CN103823286A - Cage type multi-shaft optical system mounting rack - Google Patents
Cage type multi-shaft optical system mounting rack Download PDFInfo
- Publication number
- CN103823286A CN103823286A CN201410117147.9A CN201410117147A CN103823286A CN 103823286 A CN103823286 A CN 103823286A CN 201410117147 A CN201410117147 A CN 201410117147A CN 103823286 A CN103823286 A CN 103823286A
- Authority
- CN
- China
- Prior art keywords
- optical element
- optical
- optical system
- cage
- erecting frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 226
- 238000009434 installation Methods 0.000 claims abstract description 23
- 239000004606 Fillers/Extenders Substances 0.000 claims 2
- 238000010276 construction Methods 0.000 abstract description 5
- 238000002474 experimental method Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mounting And Adjusting Of Optical Elements (AREA)
Abstract
笼式多轴光学系统安装架,涉及光学系统安装调节机构。它为了解决目前的光学元件安装架不适用于多光轴系统的问题。本发明在使用时,根据需要将导杆、光学元件安装架和支柱组装起来,将导杆依次贯穿多个光学元件安装架的导杆安装孔,以实现多轴光学系统结构,当光路存在45度反射时,可将支柱固定在光学平台上并贯穿一个或多个光学元件安装架的光学元件安装孔,能够实现光沿垂直于光学平台方向上的传播。本发明中各轴高度和方向能够灵活调节,易于与其他高度不同的器件或系统配合使用,光学系统结构紧凑,不仅能够实现平面内的多轴光学系统的搭建,也能够实现空间内的多轴光学系统的搭建。本发明适用于多轴光学系统的搭建。
A cage type multi-axis optical system installation frame relates to an optical system installation adjustment mechanism. It is to solve the problem that the current optical element mount is not suitable for the multi-axis system. When the present invention is in use, guide rods, optical element mounting frames and pillars are assembled as required, and the guide rods are sequentially passed through the guide rod mounting holes of a plurality of optical element mounting frames to realize a multi-axis optical system structure. When the optical path exists 45 When the degree of reflection is high, the pillars can be fixed on the optical table and pass through the optical element mounting holes of one or more optical element mounting frames, so that the light can propagate along the direction perpendicular to the optical table. In the present invention, the height and direction of each axis can be flexibly adjusted, and it is easy to cooperate with other devices or systems with different heights. The optical system has a compact structure, which can not only realize the construction of a multi-axis optical system in a plane, but also realize multi-axis in space. Construction of the optical system. The invention is applicable to the construction of a multi-axis optical system.
Description
技术领域technical field
本发明涉及光学系统安装调节机构。The invention relates to an optical system installation adjustment mechanism.
背景技术Background technique
现有的光学元件安装支架结构复杂、占用操作平台的面积大、光学元件的安装位置受到限制。对于平行光路,每个光学元件要单独调节角度,费时费力且精度很难保证,两个光学元件的相对距离一旦固定也很难更改。为解决上述问题,市场上出现了一些笼式单轴光学元件安装支架,但对于只有一个中心轴的光学系统,光路固定后不易与其他高度不同的器件或系统配合使用。The existing optical element mounting bracket has a complex structure, occupies a large area of the operation platform, and the installation position of the optical element is limited. For parallel optical paths, the angle of each optical element needs to be adjusted independently, which is time-consuming and laborious, and the accuracy is difficult to guarantee. Once the relative distance between two optical elements is fixed, it is also difficult to change. In order to solve the above problems, some cage-type single-axis optical component mounting brackets have appeared on the market, but for optical systems with only one central axis, it is not easy to cooperate with other devices or systems with different heights after the optical path is fixed.
发明内容Contents of the invention
本发明的目的是为了解决目前的光学元件安装架不适用于多光轴系统的问题,提供一种笼式多轴光学系统安装架。The object of the present invention is to provide a cage-type multi-axis optical system mounting frame to solve the problem that the current optical element mounting frame is not suitable for the multi-axis system.
本发明所述的笼式多轴光学系统安装架包括至少两个光学元件安装架和至少两根导杆,所述光学元件安装架上设置有至少一个光学元件安装孔,每个光学元件安装孔的外侧均匀分布设置有四个导杆安装孔,导杆依次贯穿多个光学元件安装架的导杆安装孔,至少两个光学元件安装架的底部设置有安装架固定孔,所述安装架固定孔用于将所述笼式多轴光学系统安装架固定在光学平台上。The cage type multi-axis optical system mounting frame of the present invention includes at least two optical element mounting frames and at least two guide rods, and at least one optical element mounting hole is arranged on the optical element mounting frame, and each optical element mounting hole Four guide rod installation holes are evenly distributed on the outside of the outer side, and the guide rods pass through the guide rod installation holes of a plurality of optical component mounting frames in turn, and the bottoms of at least two optical component mounting frames are provided with mounting frame fixing holes, and the mounting frames are fixed The holes are used to secure the cage multi-axis optical system mount to the optical table.
所述的笼式多轴光学系统安装架还包括N个支柱,N为正整数,所述支柱为圆柱形,每根支柱至少固定一个光学元件安装架,所述光学元件安装架通过其上的任意一个光学元件安装孔套固在所述支柱上。The cage-type multi-axis optical system mounting frame also includes N pillars, N is a positive integer, the pillars are cylindrical, and each pillar fixes at least one optical element mounting frame, and the optical element mounting frame passes through the Any one of the optical element installation holes is sleeved and fixed on the support.
所述的光学元件安装架上还设置有螺纹孔,所述螺纹孔用来固定光学调整架。The optical element mounting frame is also provided with threaded holes, and the threaded holes are used to fix the optical adjustment frame.
所述的笼式多轴光学系统安装架还可以包括转接板,所述转接板为平板状结构,在所述平板的下表面的中央设置有圆形凸起结构,所述圆形凸起结构嵌固在光学元件安装架上的光学元件安装孔内,所述平板的上表面设置有螺纹孔,所述螺纹孔用来固定光学调整架。The cage-type multi-axis optical system mounting bracket may also include an adapter plate, the adapter plate is a flat plate structure, and a circular convex structure is arranged in the center of the lower surface of the flat plate, and the circular convex structure The structure is embedded in the optical element mounting hole on the optical element mounting frame, and the upper surface of the flat plate is provided with threaded holes, and the threaded holes are used to fix the optical adjustment frame.
所述光学元件安装架上有多个光学元件安装孔时,所述的多个光学元件安装孔的中心呈矩形阵列排布。When there are multiple optical component mounting holes on the optical component mounting frame, the centers of the multiple optical component mounting holes are arranged in a rectangular array.
每个所述光学元件安装架上的光学元件安装孔的数量为1、2、3、4、6或9。The number of optical element mounting holes on each optical element mounting frame is 1, 2, 3, 4, 6 or 9.
本发明所述的笼式多轴光学系统安装架包括多个光学元件安装架和多根导杆,使用时,根据实际需要将导杆和光学元件安装架组装起来,实现多轴光学系统结构,各轴高度和方向能够灵活调节,易于与其他高度不同的器件或系统配合使用。当光路存在45度反射时,可以将支柱垂直固定在光学平台上,根据实际需要将支柱贯穿在一个或多个光学元件安装架上的光学元件安装孔,在所述光学元件安装架上固定其他光学元件,即可实现光沿垂直于光学平台方向上的传播。本发明不仅能够实现平面内的多轴光学系统的搭建,也能够实现空间内的多轴光学系统的搭建。The cage-type multi-axis optical system mounting frame of the present invention includes multiple optical element mounting frames and multiple guide rods. When in use, the guide rods and optical element mounting frames are assembled according to actual needs to realize the multi-axis optical system structure. The height and direction of each axis can be adjusted flexibly, and it is easy to cooperate with other devices or systems with different heights. When there is 45-degree reflection in the optical path, the pillar can be fixed vertically on the optical platform, and the pillar can be inserted through the optical element mounting holes on one or more optical element mounting frames according to actual needs, and other optical element mounting frames can be fixed on the optical element mounting frame. The optical element can realize the propagation of light along the direction perpendicular to the optical table. The present invention can not only realize the construction of the multi-axis optical system in the plane, but also realize the construction of the multi-axis optical system in the space.
附图说明Description of drawings
图1为实施方式一所述的一种笼式多轴光学系统安装架的立体结构示意图。FIG. 1 is a schematic perspective view of the three-dimensional structure of a cage-type multi-axis optical system mounting bracket according to the first embodiment.
图2为具体实施方式二中光路存在反射时的多轴光学系统安装架的结构示意图。FIG. 2 is a schematic structural diagram of a multi-axis optical system mounting frame when there is reflection in the optical path in
图3为具体实施方式五中的光学元件安装架的结构示意图。FIG. 3 is a schematic structural view of the optical element mounting frame in
图4为具体实施方式六中的光学元件安装架的结构示意图。FIG. 4 is a schematic structural view of the optical element mounting frame in
图5为具体实施方式十中用笼式多轴光学系统安装架搭成的旋光溶液测试实验的结构示意图。FIG. 5 is a schematic structural diagram of an optical solution test experiment built with a cage-type multi-axis optical system mounting bracket in
图6为具体实施方式十一中用笼式多轴光学系统安装架搭成的双缝干涉实验的结构示意图。6 is a schematic structural diagram of a double-slit interference experiment built with a cage-type multi-axis optical system mounting bracket in
图7为具体实施方式四中的转接板的结构示意图。FIG. 7 is a schematic structural diagram of an adapter board in Embodiment 4. FIG.
具体实施方式Detailed ways
具体实施方式一:结合图1和图2说明本实施方式,本实施方式所述的笼式多轴光学系统安装架包括至少两个光学元件安装架和至少两根导杆,所述光学元件安装架上设置有至少一个光学元件安装孔,每个光学元件安装孔的外侧均匀分布设置有四个导杆安装孔,导杆依次贯穿多个光学元件安装架的导杆安装孔,至少两个光学元件安装架的底部设置有安装架固定孔,所述安装架固定孔用于将所述笼式多轴光学系统安装架固定在光学平台上。Specific Embodiment 1: This embodiment is described with reference to FIG. 1 and FIG. 2. The cage-type multi-axis optical system mounting frame described in this embodiment includes at least two optical element mounting frames and at least two guide rods. At least one optical element mounting hole is provided on the frame, and four guide rod mounting holes are evenly distributed on the outside of each optical element mounting hole. The bottom of the component mounting frame is provided with a mounting frame fixing hole, and the mounting frame fixing hole is used for fixing the cage multi-axis optical system mounting frame on an optical platform.
本实施方式所述的笼式多轴光学系统安装架包括多个光学元件安装架和多根导杆,使用时可根据实际需要确定光学元件安装架和导杆的数量、光学元件安装架上光学元件安装孔的数量、以及每个光学元件案件架上光学元件安装孔的排列方式,每个光学元件安装架至少通过两根导杆来固定高度,光学元件安装架能够沿导杆滑动,以调节两个光学元件的相对距离。如图1所示的结构至少能够实现三个轴的光学系统。另外,光学元件架还可以单独使用,通过螺丝将其固定在光学平台上。The cage-type multi-axis optical system mounting frame described in this embodiment includes multiple optical element mounting frames and multiple guide rods. When in use, the number of optical element mounting frames and guide rods, the optical The number of component mounting holes and the arrangement of the optical component mounting holes on each optical component case holder, each optical component mounting frame is fixed in height by at least two guide rods, and the optical component mounting frame can slide along the guide rods to adjust The relative distance of two optical elements. The structure shown in FIG. 1 can at least realize an optical system with three axes. In addition, the optical component holder can also be used separately, and it can be fixed on the optical table by screws.
具体实施方式二:结合图2说明本实施方式,本实施方式是对实施方式一所述的笼式多轴光学系统安装架的进一步限定,本实施方式中,所述笼式多轴光学系统安装架还包括N个支柱,N为正整数,所述支柱为圆柱形,每根支柱至少固定一个光学元件安装架,所述光学元件安装架通过其上的任意一个光学元件安装孔套固在所述支柱上。Specific Embodiment 2: This embodiment is described in conjunction with FIG. 2. This embodiment is a further limitation of the cage multi-axis optical system mounting bracket described in
在实际应用中,所述光学元件安装架与支柱通过顶丝固定连接。当光路存在45度反射时,可以将支柱垂直固定在光学平台上,根据实际需要将支柱贯穿在一个或多个光学元件安装架上的光学元件安装孔,在所述光学元件安装架上固定其他光学元件,即可实现光沿垂直于光学平台方向上的传播。In practical applications, the optical element mounting frame is fixedly connected to the pillar through a jacking screw. When there is 45-degree reflection in the optical path, the pillar can be fixed vertically on the optical platform, and the pillar can be inserted through the optical element mounting holes on one or more optical element mounting frames according to actual needs, and other optical element mounting frames can be fixed on the optical element mounting frame. The optical element can realize the propagation of light along the direction perpendicular to the optical table.
具体实施方式三:本实施方式是对实施方式二所述的笼式多轴光学系统安装架的进一步限定,本实施方式中,所述的光学元件安装架上还设置有螺纹孔,所述螺纹孔用来固定光学调整架。Specific Embodiment Three: This embodiment is a further limitation of the cage-type multi-axis optical system mounting frame described in
本实施方式通过在光学元件安装架上安装光学调整架,光学调整架上再增加其他光学元件,以适应不同光学系统的需要,能够实现光在空间内的传播。In this embodiment, the optical adjustment frame is installed on the optical element mounting frame, and other optical elements are added to the optical adjustment frame to meet the needs of different optical systems, and the propagation of light in space can be realized.
具体实施方式四:结合图7说明本实施方式,本实施方式是对实施方式二所述的笼式多轴光学系统安装架的进一步限定,本实施方式中,所述的笼式多轴光学系统安装架还包括转接板,所述转接板为平板状结构,在所述平板的下表面的中央设置有圆形凸起结构,所述圆形凸起结构嵌固在光学元件安装架上的光学元件安装孔内,所述平板的上表面设置有螺纹孔,所述螺纹孔用来固定光学调整架。Specific Embodiment 4: This embodiment is described in conjunction with FIG. 7. This embodiment is a further limitation of the cage multi-axis optical system mounting bracket described in
当光学调整架不方便直接固定在光学元件安装架上时,可通过转接板来固定。转接板上圆形凸起结构的直径与光学元件安装架上的光学元件安装孔的直径相等,光学调整架上再增加其他光学元件,以适应不同光学系统的需要,能够实现光在空间内的传播。When it is inconvenient to directly fix the optical adjustment bracket on the optical component mounting bracket, it can be fixed through an adapter plate. The diameter of the circular convex structure on the adapter plate is equal to the diameter of the optical element mounting hole on the optical element mounting frame, and other optical elements are added to the optical adjustment frame to meet the needs of different optical systems and to realize the light in the space. Spread.
具体实施方式五:结合图3说明本实施方式,本实施方式是对实施方式一所述的笼式多轴光学系统安装架的进一步限定:在所述设置有安装架固定孔的光学元件安装架上、与所述安装架固定孔相邻的光学元件安装孔的下方设置有与安装架固定孔相通的长槽。Specific Embodiment 5: This embodiment is described in conjunction with FIG. 3 . This embodiment is a further limitation of the cage multi-axis optical system mounting frame described in Embodiment 1: the optical element mounting frame provided with mounting frame fixing holes A long groove communicating with the fixing hole of the mounting frame is provided on the upper side and below the mounting hole of the optical element adjacent to the fixing hole of the mounting frame.
本实施方式中的安装架固定孔与长槽用于将笼式多轴光学系统安装架固定在光学平台上,这种固定方式不占用额外的空间,非常适用于紧凑型光学系统。The mounting bracket fixing holes and the long slots in this embodiment are used to fix the cage multi-axis optical system mounting bracket on the optical table. This fixing method does not occupy additional space and is very suitable for compact optical systems.
具体实施方式六:结合图4说明本实施方式,本实施方式是对实施方式二所述的笼式多轴光学系统安装架的进一步限定:所述的光学元件安装架的侧面开有至少一个凹槽,所述凹槽的底面设置有螺纹孔,所述螺纹孔与一个光学元件安装孔相通,所述螺纹孔用于将光学元件安装架固定在支柱上。Embodiment 6: This embodiment is described in conjunction with FIG. 4. This embodiment is a further limitation of the cage-type multi-axis optical system mounting frame described in Embodiment 2: the side of the optical element mounting frame is provided with at least one concave A groove, the bottom surface of the groove is provided with a threaded hole, the threaded hole communicates with an optical element mounting hole, and the threaded hole is used to fix the optical element mounting frame on the pillar.
在光学元件安装架的侧面设置螺纹孔,该螺纹孔即可用来将光学元件安装架固定在支柱上,也可用来固定其他光学元件。A threaded hole is provided on the side of the optical element mounting frame, and the threaded hole can be used to fix the optical element mounting frame on the support, and can also be used to fix other optical elements.
具体实施方式七:结合图1和图4说明本实施方式,本实施方式是对实施方式一至六所述的笼式多轴光学系统安装架的进一步限定:所述光学元件安装架上有多个光学元件安装孔,所述的多个光学元件安装孔的中心呈矩形阵列排布。Specific Embodiment 7: This embodiment is described with reference to FIG. 1 and FIG. 4 . This embodiment is a further limitation of the cage multi-axis optical system mounting bracket described in
具体实施方式八:结合图4说明本实施方式,本实施方式是对实施方式七所述的笼式多轴光学系统安装架的进一步限定:每个所述光学元件安装架上的光学元件安装孔的数量为1、2、3、4、6或9。Embodiment 8: This embodiment is described in conjunction with FIG. 4 . This embodiment is a further limitation of the cage multi-axis optical system mounting frame described in Embodiment 7: the optical element mounting hole on each optical element mounting frame The number is 1, 2, 3, 4, 6 or 9.
本实施方式中,光学元件安装孔的数量为2或3时,光学元件安装孔可以沿水平或竖直方向排列;实际应用过程中,很少涉及到沿某一个方向大面积分布的光学系统,因此,光学元件安装孔的数量为4时,可以设置成2X2的矩形阵列,而不是1X4或4X1的矩阵;光学元件安装孔的数量为6时,可以设置成2X3或3X2的矩形阵列;光学元件安装孔的数量为9时,可以设置成3X3的矩形阵列。In this embodiment, when the number of optical element mounting holes is 2 or 3, the optical element mounting holes can be arranged in a horizontal or vertical direction; in practical applications, optical systems that are distributed in a large area along a certain direction are rarely involved. Therefore, when the number of mounting holes for optical components is 4, it can be set in a 2X2 rectangular array instead of a 1X4 or 4X1 matrix; when the number of mounting holes for optical components is 6, it can be set in a 2X3 or 3X2 rectangular array; When the number of mounting holes is 9, it can be set in a 3X3 rectangular array.
具体实施方式九:本实施方式是对实施方式八所述的笼式多轴光学系统安装架的进一步限定:所述的光学元件安装架的厚度为10mm。Ninth specific embodiment: This embodiment is a further limitation of the cage multi-axis optical system mounting frame described in the eighth embodiment: the thickness of the optical element mounting frame is 10mm.
具体实施方式十:结合图5说明本实施方式,本实施方式是实施方式一至九所述的笼式多轴光学系统安装架的使用方法的举例说明:本实施方式中,将笼式多轴光学系统安装架用于旋光溶液测试实验。图4中,从右到左依次为LED1、起偏器2、样品槽3、显偏器4、透镜5和CCD6。其中,样品管槽4内装有旋光溶液,显偏器4能够显示线偏振光的方向。Embodiment 10: This embodiment is described in conjunction with FIG. 5. This embodiment is an illustration of the method of using the cage multi-axis optical system mounting bracket described in
本实验采用的光学元件安装架有两种,一种是单孔光学元件安装架,另一种是三孔光学元件安装架。其中,LED1固定在三孔光学元件安装架上,LED1左侧是纳米微动平移台,该纳米微动平移台的圆孔内装有起偏器2,起偏器2的左侧是起固定支撑作用的三孔光学元件安装架,该三孔光学元件安装架的左侧是样品槽3,样品槽3的左侧是起固定支撑作用的三孔光学元件安装架,该三孔光学元件安装架的左侧是显偏器4,显偏器4固定在单孔光学元件安装架上,该单孔光学元件安装架的左侧是起固定支撑作用的三孔光学元件安装架,该三孔光学元件安装架的左侧是透镜5,透镜5固定在单孔光学元件安装架上,该单孔光学元件安装架的左侧是起固定支撑作用的三孔光学元件安装架,该三孔光学元件安装架的左侧是CCD6,CCD6的左侧是起固定支撑作用的三孔光学元件安装架。There are two types of optical component mounting frames used in this experiment, one is a single-hole optical component mounting frame, and the other is a three-hole optical component mounting frame. Among them, LED1 is fixed on the three-hole optical component mounting frame, and the left side of LED1 is a nano-micro-movement translation platform, and a
本实施方式中,将显偏器4替换原有的检偏器,实现线偏振光的可视化和实时化检测,不需要不断地旋转检偏器便可以检测出入射线偏振光的角度以及线偏振光的经过旋光溶液后振动面的转动角度,减少了机械转动产生的误差提高了检测精度,并且可以将线偏振光的偏振方向在PC机上实时显示,从而实现了对偏振态变化的实时观察。同时,可以很方便的判断出样品管中的物质是左旋物质或者右旋物质。In this embodiment, the original polarizer is replaced by the polarizer 4 to realize the visualization and real-time detection of linearly polarized light, and the angle of incident ray polarized light and linearly polarized light The rotation angle of the vibration plane after passing through the optical active solution reduces the error caused by mechanical rotation and improves the detection accuracy, and the polarization direction of linearly polarized light can be displayed on the PC in real time, thereby realizing the real-time observation of the polarization state change. At the same time, it can be easily judged whether the substance in the sample tube is a left-handed substance or a right-handed substance.
实验中,LED发出的光沿直线传播,整个光路只有一个主轴,LED1发出的光入射到显偏器4的中心,该实验对显偏器4的中心的位置要求很严格,采用本实施方式所述的笼式多轴光学系统安装架能够严格保证显偏器4的中心位置,且整个实验系统调节方便,无需调节光学元件的位置和角度,只需将各光学元件安装在同一光轴的各光学元件安装孔内即可,光路搭建方便省时,与传统的光学调整架相比,整个实验系统的体积减小至少50%。In the experiment, the light emitted by the LED propagates along a straight line, the entire optical path has only one main axis, and the light emitted by the LED1 is incident on the center of the polarizer 4. This experiment has strict requirements on the position of the center of the polarizer 4. The cage-type multi-axis optical system mounting frame described above can strictly ensure the center position of the polarizer 4, and the whole experimental system is easy to adjust, without adjusting the position and angle of the optical elements, only need to install each optical element on each side of the same optical axis. The optical components can be installed in the holes, and the optical path is convenient and time-saving. Compared with the traditional optical adjustment frame, the volume of the whole experimental system is reduced by at least 50%.
具体实施方式十一:结合图6说明本实施方式,本实施方式是实施方式一至九所述的笼式多轴光学系统安装架的使用方法的举例说明:本实施方式中,将笼式多轴光学系统安装架用于双缝干涉实验。图5中,从右到左依次为激光器7、透镜8(焦距为30mm)、小孔9、透镜10(焦距为100mm)、起偏器11、SLM12(即空间光调制器)、双缝13、检偏器14、透镜15、光栏16和CCD17。Embodiment 11: This embodiment is described in conjunction with FIG. 6. This embodiment is an example of the method of using the cage multi-axis optical system mounting bracket described in
本实验采用的光学元件安装架有两种,一种是单孔光学元件安装架,另一种是三孔光学元件安装架。三孔光学元件安装架用于固定支撑整个光学系统,各光学元件固定在单孔光学元件安装架上。There are two types of optical component mounting frames used in this experiment, one is a single-hole optical component mounting frame, and the other is a three-hole optical component mounting frame. The three-hole optical element mounting frame is used to fix and support the entire optical system, and each optical element is fixed on the single-hole optical element mounting frame.
将SLM放到传统的杨氏双缝干涉系统里,通过改变SLM12的灰度值,在CCD17上便可以观测到干涉条纹的移动,可对杨氏双缝干涉特性进行观察和在线性测量分析。用MATLAB将测得的不同相位值下的干涉条纹图像进行处理,便可以精确地计算出干涉条纹的移动。利用软件,使得一条狭缝对应的SLM-LC2002的灰度值固定为0,并且从0-255改变另一条狭缝的灰度值,同时记录CCD上干涉图样的相对位移。Put the SLM into the traditional Young's double-slit interference system, by changing the gray value of the SLM12, the movement of the interference fringes can be observed on the CCD17, and the characteristics of the Young's double-slit interference can be observed and analyzed online. Using MATLAB to process the measured interference fringe images under different phase values, the movement of the interference fringes can be calculated accurately. Using software, the gray value of SLM-LC2002 corresponding to one slit is fixed at 0, and the gray value of the other slit is changed from 0-255, and the relative displacement of the interference pattern on the CCD is recorded at the same time.
采用本实施方式所述的笼式多轴光学系统安装架,直接将各光学元件固定在学元件安装孔内即可,各光学元件可沿光轴方向自由调节位置。整个光路安装调节方便,即节省时间又节省空间。With the cage-type multi-axis optical system mounting bracket described in this embodiment, it is sufficient to directly fix each optical element in the optical element mounting hole, and each optical element can freely adjust its position along the optical axis direction. The entire optical path is easy to install and adjust, which saves time and space.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410117147.9A CN103823286B (en) | 2014-03-26 | 2014-03-26 | Cage multiaxis optical system installing rack |
PCT/CN2015/074618 WO2015144013A1 (en) | 2014-03-26 | 2015-03-19 | Cage-type multi-axis optical system mount |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410117147.9A CN103823286B (en) | 2014-03-26 | 2014-03-26 | Cage multiaxis optical system installing rack |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103823286A true CN103823286A (en) | 2014-05-28 |
CN103823286B CN103823286B (en) | 2016-07-27 |
Family
ID=50758427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410117147.9A Active CN103823286B (en) | 2014-03-26 | 2014-03-26 | Cage multiaxis optical system installing rack |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103823286B (en) |
WO (1) | WO2015144013A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104360453A (en) * | 2014-12-01 | 2015-02-18 | 黑龙江大学 | Adapter for setting up light path and fixed bracket matched with adapter |
WO2015144013A1 (en) * | 2014-03-26 | 2015-10-01 | 黑龙江大学 | Cage-type multi-axis optical system mount |
CN105137559A (en) * | 2015-05-25 | 2015-12-09 | 黑龙江大学 | Optical bench capable of transversely adjusting position of upright column |
CN107340581A (en) * | 2017-09-15 | 2017-11-10 | 北京航空航天大学 | A kind of fixing device of multilayer cage system |
CN107450144A (en) * | 2017-08-22 | 2017-12-08 | 北京航空航天大学 | A kind of cage system positioning device |
CN107798975A (en) * | 2017-10-17 | 2018-03-13 | 西安中科微精光子制造科技有限公司 | A kind of cage type multifunctional Experiments of Optics equipment, system based on reflective spatial light modulator |
CN109814226A (en) * | 2019-04-03 | 2019-05-28 | 史强 | A kind of eyeglass connection system |
CN110085094A (en) * | 2019-04-16 | 2019-08-02 | 国仪量子(合肥)技术有限公司 | The teaching equipment of quantum calculation and quantum accurate measurement |
CN111399206A (en) * | 2020-04-24 | 2020-07-10 | 中国计量科学研究院 | A multi-dimensional adjustment mechanism for epi-UV optical microscope light source |
CN112540434A (en) * | 2019-09-19 | 2021-03-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | Optical pitching adjusting device |
CN113281869A (en) * | 2021-06-09 | 2021-08-20 | 嘉兴旭锐电子科技有限公司 | Composite stereo optical system mounting rack |
CN113795781A (en) * | 2019-03-06 | 2021-12-14 | 阿里·雷萨·阿夫沙里 | Optical cage system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08248331A (en) * | 1995-03-07 | 1996-09-27 | Furukawa Electric Co Ltd:The | Filter moving type optical switch |
CN201723931U (en) * | 2010-06-08 | 2011-01-26 | 浙江吉利汽车研究院有限公司 | Camera mounting rack for automobile safety tests |
CN201828702U (en) * | 2010-08-09 | 2011-05-11 | 黑龙江大学 | Optical element installation support |
CN201828701U (en) * | 2010-08-09 | 2011-05-11 | 黑龙江大学 | Porous optical element installation bracket |
CN201881386U (en) * | 2010-07-29 | 2011-06-29 | 天津市中马骏腾精密机械制造有限公司 | Linear platform with adapter plate |
CN202123800U (en) * | 2011-06-28 | 2012-01-25 | 解云高 | Automatic wiping mechanism for screen printing plates |
CN102699677A (en) * | 2012-05-16 | 2012-10-03 | 宁波拓普集团股份有限公司 | Revolving-riveting assembling tooling for automobile hydraulic mount pieces and application method of revolving-riveting assembling tooling |
CN203745704U (en) * | 2014-03-26 | 2014-07-30 | 鞍山和光科技有限公司 | Cage Multi-Axis Optical System Mounts |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3650605B2 (en) * | 2002-01-28 | 2005-05-25 | ペンタックス株式会社 | Lens holding device |
DE102009002779A1 (en) * | 2009-04-30 | 2010-11-04 | Hilti Aktiengesellschaft | Adjustable optics carrier |
JP2013161050A (en) * | 2012-02-08 | 2013-08-19 | Sigma Koki Kk | Optical element holder |
CN103823286B (en) * | 2014-03-26 | 2016-07-27 | 黑龙江大学 | Cage multiaxis optical system installing rack |
-
2014
- 2014-03-26 CN CN201410117147.9A patent/CN103823286B/en active Active
-
2015
- 2015-03-19 WO PCT/CN2015/074618 patent/WO2015144013A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08248331A (en) * | 1995-03-07 | 1996-09-27 | Furukawa Electric Co Ltd:The | Filter moving type optical switch |
CN201723931U (en) * | 2010-06-08 | 2011-01-26 | 浙江吉利汽车研究院有限公司 | Camera mounting rack for automobile safety tests |
CN201881386U (en) * | 2010-07-29 | 2011-06-29 | 天津市中马骏腾精密机械制造有限公司 | Linear platform with adapter plate |
CN201828702U (en) * | 2010-08-09 | 2011-05-11 | 黑龙江大学 | Optical element installation support |
CN201828701U (en) * | 2010-08-09 | 2011-05-11 | 黑龙江大学 | Porous optical element installation bracket |
CN202123800U (en) * | 2011-06-28 | 2012-01-25 | 解云高 | Automatic wiping mechanism for screen printing plates |
CN102699677A (en) * | 2012-05-16 | 2012-10-03 | 宁波拓普集团股份有限公司 | Revolving-riveting assembling tooling for automobile hydraulic mount pieces and application method of revolving-riveting assembling tooling |
CN203745704U (en) * | 2014-03-26 | 2014-07-30 | 鞍山和光科技有限公司 | Cage Multi-Axis Optical System Mounts |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015144013A1 (en) * | 2014-03-26 | 2015-10-01 | 黑龙江大学 | Cage-type multi-axis optical system mount |
CN104360453A (en) * | 2014-12-01 | 2015-02-18 | 黑龙江大学 | Adapter for setting up light path and fixed bracket matched with adapter |
CN105137559A (en) * | 2015-05-25 | 2015-12-09 | 黑龙江大学 | Optical bench capable of transversely adjusting position of upright column |
CN107450144A (en) * | 2017-08-22 | 2017-12-08 | 北京航空航天大学 | A kind of cage system positioning device |
CN107340581A (en) * | 2017-09-15 | 2017-11-10 | 北京航空航天大学 | A kind of fixing device of multilayer cage system |
CN107340581B (en) * | 2017-09-15 | 2019-05-31 | 北京航空航天大学 | A kind of fixation device of multilayer cage system |
CN107798975A (en) * | 2017-10-17 | 2018-03-13 | 西安中科微精光子制造科技有限公司 | A kind of cage type multifunctional Experiments of Optics equipment, system based on reflective spatial light modulator |
CN113795781A (en) * | 2019-03-06 | 2021-12-14 | 阿里·雷萨·阿夫沙里 | Optical cage system |
CN113795781B (en) * | 2019-03-06 | 2024-05-28 | 阿里·雷萨·阿夫沙里 | Optical Cage System |
CN109814226A (en) * | 2019-04-03 | 2019-05-28 | 史强 | A kind of eyeglass connection system |
CN109814226B (en) * | 2019-04-03 | 2021-11-16 | 烟台魔技纳米科技有限公司 | Lens connecting system |
CN110085094A (en) * | 2019-04-16 | 2019-08-02 | 国仪量子(合肥)技术有限公司 | The teaching equipment of quantum calculation and quantum accurate measurement |
CN112540434A (en) * | 2019-09-19 | 2021-03-23 | 中国空气动力研究与发展中心超高速空气动力研究所 | Optical pitching adjusting device |
CN111399206A (en) * | 2020-04-24 | 2020-07-10 | 中国计量科学研究院 | A multi-dimensional adjustment mechanism for epi-UV optical microscope light source |
CN113281869A (en) * | 2021-06-09 | 2021-08-20 | 嘉兴旭锐电子科技有限公司 | Composite stereo optical system mounting rack |
Also Published As
Publication number | Publication date |
---|---|
WO2015144013A1 (en) | 2015-10-01 |
CN103823286B (en) | 2016-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103823286B (en) | Cage multiaxis optical system installing rack | |
CN203745704U (en) | Cage Multi-Axis Optical System Mounts | |
CN104075652B (en) | Capacitance displacement sensor caliberating device | |
US10157692B2 (en) | Cold atom interferometry | |
WO2019040817A2 (en) | Cold atom interferometry | |
US20150042997A1 (en) | Transmittance testing apparatus | |
CN105547657A (en) | Device and method for detecting parallelism of split beams of optical lens | |
JP2017020962A (en) | Instantaneous phase-shift interferometer | |
CN106768890B (en) | Gray scale cosine distribution optical target simulator for modulation transfer function detection | |
JP6224461B2 (en) | Gauge inspection jig | |
RU167298U1 (en) | MEASURING COMPLEX FOR DETERMINING CHARACTERISTICS OF ORIENTATION SENSOR | |
US11012598B2 (en) | Apparatus using reflective elements for aligning a lens module with an image sensor | |
RU2320023C2 (en) | Eductional-demonstartion stand for studying and demonstrating light phenomena | |
KR20160116626A (en) | Mounting Apparatus for Optical Devices | |
TWI645175B (en) | Depth of field testing device | |
ES2974483T3 (en) | Remote vibration sensor based on point tracking, using an optical-inertial accelerometer, and a method to correct the vibration noise of such a sensor | |
CN102435420A (en) | Method for detecting intermediate frequency errors of optical element | |
CN102608033B (en) | Reflectance accessory of infrared spectrometer | |
CN105957430A (en) | Bicolor linearly-polarized light Brewster's law demonstration instrument | |
KR20150116616A (en) | Optical measurement system of three-dimensional display | |
US1838394A (en) | Construction of philosophical apparatus and models | |
CN106768880B (en) | A kind of liquid lens liquid/liquid interface vibration stability test system and method | |
CN103743344B (en) | Movement locus of object measures system | |
CN104034417A (en) | Field-of-view registering device and method of onboard wide field-of-view imaging spectrometer | |
RU2006129026A (en) | UNIVERSAL METROLOGICAL GEODESIC STAND |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: HEILONGJIANG UNIVERSITY Free format text: FORMER OWNER: ANSHAN HEGUANG TECHNOLOGY CO., LTD. Effective date: 20150204 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 114001 ANSHAN, LIAONING PROVINCE TO: 150001 HARBIN, HEILONGJIANG PROVINCE |
|
TA01 | Transfer of patent application right |
Effective date of registration: 20150204 Address after: 150001 Harbin, Heilongjiang, Nangang District Road, No. 74 Applicant after: Heilongjiang University Address before: 114001, No. 368, Qianshan Road, hi tech Zone, Liaoning, Anshan Applicant before: ANSHAN HEGUANG TECHNOLOGY CO., LTD. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20191220 Address after: No. 378-1, Wuyi Road, Zhangcun Town, Huancui District, Weihai City, Shandong Province Patentee after: Li Junru Address before: 150001 No. 74, Xuefu Road, Nangang District, Heilongjiang, Harbin Patentee before: Heilongjiang University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200102 Address after: 150000 10-1-3202, Fangzhou garden, No. 88-10, Qizhi Road, Xiangfang District, Harbin City, Heilongjiang Province Patentee after: Liu Shugang Address before: No. 378-1, Wuyi Road, Zhangcun Town, Huancui District, Weihai City, Shandong Province Patentee before: Li Junru |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200131 Address after: Room 901, 9 / F, building a, No. 298, Nanxu Avenue, high tech Zone, Zhenjiang City, Jiangsu Province Patentee after: Ruiguang Kaiqi (Zhenjiang) Photoelectric Technology Co., Ltd Address before: 150000 10-1-3202, Fangzhou garden, No. 88-10, Qizhi Road, Xiangfang District, Harbin City, Heilongjiang Province Patentee before: Liu Shugang |