CN103761729B - 一种基于邻域灰度相似性的钢球磨痕检测方法 - Google Patents

一种基于邻域灰度相似性的钢球磨痕检测方法 Download PDF

Info

Publication number
CN103761729B
CN103761729B CN201310752277.5A CN201310752277A CN103761729B CN 103761729 B CN103761729 B CN 103761729B CN 201310752277 A CN201310752277 A CN 201310752277A CN 103761729 B CN103761729 B CN 103761729B
Authority
CN
China
Prior art keywords
neighborhood
gray
polishing scratch
pixel
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201310752277.5A
Other languages
English (en)
Other versions
CN103761729A (zh
Inventor
肖梅
彭朝林
马登辉
韩光
刘龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201310752277.5A priority Critical patent/CN103761729B/zh
Publication of CN103761729A publication Critical patent/CN103761729A/zh
Application granted granted Critical
Publication of CN103761729B publication Critical patent/CN103761729B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种基于邻域灰度相似性的钢球磨痕检测方法,具体包括如下步骤:步骤1:采集钢球的磨痕图像并读入计算机;步骤2:若采集的磨痕图像为彩色图像,转入步骤3;若采集的磨痕图像采集的是灰度图像,则转入步骤4;步骤3:将彩色图像F灰度化;步骤4:计算灰度磨痕图像f的邻域灰度均值图M。步骤5:计算像素的邻域灰度偏差值;步骤6:邻域灰度偏差图S的二值化。步骤7:对邻域灰度相似图L进行去零星操作;步骤8:对灰度相似磨痕图D填补空洞操作;步骤9:形态学开运算。该方法可快速检出钢球的磨痕区,进而可以直接计算出磨痕直径。

Description

一种基于邻域灰度相似性的钢球磨痕检测方法
技术领域
[0001] 本发明涉及一种四球机中钢球磨痕的检测方法,尤其涉及一种基于邻域灰度相似 性的钢球磨痕检测方法。
背景技术
[0002] 利用四球法在四球机上进行极压试验和摩擦试验能够准确判定润滑剂的极压性 能和抗磨损性能。该方法通常是将试验下方的三个标准钢球固定作为承重部件,并将润滑 剂填充在承重球固定杯内、上方的标准钢球通过传动装置施加负荷,在设定的温度、转速和 负荷下进行运转,通过钢球的运转状态来确定润滑剂的润滑性、极压性和抗磨损性等性能。 润滑剂性能的衡量参数有:最大无卡咬负荷PB、烧结负荷ro和磨痕直径d,当测定最大无卡 咬负荷PB和烧结负荷PD时,需要准确测定磨痕直径d。此外,磨痕直径的大小也决定了润滑 性能的好坏,磨痕直径越小,说明润滑剂的抗磨损能力、润滑性越好。可见,快速、准确的测 量磨痕直径对于衡量润滑剂的极压和抗磨性能极其重要。但是,目前测量磨痕的方法通常 存在测量误差大、费时费力等问题。
发明内容
[0003] 针对四球机上开展的极压和摩擦等试验均要测定磨痕直径,本发明的目的在于, 提出了一种基于邻域灰度相似性的钢球磨痕检测方法,该方法通过邻域灰度相似性检测可 能的磨痕区域,并运用数学形态学方法对磨痕区域填空洞、去除零星和平滑等处理,本发明 的方法可快速检出钢球的磨痕区,进而可以直接计算出磨痕直径。
[0004] 为了达到上述目的,本发明采用如下的技术解决方案:
[0005] -种基于邻域灰度相似性的钢球磨痕检测方法,具体包括如下步骤:
[0006] 步骤1:采集钢球的磨痕图像并读入计算机;
[0007] 步骤2:若采集的磨痕图像为彩色磨痕图,转入步骤3;若采集的磨痕图像采集的是 灰度磨痕图,则转入步骤4;
[0008] 步骤3:将彩色图像F灰度化;
[0009] 步骤4:计算灰度磨痕图f的邻域灰度均值图M。
[0010]步骤5:计算像素的邻域灰度偏差值,得到邻域灰度偏差图S;
[0011] 步骤6:邻域灰度偏差图S的二值化,得到邻域灰度相似图L。
[0012] 步骤7:对邻域灰度相似图L进行去零星操作,得到灰度相似磨痕图D;
[0013] 步骤8:对灰度相似磨痕图D填补空洞操作,得到磨斑初图V;
[0014]步骤9:形态学开运算。
[0015] 进一步的,所述步骤3的将彩色图像F灰度化是采用式1进行:
[0016] f(p)=0.3 • R(p)+0.59 • G(p)+0.11 • B(p)(式 1)
[0017] 其中,f为灰度磨痕图,f (p)为像素p的灰度值;(R(p),G(p),B(p))分别为像素p的 红色R(Red,R)分量值、绿色G(Green,G)分量值和蓝色B(Blue,B)分量值。
[0018] 进一步的,所述步骤4的计算灰度磨痕图f的邻域灰度均值图M的具体操作如下:
[0019] 灰度图像f中任一像素 p的邻域灰度均值M(p)的计算如下:
[0020]
Figure CN103761729BD00051
.(式 2)
[0021] 其中,M(p)为像素p的邻域灰度均值;W(p)表示以像素p为中心的邻域,W(p)取7X7 ~21 X 21的正方形邻域;q为邻域W(p)内的任一像素;n为邻域W(p)内的像素数目。
[0022] 进一步的,所述步骤5的计算像素的邻域灰度偏差值的操作:
[0023] 像素p的邻域灰度偏差值S(p)利用式3计算:
[0024]
Figure CN103761729BD00052
(式 3)。
[0025] 进一步的,所述步骤6的邻域灰度偏差图S的二值化具体是利用式4进行计算:
[0026]
Figure CN103761729BD00053
(式 4)
[0027] 其中,其中为,T为阈值,通常取5~15;L(p)为像素 p的邻域灰度相似值。
[0028]进一步的,所述步骤7具体操作如下:
[0029] 首先,采用4-连通标记邻域灰度相似图L中L(p) = l的连通区域;其次,统计各连通 区域的像素数;最后,提取像素数最多的连通区域作为灰度相似磨痕图D。
[0030] 进一步的,所述步骤8具体是将灰度相似磨痕图D中被白色包围的黑色空洞的像素 值置1。
[0031] 进一步的,所述步骤9具体是选用圆形结构算子对磨斑初图V进行式5所示的形态 学开运算,得到磨痕图Y:
[0032]
Figure CN103761729BD00054
(式 5)
[0033]其中,Se为圆形结构元素,常取直径为40~100的圆形结构算子;•为开运算符号; ©表示腐蚀运算;表示膨胀运算。
[0034]本发明的基于邻域灰度相似性的磨痕检测方法的优点如下:
[0035] (1)高效。本实施例在Intel cpu2.4GHz,1GB的内存的计算机中,利用Matlab软件 进行仿真,对采集到的768 X 1024的钢球磨痕图像进行磨痕区域检测,所用的时间为0.28S, 可见处理速度快。
[0036] (2)测定精度高,鲁棒性好。传统显微镜法的测量精度要求为0.01mm,以计算机采 集的图像大小768X1024为例,1个像素点测量精度为0.001046mm,测量工具的测量精度大 为提高。本技术方案通过磨痕的邻域的灰度相似度信息检测出磨痕区域,其测量结果精度 高,这也充分说明本发明的技术方案是有效的。
[0037] (3)便于作为永久资料长期保存。实际中常常需要保存钢球的试验结果,但随着时 间的增长,钢球的磨斑容易氧化、生锈,不易保存。而本发明中钢球的磨痕图像能够作为永 久资料长期保存。
[0038] (4)适用于新型润滑剂的研制工作中。近年来科研院校均大力开展润滑剂的研制 工作,该方法也可用于测定新型润滑剂抗磨性能。
[0039] (5)应用广泛。本方法的结果可用于作为后续处理,如:直径测定、磨痕特征自动识 别等处理中。
附图说明
[0040] 图1是本发明的基于邻域灰度相似性的钢球磨痕检测方法的流程图。
[0041] 图2是本发明的实施例中扫描电镜采集的钢球磨痕的磨痕图F。
[0042] 图3是本发明的实施例中步骤S3得到的灰度磨痕图f。
[0043]图4是本发明的实施例中步骤S6得到的邻域灰度相似图L。
[0044]图5是本发明的实施例中步骤S7得到的灰度相似磨痕图D。
[0045]图6是本发明的实施例中步骤S8得到的磨斑初图V。
[0046] 图7是本发明的实施例中步骤S9得到的磨痕图Y。
[0047] 图8是本发明的实施例中原图与磨痕图Y对应的磨痕图。
[0048] 以下结合附图和具体实施方式对本发明作进一步解释说明。
具体实施方式
[0049] 本发明的基于邻域灰度相似性的磨痕检测方法,具体包括如下步骤:
[0050] 步骤S1:将四球摩擦试验或极压试验结束后的钢球取出,利用电子扫描面镜采集 钢球的磨痕图像,将磨痕图像读入计算机系统;
[0051 ]步骤S2:采集的磨痕图像为768X1024大小的RGB彩色模型的彩色磨痕图F;
[0052]步骤S3:将彩色图像F灰度化。(R(p),G(p),B(p))分别表示像素p的红色R(Red,R) 分量值、绿色G(Green,G)分量值和蓝色B(Blue,B)分量值;彩色图像F的灰度化如式1所示:
[0053] f(p)=0.3 • R(p)+0.59 • G(p)+0.11 • B(p)(式 1)
[0054] 其中,f为灰度磨痕图,f(p)为像素 p的灰度值。
[0055] 步骤S4:计算灰度图像f的邻域灰度均值图M。灰度图像f中任一像素p的邻域灰度 均值M(p)的计算如下:
[0056]
Figure CN103761729BD00061
(式 2)
[0057] 其中,M(p)为像素p的邻域灰度均值,W(p)表示以像素p为中心的邻域,本实施例中 邻域W(p)取11 XII的正方形邻域;q为邻域W(p)内的任一像素;n为邻域W(p)内的像素数目, 本实施例中n = 121。
[0058]步骤S5:计算像素的邻域灰度偏差值,得到邻域灰度偏差图S。通过对邻域灰度的 偏差来检测邻域的灰度差异,像素P的邻域灰度偏差值S(p)利用式3计算:
[0059]
Figure CN103761729BD00062
C式 3)
[0060] 步骤S6:对邻域灰度偏差图S二值化,得到邻域灰度相似图L。邻域灰度偏差图S中, 邻域灰度偏差越小的区域,其区域灰度相似性越高;反之则相反。邻域灰度相似图L中,像素 值为〇的区域表示以该像素为中心的邻域灰度相似性高,像素值为1的区域表示以该像素为 中心的邻域灰度相似性低。
[0061 ]
Figure CN103761729BD00063
(式 4)
[0062]其中,L(p)为像素 p的邻域灰度相似值,T为阈值,实施例中取T = 8。
[0063]步骤S7:去零星操作。
[0064] 将邻域灰度相似图L进行去零星操作,得到灰度相似磨痕图D。去零星操作具体包 括:首先,采用4-连通标记邻域灰度相似图L中L(p) = l的连通区域;其次,统计各连通区域 的像素数;最后,提取像素数最多的连通区域作为灰度相似磨痕图D。
[0065] 步骤S8:填补空洞操作,得到磨斑初图V。
[0066] 在灰度相似磨痕图D中存在的被白色(灰度相似磨痕图D中D(p) = l的区域)包围的 黑色(灰度相似磨痕图D中D(p)=0的区域)空洞,需要进行填补空洞操作。具体做法是:直接 将灰度相似磨痕图D中被白色包围的黑色空洞的像素值直接置1,得到磨斑初图V。
[0067] 步骤S9:形态学开运算。
[0068] 由于磨肩、噪声等影响,磨斑初图V中的磨痕区域并非是圆形,因而采用形态学开 运算消除磨斑初图V中的小物体和平滑V的边界,并确保不明显改变磨斑初图V的面积。形态 学开运算是先腐蚀后膨胀的过程,由于磨斑通常表现为圆形,因而常选用圆形结构算子对 磨斑初图V进行式5所示的形态学开运算,得到磨痕图Y。
[0069]
Figure CN103761729BD00071
(式 5 )
[0070] 其中,Se为圆形结构元素,实施例中取直径为60的圆形结构算子;•为开运算符 号;©表示腐蚀运算;©表示膨胀运算。
[0071] 步骤S10:结束。
[0072] 为了说明本发明的有益效果,发明人对运行时间和测定精度两方面进行阐述:
[0073] (1)运行时间。本实施例在Intel cpu2.4GHz,lGB的内存的计算机中,利用Matlab 软件进行仿真,对采集到的768X 1024的钢球磨痕图像进行磨痕区域检测,所用的时间为 0.28S,可见处理速度快。
[0074] (2)测定精度。传统显微镜法的测量精度要求为0.01mm,以计算机采集的图像大小 768 X 1024为例,1个像素点测量精度为0.001046mm,测量工具的测量精度大为提高。本发明 的方法通过磨痕的邻域的灰度相似度信息检测出磨痕区域,其测量结果精度高,这也充分 说明本发明的技术方案是有效的。
[0075]本发明未涉及部分均与现有技术相同或可采用现有技术加以改造,本发明并不限 于上述方式。在不背离本发明精神及其实质的情况下,熟悉本领域的技术人员可根据本发 明所作出各种相应的改变和变形,但这些相应的改变和变形都应属于本发明所附的权利保 护范围。

Claims (3)

1. 一种基于邻域灰度相似性的钢球磨痕检测方法,其特征在于,具体包括如下步骤: 步骤1:采集钢球的磨痕图像并读入计算机; 步骤2:若采集的磨痕图像为彩色磨痕图,转入步骤3;若采集的磨痕图像采集的是灰度 磨痕图,则转入步骤4; 步骤3:将彩色图像F灰度化; 步骤4:计算灰度磨痕图f的邻域灰度均值图M; 步骤5:计算像素的邻域灰度偏差值,得到邻域灰度偏差图S; 步骤6:邻域灰度偏差图S的二值化,得到邻域灰度相似图L; 步骤7:对邻域灰度相似图L进行去零星操作,得到灰度相似磨痕图D; 步骤8:对灰度相似磨痕图D填补空洞操作,得到磨斑初图V; 步骤9:形态学开运算; 所述步骤4的计算磨痕图像f的邻域灰度均值图M的具体操作如下: 灰度图像f中任一像素 D的邻域灰度均值M(p)的计算如下:
Figure CN103761729BC00021
(式2) 其中,M(p)为像素 p的邻域灰度均值;W(p)表示以像素 p为中心的邻域,W(p)取7 X 7~21 X 21的正方形邻域;q为邻域W(p)内的任一像素;η为邻域W(p)内的像素数目;
Figure CN103761729BC00022
太来聰R的部WiF辟偏笔-值化具体是利用式4进行计算: (式4) 其中,其中为,T为阈值,通常取5~15;L(p)为像素 ρ的邻域灰度相似值; 所述步骤7具体操作如下: 首先,采用4-连通标记邻域灰度相似图L中L(p) = l的连通区域;其次,统计各连通区域 的像素数;最后,提取像素数最多的连通区域作为灰度相似磨痕图D; 所述步骤9具体是选用圆形结构算子对磨斑初图V进行式5所示的形态学开运算,得到 磨疽图Y.
Figure CN103761729BC00023
(式5)其中,Se为圆形结构元素, 常取直径为40~100的圆形结构算子;•为开运算符号,Θ表示腐蚀运算;®表示膨胀运算; 所述步骤5的计算像素的邻域灰度偏差值的操作: 像素 P的邻域灰度偏差值S(p)利用式3计算:
Figure CN103761729BC00024
(式 3)。
2. 如权利要求1所述的基于邻域灰度相似性的钢球磨痕检测方法,其特征在于,所述步 骤3的将彩色图像F灰度化是采用式1进行: f(p)=0.3 · R(p)+0.59 · G(p)+0.11 · B(p) (式I) 其中,f为灰度磨痕图,f (P)为像素 P的灰度值;(R(P),G(p),B(p))分别为像素 p的红色R (Red,R)分量值、绿色G(Green,G)分量值和蓝色B(Blue,B)分量值。
3. 如权利要求1所述的基于邻域灰度相似性的钢球磨痕检测方法,其特征在于,所述步 骤8具体是将灰度相似磨痕图D中被白色包围的黑色空洞的像素值置1。
CN201310752277.5A 2013-12-31 2013-12-31 一种基于邻域灰度相似性的钢球磨痕检测方法 Expired - Fee Related CN103761729B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310752277.5A CN103761729B (zh) 2013-12-31 2013-12-31 一种基于邻域灰度相似性的钢球磨痕检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310752277.5A CN103761729B (zh) 2013-12-31 2013-12-31 一种基于邻域灰度相似性的钢球磨痕检测方法

Publications (2)

Publication Number Publication Date
CN103761729A CN103761729A (zh) 2014-04-30
CN103761729B true CN103761729B (zh) 2017-02-01

Family

ID=50528962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310752277.5A Expired - Fee Related CN103761729B (zh) 2013-12-31 2013-12-31 一种基于邻域灰度相似性的钢球磨痕检测方法

Country Status (1)

Country Link
CN (1) CN103761729B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106097368B (zh) * 2016-06-22 2019-05-31 国家林业局北京林业机械研究所 一种单板裂缝的识别方法
CN106770296B (zh) * 2017-01-11 2019-10-29 长安大学 一种四球摩擦试验磨斑图像磨痕方向角自动测定方法
CN111412864A (zh) * 2020-02-26 2020-07-14 长安大学 一种基于磨痕灰度相似性的磨痕角自动检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3078685B2 (ja) * 1993-08-06 2000-08-21 松下電器産業株式会社 位置認識方法
CN101706959A (zh) * 2009-10-21 2010-05-12 苏州有色金属研究院有限公司 基于二维信息熵金属板带表面缺陷提取方法
CN102607977B (zh) * 2012-03-21 2014-01-29 西安交通大学 基于数字图像处理的磨损原位测量装置及方法
CN103150735A (zh) * 2013-03-26 2013-06-12 山东大学 一种基于灰度差值平均的图像边缘检测方法

Also Published As

Publication number Publication date
CN103761729A (zh) 2014-04-30

Similar Documents

Publication Publication Date Title
CN103499585B (zh) 基于机器视觉的非连续性锂电池薄膜缺陷检测方法及其装置
CN103761729B (zh) 一种基于邻域灰度相似性的钢球磨痕检测方法
CN102136061B (zh) 一种矩形石英晶片缺陷自动检测分类识别方法
CN109141232B (zh) 一种基于机器视觉的盘类铸件在线检测方法
CN106529559A (zh) 一种指针式圆形多仪表盘实时读数识别方法
CN106408555A (zh) 一种基于图像视觉的轴承表面瑕疵检测方法
CN103279765A (zh) 基于图像匹配的钢丝绳表面损伤检测方法
CN103868924A (zh) 一种基于视觉的轴承外观缺陷检测算法
CN104966300A (zh) 轴承滚子图像检测系统及方法及图像检测装置
CN103345632A (zh) 一种电池尾端表面划痕缺陷检测方法
CN106157323A (zh) 一种动态分块阈值和块搜索结合的绝缘子分割提取方法
CN102441581A (zh) 基于机器视觉的型钢断面尺寸在线检测的装置及方法
CN106157279A (zh) 基于形态学分割的眼底图像病变检测方法
CN104036516A (zh) 基于对称性分析的摄像机标定棋盘图像角点检测方法
CN110288561A (zh) 基于频率域滤波增强的耐火砖表面划痕识别方法
CN102393902A (zh) 基于h_s二维直方图和区域颜色匹配的车辆颜色检测方法
Deng et al. Defect detection of bearing surfaces based on machine vision technique
CN106546185A (zh) 一种基于机器视觉检测的轮廓质量检测方法
CN104112123A (zh) 一种用于子弹表观缺陷检测的aoi系统的缺陷特征提取与识别方法
CN106841575B (zh) 一种四球摩擦试验磨斑图像磨痕方向自动定位方法
CN103712565B (zh) 一种基于钢球磨痕梯度的磨斑直径测量方法
CN101696876B (zh) 一种vcm磁钢的视觉检测方法
CN106446913A (zh) 一种多表盘指针式仪表的指针位置提取方法
CN110097062B (zh) 一种利用指针中心点的指针识别方法
CN103063674A (zh) 一种铜块的铜品位检测方法及其检测系统

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170201

Termination date: 20171231

CF01 Termination of patent right due to non-payment of annual fee