-20 2012-10-26 Trustees Of Tufts College Dynamic silk coatings for implantable devices
US9138343B2 (en) 2011-05-31 2015-09-22 Bayer Healthcare Llc Tip protector sleeve
CN103826690B (zh) 2011-08-01 2016-11-02 亚克安娜生命科学有限公司 微流控药物递送装置
US20130079596A1 (en) 2011-09-23 2013-03-28 Todd Edward Smith Dynamic surgical fluid sensing
US8753344B2 (en) 2011-09-23 2014-06-17 Smith & Nephew, Inc. Dynamic orthoscopic sensing
US9539389B2 (en) 2012-02-08 2017-01-10 Stmicroelectronics, Inc. Wireless flow sensor using present flow rate data
US9255245B2 (en) * 2012-07-03 2016-02-09 Agilent Technologies, Inc. Sample probes and methods for sampling intracellular material
EP2877108A1 (en) 2012-07-24 2015-06-03 Renishaw Plc. Neurosurgical apparatus and methods
US10188396B2 (en) 2012-08-06 2019-01-29 Covidien Lp Apparatus and method for delivering an embolic composition
US8992458B2 (en) 2012-12-18 2015-03-31 Alcyone Lifesciences, Inc. Systems and methods for reducing or preventing backflow in a delivery system
US9539382B2 (en) 2013-03-12 2017-01-10 Medtronic, Inc. Stepped catheters with flow restrictors and infusion systems using the same
CN105517617A (zh) 2013-06-17 2016-04-20 亚克安娜生命科学有限公司 用于保护导管末梢的方法和装置以及用于微导管的立体定向固定装置
CA2920014A1 (en) 2013-07-31 2015-02-05 Alcyone Lifesciences, Inc. Systems and methods for drug delivery, treatment, and monitoring
US20160213312A1 (en) 2015-01-26 2016-07-28 Alcyone Lifesciences, Inc. Drug delivery methods with tracer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123919A (zh) * 2004-10-05 2008-02-13 建新公司;加利福尼亚大学董事会 台阶式插管
CN101657189A (zh) * 2007-02-13 2010-02-24 康奈尔大学;耶鲁大学 对流增强型递送装置,方法和应用
CN102573979A (zh) * 2009-08-25 2012-07-11 加利福尼亚大学董事会 用于向大脑递送治疗剂的导管优化配置

Also Published As

Publication number Publication date
KR20140092802A (ko) 2014-07-24
AU2012290129B2 (en) 2016-10-13
US20130035560A1 (en) 2013-02-07
EP2739341A2 (en) 2014-06-11
WO2013019830A3 (en) 2013-04-04
US10137244B2 (en) 2018-11-27
JP2014529417A (ja) 2014-11-13
AU2019201722A1 (en) 2019-04-04
AU2017200202A1 (en) 2017-02-02
CA2843587A1 (en) 2013-02-07
JP6230996B2 (ja) 2017-11-15
AU2017200202B2 (en) 2018-12-13
EP2739341A4 (en) 2015-04-22
CN103826690A (zh) 2014-05-28
US20130035574A1 (en) 2013-02-07
US20190117886A1 (en) 2019-04-25
AU2012290129A1 (en) 2014-02-20
US20130035660A1 (en) 2013-02-07
WO2013019830A2 (en) 2013-02-07

Similar Documents

Publication Publication Date Title
EP1622659B1 (en) Intracranial catheter assembly for precise treatment of brain tissue
AU746636B2 (en) Apparatus and method for perimodiolar cochlear implant with retro-positioning
JP5118255B2 (ja) 減圧による創傷閉鎖および治療システムおよび方法
US7618948B2 (en) Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA
US6440102B1 (en) Fluid transfer and diagnostic system for treating the inner ear
US9302903B2 (en) Microneedle devices and production thereof
JP3696252B2 (ja) 選択吸引式スタイレット
JP4478452B2 (ja) 介入的手技のための微細加工外科用デバイス
EP1471953B1 (en) Gas pressure actuated microneedle arrays, and systems and methods relating to same
EP2099436B1 (en) Microdevice and method for transdermal delivery and sampling of active substances
US7699800B2 (en) Multi-catheter insertion device and method
CN101678156B (zh) 具有带柱状突起的伤口接触表面的减压伤口敷料
Reed et al. Microsystems for drug and gene delivery
AU767122B2 (en) Microneedle devices and methods of manufacture and use thereof
US6334856B1 (en) Microneedle devices and methods of manufacture and use thereof
US20040267234A1 (en) Implantable ultrasound systems and methods for enhancing localized delivery of therapeutic substances
CN103961788B (zh) 闭塞灌流导管
US20060282014A1 (en) Flexible polymer microelectrode with fluid delivery capability and methods for making same
US20080065184A1 (en) Nerve cuff, method and apparatus for manufacturing same
US20120059285A1 (en) Method and apparatus for treatment of intracranial hemorrhages
US20100047376A1 (en) Nerve cuff injection mold and method of making a nerve cuff
JP4799834B2 (ja) 閉塞物を克服するシステムを備えたカテーテル
US6743211B1 (en) Devices and methods for enhanced microneedle penetration of biological barriers
US8827987B2 (en) Percutaneous drug delivery apparatus
US20080065002A1 (en) Catheter for Localized Drug Delivery and/or Electrical Stimulation

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
COR Change of bibliographic data
C14 Grant of patent or utility model