CN103762841B - A kind of embedded single switch Buck-Boost converter - Google Patents
A kind of embedded single switch Buck-Boost converter Download PDFInfo
- Publication number
- CN103762841B CN103762841B CN201410043097.4A CN201410043097A CN103762841B CN 103762841 B CN103762841 B CN 103762841B CN 201410043097 A CN201410043097 A CN 201410043097A CN 103762841 B CN103762841 B CN 103762841B
- Authority
- CN
- China
- Prior art keywords
- diode
- inductance
- boost converter
- inductor
- power supply
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本发明提供一种嵌入式单开关Buck-Boost变换器。本发明以直流电源、开关管、第一电容、第二电感、第二二极管、第二电容和负载构成主Buck-Boost变换器;以直流电源、开关管、第一电容、第一电感、第一二极管和第三二极管构成嵌入Buck-Boost变换器。当开关管开通时,直流电源给第一电感充电,直流电源和第一电容共同给第二电感充电,同时第二电容给负载供电;当开关管关断时,第一电感给第一电容充电,同时第二电感给第二电容和负载供电。仅使用一个开关管实现一个Buck-Boost变换器嵌入到另一个Buck-Boost变换器中,增益可以达到D/(1-D)2。
The invention provides an embedded single-switch Buck-Boost converter. The present invention constitutes the main Buck-Boost converter with a DC power supply, a switch tube, a first capacitor, a second inductor, a second diode, a second capacitor and a load; , the first diode and the third diode form an embedded Buck-Boost converter. When the switch tube is turned on, the DC power supply charges the first inductor, the DC power supply and the first capacitor jointly charge the second inductor, and the second capacitor supplies power to the load; when the switch tube is turned off, the first inductor charges the first capacitor , while the second inductor supplies power to the second capacitor and the load. Only one switch tube is used to embed a Buck-Boost converter into another Buck-Boost converter, and the gain can reach D/(1-D) 2 .
Description
技术领域technical field
本发明涉及高增益非隔离型DC-DC变换器领域,具体涉及一种嵌入式单开关Buck-Boost变换器。The invention relates to the field of high-gain non-isolated DC-DC converters, in particular to an embedded single-switch Buck-Boost converter.
背景技术Background technique
近年来,高增益升压DC-DC变换器广泛用于UPS、分布式光伏发电和电池储能系统。目前,高增益升压DC-DC变换器有开关电容型、开关电感型,通过增加开关电容或电感来实现电压的升高,同时也使电路结构变得很复杂。此外,还有通过隔离变压器或耦合电感来实现高增益,然而变压器和耦合电感的漏感难以控制,会极大地增加器件的应力和能量损耗。此外,嵌入式DC-DC变换器可以实现高增益,同样受到很大的青睐,若将基本的Buck-Boost变换器嵌入到另一个Buck-Boost变换器中,可以得到结构简单的高增益级联变换器,但是如何使用一个开关管实现高增益嵌入式变换器仍是个难题。In recent years, high-gain step-up DC-DC converters are widely used in UPS, distributed photovoltaic power generation and battery energy storage systems. At present, high-gain step-up DC-DC converters have switched capacitor type and switched inductor type. The voltage increase is realized by adding switched capacitors or inductors, and the circuit structure is also complicated. In addition, high gain can be achieved through isolation transformers or coupled inductors. However, the leakage inductance of transformers and coupled inductors is difficult to control, which will greatly increase the stress and energy loss of devices. In addition, the embedded DC-DC converter can achieve high gain, which is also very popular. If the basic Buck-Boost converter is embedded in another Buck-Boost converter, a simple high-gain cascaded structure can be obtained. Converter, but how to use a switching tube to achieve high-gain embedded converter is still a difficult problem.
发明内容Contents of the invention
本发明的目的在于克服上述现有技术的不足,提出一种嵌入式单开关Buck-Boost变换器变换器。The purpose of the present invention is to overcome the shortcomings of the above-mentioned prior art, and propose an embedded single-switch Buck-Boost converter.
本发明采用的技术方案如下。The technical scheme adopted in the present invention is as follows.
一种嵌入式单开关Buck-Boost变换器变换器,以直流电源、开关管、第一电容、第二电感、第二二极管、第二电容和负载构成主Buck-Boost变换器;以直流电源、开关管、第一电容、第一电感、第一二极管和第三二极管构成嵌入Buck-Boost变换器。An embedded single-switch Buck-Boost converter, the main Buck-Boost converter is composed of a DC power supply, a switch tube, a first capacitor, a second inductor, a second diode, a second capacitor and a load; The power supply, the switch tube, the first capacitor, the first inductor, the first diode and the third diode form an embedded Buck-Boost converter.
上述的嵌入式单开关Buck-Boost变换器变换器中,直流电源的正极与开关管的漏极连接,开关管的源极与第一电容的负极、第一电感的一端连接,第一电感的另一端与第一二极管的阳极、第三二极管的阳极连接,第一二极管的阴极与第一电容的正极、第二二极管的阴极、第二电感的一端连接,第二电感的另一端与直流电源的负极、第三二极管的阴极、第二电容的正极、负载的一端连接,负载的另一端与第二二极管的阳极、第二电容的负极连接。In the above-mentioned embedded single-switch Buck-Boost converter, the positive pole of the DC power supply is connected to the drain pole of the switch tube, the source pole of the switch tube is connected to the negative pole of the first capacitor and one end of the first inductor, and the The other end is connected to the anode of the first diode and the anode of the third diode, the cathode of the first diode is connected to the anode of the first capacitor, the cathode of the second diode, and one end of the second inductor. The other end of the second inductor is connected to the negative pole of the DC power supply, the cathode of the third diode, the positive pole of the second capacitor and one end of the load, and the other end of the load is connected to the anode of the second diode and the negative pole of the second capacitor.
上述的嵌入式单开关Buck-Boost变换器变换器中,当开关管开通时,直流电源给第一电感充电,直流电源和第一电容共同给第二电感充电,同时第二电容给负载供电;当开关管关断时,第一电感给第一电容充电,同时第二电感给第二电容和负载供电。In the above-mentioned embedded single-switch Buck-Boost converter converter, when the switch tube is turned on, the DC power supply charges the first inductor, the DC power supply and the first capacitor jointly charge the second inductor, and at the same time, the second capacitor supplies power to the load; When the switch tube is turned off, the first inductor charges the first capacitor, while the second inductor supplies power to the second capacitor and the load.
上述变换器的工作模式包括第一电感L1的电流和第二电感L2的电流均工作于连续导通模式(L2-CCM模式)、第一电感L1的电流工作于连续导通模式而第二电感L2的电流工作于断续导通模式(L2-DCM模式)。The working mode of the above-mentioned converter includes that the current of the first inductor L 1 and the current of the second inductor L 2 both work in the continuous conduction mode (L 2 -CCM mode), and the current of the first inductor L 1 works in the continuous conduction mode The current of the second inductor L 2 works in a discontinuous conduction mode (L2-DCM mode).
与现有技术相比,本发明具有的优势为:仅使用一个开关管,实现一个Buck-Boost变换器嵌入到另一个Buck-Boost变换器中,极大的简化了电路结构,增益可以达到D/(1-D)2,D为开关管控制信号的占空比。Compared with the prior art, the present invention has the advantages that only one switch tube is used to realize the embedding of one Buck-Boost converter into another Buck-Boost converter, which greatly simplifies the circuit structure, and the gain can reach D /(1-D) 2 , D is the duty cycle of the control signal of the switch tube.
附图说明Description of drawings
图1是本发明的一种嵌入式单开关Buck-Boost变换器结构图;Fig. 1 is a kind of embedded single switch Buck-Boost converter structural diagram of the present invention;
图2是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-CCM模式下关键电流波形图;Fig. 2 is a key current waveform diagram of an embedded single-switch Buck-Boost converter shown in Fig. 1 working in L 2 -CCM mode;
图3是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-DCM模式下关键电流波形图;Fig. 3 is a key current waveform diagram of an embedded single-switch Buck-Boost converter shown in Fig. 1 working in L 2 -DCM mode;
图4a、图4b分别是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-CCM模式下的两种工作模态;Figure 4a and Figure 4b are two working modes of an embedded single-switch Buck-Boost converter shown in Figure 1 working in L 2 -CCM mode;
图5是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-DCM模式下的一种工作模态;Fig. 5 is a working mode of an embedded single-switch Buck-Boost converter shown in Fig. 1 working in L 2 -DCM mode;
图6是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-CCM模式下的仿真波形图;Fig. 6 is a simulation waveform diagram of an embedded single-switch Buck-Boost converter shown in Fig. 1 working in L 2 -CCM mode;
图7是图1所示的一种嵌入式单开关Buck-Boost变换器工作于L2-DCM模式下的仿真波形图。FIG. 7 is a simulation waveform diagram of an embedded single-switch Buck-Boost converter shown in FIG. 1 working in L 2 -DCM mode.
具体实施方式detailed description
为进一步阐述本发明的内容和特点,以下结合附图对本发明的具体实施方案进行具体说明,但本发明的实施不限于此。In order to further illustrate the content and characteristics of the present invention, the specific embodiments of the present invention will be described below in conjunction with the accompanying drawings, but the implementation of the present invention is not limited thereto.
参考图1,本发明的一种嵌入式单开关Buck-Boost变换器,以直流电源Vin、开关管Q、第一电容C1、第二电感L2、第二二极管D2、第二电容Co和负载R构成主Buck-Boost变换器;以直流电源Vin、开关管Q、第一电容C1、第一电感L1、第一二极管D1和第三二极管D3构成嵌入Buck-Boost变换器,其增益可以达到D/(1-D)2,D为开关管控制信号的占空比。Referring to Fig. 1, an embedded single-switch Buck-Boost converter of the present invention consists of a DC power supply V in , a switch tube Q, a first capacitor C 1 , a second inductor L 2 , a second diode D 2 , a second The two capacitors C o and the load R form the main Buck-Boost converter; the DC power supply V in , the switch tube Q, the first capacitor C 1 , the first inductor L 1 , the first diode D 1 and the third diode D 3 constitutes an embedded Buck-Boost converter, and its gain can reach D/(1-D) 2 , where D is the duty ratio of the switch tube control signal.
直流电源Vin的正极与开关管Q的漏极连接,开关管Q的源极与第一电容C1的负极、第一电感L1的一端连接,第一电感L1的另一端与第一二极管D1的阳极、第三二极管D3的阳极连接,第一二极管D1的阴极与第一电容C1的正极、第二二极管D2的阴极、第二电感L2的一端连接,第二电感L2的另一端与直流电源Vin的负极、第三二极管D3的阴极、第二电容Co的正极、负载R的一端连接,负载R的另一端与第二二极管D2的阳极、第二电容Co的负极连接。The anode of the DC power supply Vin is connected to the drain of the switching tube Q, the source of the switching tube Q is connected to the negative pole of the first capacitor C1 and one end of the first inductor L1, and the other end of the first inductor L1 is connected to the first The anode of the diode D1 and the anode of the third diode D3 are connected, the cathode of the first diode D1 is connected to the anode of the first capacitor C1 , the cathode of the second diode D2, and the second inductor One end of L2 is connected, the other end of the second inductance L2 is connected to the negative pole of the DC power supply Vin , the cathode of the third diode D3 , the positive pole of the second capacitor C o , and one end of the load R, and the other end of the load R One end is connected with the anode of the second diode D2 and the cathode of the second capacitor C o .
下面以图1为主电路结构,结合图2~图5叙述本发明的具体工作原理。The main circuit structure of Fig. 1 is used below, and the specific working principle of the present invention is described in conjunction with Fig. 2 to Fig. 5 .
首先考虑变换器工作在L2-CCM模式,关键电流波形图如图2所示:First consider that the converter works in L 2 -CCM mode, the key current waveform diagram is shown in Figure 2:
图2中t0-t1阶段,开关管Q开通,第一二极管D1和第二二极管D2截止,第三二极管D3导通,直流电源Vin经开关管Q和第三二极管D3给第一电感L1充电,第一电感L1的电流iL1线性上升;直流电源Vin和第一电容C1共同经开关管Q给第二电感L2充电,第二电感L2的电流iL2线性上升,同时第二电容Co给负载R供电,电流路径如图4a所示。In the stage t 0 -t 1 in Figure 2, the switch tube Q is turned on, the first diode D 1 and the second diode D 2 are cut off, the third diode D 3 is turned on, and the DC power supply V in is passed through the switch tube Q and the third diode D3 to charge the first inductor L1, the current i L1 of the first inductor L1 rises linearly; the DC power supply V in and the first capacitor C1 jointly charge the second inductor L2 through the switch tube Q , the current i L2 of the second inductor L 2 rises linearly, and at the same time, the second capacitor C o supplies power to the load R, and the current path is shown in Figure 4a.
图2中t1-t2阶段,开关管Q关断,第一电感L1通过第一二极管D1续流,第二电感L2通过第二二极管D2续流,第三二极管D3截止,第一电感L1经第一二极管D1给第一电容C1充电,第一电感L1的电流iL1线性下降,第二电感L2经第二二极管D2同时给第二电容Co和负载R供电,第二电感L2的电流iL2线性下降,电流路径如图4b所示。In the stage t 1 -t 2 in Figure 2, the switch tube Q is turned off, the first inductor L 1 freewheels through the first diode D 1 , the second inductor L 2 freewheels through the second diode D 2 , and the third inductor L 2 freewheels through the second diode D 2 . The diode D3 is cut off, the first inductor L1 charges the first capacitor C1 through the first diode D1, the current i L1 of the first inductor L1 decreases linearly, and the second inductor L2 passes through the second diode The tube D 2 supplies power to the second capacitor C o and the load R at the same time, the current i L2 of the second inductor L 2 decreases linearly, and the current path is shown in Fig. 4b.
再考虑变换器工作在L2-DCM模式,关键电流波形图如图3所示:Considering that the converter works in L 2 -DCM mode, the key current waveform diagram is shown in Figure 3:
图2和图3的t0-t2阶段,变换器的工作过程完全相同。t=t3,第二电感L2的电流iL2下降为零。In the stages t 0 -t 2 in Fig. 2 and Fig. 3, the working process of the converter is exactly the same. t=t 3 , the current i L2 of the second inductor L 2 drops to zero.
图3的t2-t3阶段,开关管Q继续关断,第二二极管D2和第三二极管D3截止,第一电感L1经第一二极管D1继续给第一电容C1充电,第一电感L1的电流iL1继续线性下降,同时第二电容Co给负载R供电,电流路径如图5所示。In the t2 - t3 stage of Fig. 3, the switching tube Q continues to be turned off, the second diode D2 and the third diode D3 are cut off, and the first inductance L1 continues to provide power to the first inductor L1 through the first diode D1. A capacitor C 1 is charged, the current i L1 of the first inductor L 1 continues to decrease linearly, and at the same time, the second capacitor C o supplies power to the load R, and the current path is shown in FIG. 5 .
图6示出变换器工作于L2-CCM模式下的仿真波形图,从上到下依次是开关管的门极控制信号vgQ、第一电感的电流iL1、第二电感的电流iL2、流过第一电容的电流iC1、流过第二电容的电流iC2,从图6中可见第一电感的电流iL1和第二电感的电流iL2均连续。Figure 6 shows the simulation waveform diagram of the converter working in L 2 -CCM mode, from top to bottom are the gate control signal v gQ of the switch, the current i L1 of the first inductor, and the current i L2 of the second inductor , the current i C1 flowing through the first capacitor, and the current i C2 flowing through the second capacitor. It can be seen from FIG. 6 that the current i L1 of the first inductor and the current i L2 of the second inductor are continuous.
图7示出变换器工作于L2-DCM模式下的仿真波形图,从上到下依次是开关管的门极控制信号vgQ、第一电感的电流iL1、第二电感的电流iLx、流过第一电容的电流iC1、流过第二电容的电流iC2,从图6中可见第一电感的电流iL1连续,而第二电感的电流iL2断续。Figure 7 shows the simulation waveform diagram of the converter working in L 2 -DCM mode, from top to bottom are the gate control signal v gQ of the switch, the current i L1 of the first inductor, and the current i Lx of the second inductor , the current i C1 flowing through the first capacitor, and the current i C2 flowing through the second capacitor. It can be seen from Fig. 6 that the current i L1 of the first inductor is continuous, while the current i L2 of the second inductor is intermittent.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410043097.4A CN103762841B (en) | 2014-01-28 | 2014-01-28 | A kind of embedded single switch Buck-Boost converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410043097.4A CN103762841B (en) | 2014-01-28 | 2014-01-28 | A kind of embedded single switch Buck-Boost converter |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103762841A CN103762841A (en) | 2014-04-30 |
CN103762841B true CN103762841B (en) | 2016-04-13 |
Family
ID=50530026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410043097.4A Active CN103762841B (en) | 2014-01-28 | 2014-01-28 | A kind of embedded single switch Buck-Boost converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103762841B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109617399B (en) * | 2018-12-17 | 2020-01-10 | 北京交通大学 | Sepic type high-gain direct current converter based on clamping boosting unit |
CN109600040A (en) * | 2018-12-17 | 2019-04-09 | 北京交通大学 | The Zeta type high step-up ratio DC converter of photovoltaic cell capable of generating power |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1950995A (en) * | 2004-04-30 | 2007-04-18 | 美蓓亚株式会社 | DC/DC converter |
CN103490622A (en) * | 2013-09-16 | 2014-01-01 | 华南理工大学 | Single-switch high-gain boost converter |
CN103490621A (en) * | 2013-09-16 | 2014-01-01 | 华南理工大学 | Wide-gain buck-boost converter |
CN203722473U (en) * | 2014-01-28 | 2014-07-16 | 华南理工大学 | Embedded single-switch Buck-Boost converter |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8107268B2 (en) * | 2009-09-09 | 2012-01-31 | City University Of Hong Kong | Passive lossless snubber cell for a power converter |
US9190899B2 (en) * | 2011-09-28 | 2015-11-17 | General Electric Company | Power factor correction (PFC) circuit configured to control high pulse load current and inrush current |
-
2014
- 2014-01-28 CN CN201410043097.4A patent/CN103762841B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1950995A (en) * | 2004-04-30 | 2007-04-18 | 美蓓亚株式会社 | DC/DC converter |
CN103490622A (en) * | 2013-09-16 | 2014-01-01 | 华南理工大学 | Single-switch high-gain boost converter |
CN103490621A (en) * | 2013-09-16 | 2014-01-01 | 华南理工大学 | Wide-gain buck-boost converter |
CN203722473U (en) * | 2014-01-28 | 2014-07-16 | 华南理工大学 | Embedded single-switch Buck-Boost converter |
Also Published As
Publication number | Publication date |
---|---|
CN103762841A (en) | 2014-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103490628B (en) | A kind of single-phase high-gain boost converter | |
CN105939112B (en) | A kind of quasi- boost switching DC-DC converter of high-gain | |
CN105939108B (en) | Switch inductance type quasi-switch boosting DC-DC converter | |
CN203859682U (en) | Low-input current ripple single-switch high-gain converter | |
CN105939107B (en) | Mixed quasi-switch boosting DC-DC converter | |
CN104218801A (en) | Non-isolated high-gain DC/DC convertor | |
CN107453603A (en) | A kind of dual input Sepic converters | |
CN103337973A (en) | BOOST-BUCK-BOOST bridgeless convertor | |
CN103490615B (en) | A wide gain zeta converter | |
CN105978322B (en) | Switch capacitor type high-gain quasi Z source DC-DC converter | |
CN103490621B (en) | A kind of wide gain buck-boost converter | |
CN103762841B (en) | A kind of embedded single switch Buck-Boost converter | |
CN205847086U (en) | A Switched Capacitor High-Gain Quasi-Z Source DC-DC Converter | |
CN203722473U (en) | Embedded single-switch Buck-Boost converter | |
CN205847090U (en) | A hybrid quasi-switching step-up DC-DC converter | |
CN205847091U (en) | A Switched Inductance Quasi-Switch Boost DC-DC Converter | |
CN103944399A (en) | Low-input-current-ripple single-switch high-gain converter | |
CN103633835B (en) | The DC-DC converter of High-efficiency high-gain low-voltage current stress | |
CN203590024U (en) | Wide-gain buck-boost converter | |
CN106972751A (en) | A kind of two-tube Z sources DC voltage converter | |
CN103633833B (en) | Single-switching-tube converter Boost-Buck-Boost converter | |
CN103762852B (en) | High-efficiency high-gain DC-DC converter with double coupling inductors | |
CN203691247U (en) | High-efficiency high-gain DC-DC converter with double coupling inductors | |
CN103490627B (en) | A kind of wide gain cuk converter | |
CN103633838B (en) | With the High-efficiency high-gain DC-DC converter of coupling inductance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |