CN103752142A - Solar aided carbon dioxide trapping integrated system - Google Patents
Solar aided carbon dioxide trapping integrated system Download PDFInfo
- Publication number
- CN103752142A CN103752142A CN201410037906.0A CN201410037906A CN103752142A CN 103752142 A CN103752142 A CN 103752142A CN 201410037906 A CN201410037906 A CN 201410037906A CN 103752142 A CN103752142 A CN 103752142A
- Authority
- CN
- China
- Prior art keywords
- reboiler
- subsystem
- solar energy
- outlet
- solar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/44—Heat exchange systems
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/133—Renewable energy sources, e.g. sunlight
Landscapes
- Treating Waste Gases (AREA)
Abstract
本发明公开了一种太阳能辅助二氧化碳捕集的集成系统,主要由发电子系统、二氧化碳捕集子系统以及太阳能集热子系统三部分组成。各子系统之间主要通过锅炉给水加热器、再沸器及烟气预处理装置进行连接,构成整个集成系统。对于太阳能集热子系统的热量输出端通过采用不同的连接方式,将太阳能集热与发电子系统及二氧化碳捕集子系统之间相关部件的能量需求品位的高低进行了合理的分配及集成,实现了能量的梯级利用,可大幅降低从电厂汽轮机中抽蒸汽的能耗,在维持电厂稳定性的同时实现可再生能源利用与电厂二氧化碳减排的双重功效,有力推动我国太阳能与烟气捕集集成技术的大规模应用。
The invention discloses an integrated system for solar energy-assisted carbon dioxide capture, which is mainly composed of three parts: a power generation subsystem, a carbon dioxide capture subsystem and a solar heat collection subsystem. The subsystems are mainly connected through the boiler feed water heater, reboiler and flue gas pretreatment device to form the whole integrated system. For the heat output end of the solar heat collection subsystem, by adopting different connection methods, the energy demand grades of the related components between the solar heat collection and power generation sub-system and the carbon dioxide capture subsystem are reasonably distributed and integrated to achieve The cascade utilization of energy can greatly reduce the energy consumption of extracting steam from the steam turbine in the power plant, and realize the dual effects of renewable energy utilization and carbon dioxide emission reduction in the power plant while maintaining the stability of the power plant, and effectively promote the integration of solar energy and flue gas capture in my country Large-scale application of technology.
Description
技术领域technical field
本发明涉及一种中低温太阳能辅助二氧化碳捕集集成技术,具体涉及中低温太阳能集热系统与烟气中二氧化碳捕集系统的集成,利用太阳能提供二氧化碳捕集系统的能量补偿,在实现太阳能梯级利用的同时,有效地降低电厂因抽蒸汽所带来的效率下降。The invention relates to a medium and low temperature solar energy assisted carbon dioxide capture integration technology, specifically relates to the integration of a medium and low temperature solar heat collection system and a carbon dioxide capture system in flue gas, using solar energy to provide energy compensation for the carbon dioxide capture system, and realizing cascaded utilization of solar energy At the same time, it effectively reduces the efficiency drop of the power plant due to steam extraction.
背景技术Background technique
在目前的化学吸收法捕集系统中,溶液再生时需要消耗大量电厂蒸汽,引起电厂效率的下降,增加了捕集成本,成为制约CO2捕集技术大规模应用的主要因素。In the current chemical absorption capture system, a large amount of power plant steam is consumed during solution regeneration, which causes a decrease in power plant efficiency and increases the cost of capture, which has become the main factor restricting the large-scale application of CO2 capture technology.
针对既有电厂方面烟气中CO2的捕集,燃烧后碳捕集这一技术方案被广泛认可,而其中乙醇胺(MEA)法是其中较为成熟的商业化方法,具有大规模应用的潜力。然而,解吸塔内的再生过程往往需要温度达到100-120℃的热能,同时,再沸器的耗能达到3-4GJ/吨CO2。常规电站通常采用燃气轮机抽汽作为热源,来满足再生过程的能耗需求,从而造成发电效率下降15-30%。因此,工艺流程对应的耗能(再沸器所需热能、贫富液循环泵所需电能等)和随之造成的高捕集成本,成为MEA法推广的最大阻力因素。For the capture of CO 2 in the flue gas of existing power plants, the technical solution of post-combustion carbon capture is widely recognized, and the ethanolamine (MEA) method is a relatively mature commercial method among them, which has the potential for large-scale application. However, the regeneration process in the desorption tower often requires heat energy at a temperature of 100-120°C, and at the same time, the energy consumption of the reboiler reaches 3-4GJ/ton CO 2 . Conventional power plants usually use gas turbine extraction as a heat source to meet the energy consumption requirements of the regeneration process, resulting in a 15-30% drop in power generation efficiency. Therefore, the energy consumption corresponding to the process (the heat energy required by the reboiler, the electric energy required by the lean-rich liquid circulation pump, etc.) and the resulting high capture cost have become the biggest resistance factors to the promotion of the MEA method.
太阳能作为一种可再生的清洁能源,其开发利用潜力十分巨大。将太阳能与现有的二氧化碳捕集系统结合,利用太阳能集热产生捕集系统解吸所需温度的热能进行解吸,可大幅降低从电厂汽轮机中抽蒸汽的能耗,在维持电厂稳定性的同时实现可再生能源与电厂二氧化碳减排的双重功效,有力推动我国太阳能与烟气捕集集成技术的大规模应用。As a renewable clean energy, solar energy has great potential for development and utilization. Combining solar energy with the existing carbon dioxide capture system, using solar energy to generate heat at the temperature required for desorption of the capture system for desorption, can greatly reduce the energy consumption of steam extraction from the steam turbine in the power plant, and achieve The dual effects of renewable energy and carbon dioxide emission reduction in power plants have strongly promoted the large-scale application of integrated solar energy and flue gas capture technology in my country.
发明内容Contents of the invention
针对目前捕集系统所带来的高能耗问题,本发明提出一种太阳能辅助二氧化碳捕集集成系统,根据不同的的集成连接关系可以充分利用中低温太阳能集热来补偿传统捕集系统的能耗需求,在实现太阳能梯级利用的同时,有效地降低电厂因抽蒸汽所带来的效率下降。Aiming at the high energy consumption problem caused by the current capture system, the present invention proposes a solar-assisted carbon dioxide capture integrated system, which can make full use of medium and low temperature solar heat collection to compensate the energy consumption of the traditional capture system according to different integration connection relationships Demand, while realizing cascade utilization of solar energy, effectively reduce the efficiency drop caused by steam extraction in power plants.
为了有效地解决上面的技术问题,本发明一种太阳能辅助二氧化碳捕集集成系统,包括发电子系统、二氧化碳捕集子系统、太阳能集热子系统;所述发电子系统为由给水换热器、锅炉、汽轮机以及乏汽冷凝器串联构成的蒸汽发电系统;所述二氧化碳捕集子系统包括烟气预处理装置、吸收塔、富液泵、贫液冷凝器、贫/富液换热器、贫液泵、解吸塔、气液分离器和再沸器;所述锅炉的排烟口与所述烟气预处理装置的入口连接,所述烟气预处理装置的出口连接吸收塔下部的气体入口;所述贫液冷凝器的出口与所述吸收塔的上部液体喷淋入口相连;所述贫/富液换热器分别与所述贫液泵的出口、所述解吸塔上部的富液喷淋入口、所述富液泵的出口及所述贫液冷凝器的入口相连;所述解吸塔底部的入口分别与所述再沸器的出口及所述贫液泵的入口相连,所述解吸塔顶部的气体出口连接到所述气液分离器的底部,作为冷凝液的回流;所述汽轮机的抽汽口与所述再沸器的高温侧入口连接,所述再沸器的高温侧出口与所述乏汽冷凝器连接;所述汽轮机与所述再沸器之间的连接管路上设有抽汽阀门;所述太阳能集热子系统由太阳能集热器系列和工质泵串联组成,In order to effectively solve the above technical problems, the present invention provides a solar-assisted carbon dioxide capture integrated system, including a power generation sub-system, a carbon dioxide capture sub-system, and a solar thermal collection sub-system; A steam power generation system composed of boilers, steam turbines and exhaust steam condensers in series; the carbon dioxide capture subsystem includes flue gas pretreatment devices, absorption towers, rich liquid pumps, lean liquid condensers, lean/rich liquid heat exchangers, lean Liquid pump, desorption tower, gas-liquid separator and reboiler; the exhaust port of the boiler is connected to the inlet of the flue gas pretreatment device, and the outlet of the flue gas pretreatment device is connected to the gas inlet of the lower part of the absorption tower The outlet of the lean liquid condenser is connected with the upper liquid spray inlet of the absorption tower; the lean/rich liquid heat exchanger is respectively connected with the outlet of the lean liquid pump and the rich liquid spray at the top of the desorption tower The drenching inlet, the outlet of the rich liquid pump and the inlet of the lean liquid condenser are connected; the inlet at the bottom of the desorption tower is connected with the outlet of the reboiler and the inlet of the lean liquid pump respectively, and the desorption The gas outlet at the top of the tower is connected to the bottom of the gas-liquid separator as the reflux of the condensate; the steam extraction port of the steam turbine is connected to the high temperature side inlet of the reboiler, and the high temperature side outlet of the reboiler It is connected with the exhaust steam condenser; a steam extraction valve is arranged on the connecting pipeline between the steam turbine and the reboiler; the solar heat collection subsystem is composed of a series of solar heat collectors and a working medium pump in series,
本发明根据太阳能的集热温度范围提供了两种集成方式,即所述太阳能集热子系统的热量输出端与所述再沸器之间的连接关系包括下述两种情形之一:一种是:所述太阳能集热子系统中的工质出口端与所述给水换热器的高温侧入口连接,所述给水换热器的高温侧出口与所述再沸器的高温侧入口相连,所述再沸器的高温侧出口与所述太阳能集热子系统的工质入口端相连;这种连接方式可以将太阳能集热子系统集热到200-350℃左右的中高温度,通过换热器加热电厂给水温度,换热之后再经过再沸器继续进行换热,以提供再沸器的热量,而再沸器所需热量的不足部分再通过抽取汽轮机低温低压的蒸汽来提供,这样构成太阳能加热循环,实现了能量品位的梯级利用,减少系统的不可逆损失;另一种是:所述太阳能集热子系统的工质出口端与所述再沸器的高温侧入口端连接,所述再沸器的高温侧出口与所述太阳能集热子系统的工质入口端相连,这种连接方式可以直接利用太阳能集热子系统将太阳能集热器系列内的工质流体集热到再沸器所需的温度范围供给再沸器利用,在简化系统的同时也充分利用了太阳能集热系统在低温下较高的集热效率,减少了工质流体在高温下的散热损失。上述两种连接方式均设计了从汽轮机抽汽的连接管路,这样可以在太阳能不足时利用抽汽提供热量。The present invention provides two integration methods according to the heat collection temperature range of solar energy, that is, the connection relationship between the heat output end of the solar heat collection subsystem and the reboiler includes one of the following two situations: one Yes: the outlet port of the working medium in the solar heat collection subsystem is connected to the high-temperature side inlet of the feedwater heat exchanger, and the high-temperature side outlet of the feedwater heat exchanger is connected to the high-temperature side inlet of the reboiler, The outlet on the high temperature side of the reboiler is connected to the inlet port of the working medium of the solar heat collection subsystem; this connection can collect heat from the solar heat collection subsystem to a medium-high temperature of about 200-350°C, and through heat exchange The feed water temperature of the power plant is heated by the boiler, and after the heat exchange, the heat exchange is continued through the reboiler to provide the heat of the reboiler, and the insufficient part of the heat required by the reboiler is provided by extracting the low-temperature and low-pressure steam of the steam turbine, thus forming The solar heating cycle realizes the cascade utilization of energy grades and reduces the irreversible loss of the system; the other is: the outlet end of the working fluid of the solar heat collection subsystem is connected to the high temperature side inlet end of the reboiler, and the The outlet on the high temperature side of the reboiler is connected to the inlet port of the working medium of the solar heat collection subsystem, and this connection can directly use the solar heat collection subsystem to collect heat from the working medium fluid in the solar heat collector series to reboil The temperature range required by the reboiler is used by the reboiler. While simplifying the system, it also makes full use of the high heat collection efficiency of the solar heat collection system at low temperatures, and reduces the heat dissipation loss of the working fluid at high temperatures. Both of the above two connection methods are designed with connecting pipelines for extracting steam from the steam turbine, so that the extracted steam can be used to provide heat when the solar energy is insufficient.
本发明中,发电子系统中锅炉燃烧后会产生大量含有一定浓度的烟气,烟气经过预处理装置处理后从塔底进入吸收塔,与塔顶喷淋的化学吸收液进行接触,吸收烟气中的二氧化碳,形成富液,富液经富液泵与贫/富液换热器换热后从塔顶喷淋到解吸塔进行再生,同时再沸器提供解吸所需的热量,解吸出的二氧化碳经过气液分离器将部分水蒸汽进行冷凝回流至解吸塔,分离出的二氧化碳经过压缩后进行存储。解吸出二氧化碳后的贫液经贫液泵、贫/富液换热器以及贫液冷凝器后重新喷淋到吸收塔并形成整个吸收解吸循环。In the present invention, after the combustion of the boiler in the power generation system, a large amount of flue gas with a certain concentration will be produced, and the flue gas will enter the absorption tower from the bottom of the tower after being processed by the pretreatment device, and contact with the chemical absorption liquid sprayed on the top of the tower to absorb the flue gas. The carbon dioxide in the gas forms rich liquid, and the rich liquid is sprayed from the top of the tower to the desorption tower for regeneration after heat exchange between the rich liquid pump and the lean/rich liquid heat exchanger. At the same time, the reboiler provides the heat required for desorption, and the desorption The carbon dioxide is condensed and returned to the desorption tower through the gas-liquid separator, and the separated carbon dioxide is compressed and stored. The lean liquid after desorbing carbon dioxide passes through the lean liquid pump, lean/rich liquid heat exchanger and lean liquid condenser, and then sprays to the absorption tower again to form the entire absorption and desorption cycle.
与现有技术相比,本发明的有益效果是:Compared with prior art, the beneficial effect of the present invention is:
(1)将太阳能中低温集热与CO2捕集系统结合,可以充分利用中低温太阳能集热系统在捕集再生的温度范围内的高集热效率,以降低传统电厂抽取高品位能源所造成的捕集效率的降低,提高系统综合效率。(1) Combining the medium and low temperature solar heat collection with the CO2 capture system can make full use of the high heat collection efficiency of the medium and low temperature solar heat collection system in the temperature range of capture and regeneration, so as to reduce the loss caused by the extraction of high-grade energy by traditional power plants The reduction of capture efficiency improves the overall efficiency of the system.
(2)直接利用中低品位热能实现再沸器的能量需求,实现能量品位的对接,避免传统捕集方法大量使用降温减压后的蒸汽所带来的不可逆损失,造成高品位能源的浪费。(2) Directly use low-grade heat energy to meet the energy demand of the reboiler, realize the docking of energy grades, and avoid the irreversible loss caused by the traditional capture method using a large amount of steam after cooling and decompression, resulting in waste of high-grade energy.
(3)降低了现有技术中传统的原有系统大量抽汽再生对汽轮机的不利影响。(3) It reduces the adverse effect on the steam turbine caused by a large amount of steam extraction and regeneration in the traditional original system in the prior art.
(4)太阳能集热可以很好地适应电厂的运行模式,在白天用电高峰时充分利用太阳能实现捕集系统的能量供应,而在夜间无太阳能时也正是用电低谷时,可以利用抽汽提供热量,以维持电厂的运行平稳。(4) Solar heat collection can be well adapted to the operation mode of the power plant. During the peak power consumption during the day, the solar energy can be fully used to realize the energy supply of the capture system. The steam provides heat to keep the power plant running smoothly.
附图说明Description of drawings
图1为本发明太阳能辅助二氧化碳捕集集成系统实施例1的系统原理图及结构示意图;Fig. 1 is the system principle diagram and structural diagram of
图2为本发明太阳能辅助二氧化碳捕集集成系统实施例2的系统原理图及结构示意图。Fig. 2 is the system schematic diagram and structural diagram of
图中:1-发电子系统,2-二氧化碳捕集子系统,3-太阳能集热子系统,4-给水换热器,5-锅炉,6-汽轮机,7-乏汽冷凝器,8-烟气预处理装置,9-吸收塔,10-富液泵,11-贫液冷凝器,12-贫/富液换热器,13-贫液泵,14-解吸塔,15-气液分离器,16-再沸器,17-集热器系列,18-工质泵,19-抽汽阀门。In the figure: 1-power generation subsystem, 2-carbon dioxide capture subsystem, 3-solar heat collection subsystem, 4-feed water heat exchanger, 5-boiler, 6-steam turbine, 7-exhaust steam condenser, 8-flue gas Gas pretreatment device, 9-absorption tower, 10-rich liquid pump, 11-lean liquid condenser, 12-lean/rich liquid heat exchanger, 13-lean liquid pump, 14-desorption tower, 15-gas-liquid separator , 16-reboiler, 17-collector series, 18-working fluid pump, 19-extraction valve.
具体实施方式Detailed ways
下面结合具体实施方式对本发明作进一步详细地描述。The present invention will be further described in detail below in combination with specific embodiments.
本发明一种太阳能辅助二氧化碳捕集集成系统,如图1和图2所示,包括发电子系统1、二氧化碳捕集子系统2和太阳能集热子系统3。A solar-assisted carbon dioxide capture integrated system of the present invention, as shown in FIG. 1 and FIG. 2 , includes a
所述发电子系统1为由给水换热器4、锅炉5、汽轮机6以及乏汽冷凝器7串联构成的蒸汽发电系统。The
所述二氧化碳捕集子系统2包括烟气预处理装置8、吸收塔9、富液泵10、贫液冷凝器11、贫/富液换热器12、贫液泵13、解吸塔14、气液分离器15和再沸器16;所述锅炉3的排烟口与所述烟气预处理装置8的入口连接,所述烟气预处理装置8的出口连接吸收塔9下部的气体入口,经过预处理装置8脱硫脱硝后的烟气从吸收塔9的底部进入塔内进行二氧化碳捕集;所述贫液冷凝器11的出口与所述吸收塔9的上部液体喷淋入口相连;所述贫/富液换热器12分别与所述贫液泵13的出口、所述解吸塔14上部的富液喷淋入口、所述富液泵10的出口及所述贫液冷凝器11的入口相连;所述解吸塔14底部的入口分别与所述再沸器16的出口及所述贫液泵13的入口相连,所述解吸塔14顶部的气体出口连接到所述气液分离器15的底部,作为冷凝液的回流。发电子系统1中的汽轮机6根据捕集温度的需要从中引出抽汽,因此,所述汽轮机6的抽汽口与所述再沸器16的高温侧入口连接,所述再沸器16的高温侧出口与所述乏汽冷凝器7连接,以维持发电子系统中的水平衡;所述汽轮机6与所述再沸器16之间的连接管路上设有抽汽阀门19。The carbon
所述太阳能集热子系统3由太阳能集热器系列17和工质泵18串联组成。The solar
本发明中,根据太阳能集热子系统1设计的集热温度不同,太阳能集热子系统3与发电子系统1及二氧化碳捕集子系统2的连接关系有两种。In the present invention, depending on the heat collection temperature designed by the solar
实施例1:Example 1:
当太阳能集热子系统3的集热温度为中温时,其连接关系是:如图1所示,所述太阳能集热子系统3中的工质出口端与发电子系统1中的给水换热器4的高温侧入口连接,利用中高温太阳能集热加热来代替抽汽式给水加热,所述给水换热器4的高温侧出口再与所述二氧化碳捕集系统2中的再沸器16的高温侧入口相连,所述再沸器16的高温侧出口与所述太阳能集热子系统3的工质入口端相连,从而构成太阳能集热循环。实施例1的连接方式可以将太阳能集热子系统集热到200-350℃左右的中高温度,通过换热器加热电厂给水温度,换热之后再经过再沸器继续进行换热,以提供再沸器的热量,而再沸器所需热量的不足部分再通过抽取汽轮机低温低压的蒸汽来提供,这样构成太阳能加热循环,实现了能量品位的梯级利用,减少系统的不可逆损失。When the heat collection temperature of the solar
实施例2:Example 2:
所述太阳能集热子系统3的工质出口端与所述二氧化碳捕集子系统2中的再沸器16的高温侧入口端连接,所述再沸器16的高温侧出口与所述太阳能集热子系统3的工质入口端相连,构成太阳能集热循环。实施例2的连接方式可以直接利用太阳能集热子系统将太阳能集热器系列内的工质流体集热到再沸器所需的温度范围供给再沸器利用,在简化系统的同时也充分利用了太阳能集热系统在低温下较高的集热效率,减少了工质流体在高温下的散热损失。The outlet end of the working fluid of the solar
综上,对于太阳能集热子系统的热量输出端通过采用不同的连接方式,将太阳能集热与发电子系统及二氧化碳捕集子系统之间相关部件的能量需求品位的高低进行了合理的分配及集成,实现了能量的梯级利用,可大幅降低从电厂汽轮机中抽蒸汽的能耗,在维持电厂稳定性的同时实现可再生能源利用与电厂二氧化碳减排的双重功效,有力推动我国太阳能与烟气捕集集成技术的大规模应用。To sum up, by adopting different connection methods for the heat output end of the solar heat collection subsystem, the energy demand level of the related components between the solar heat collection and power generation subsystem and the carbon dioxide capture subsystem is reasonably allocated and adjusted. The integration realizes the cascade utilization of energy, which can greatly reduce the energy consumption of extracting steam from the steam turbine in the power plant, and realize the dual effects of renewable energy utilization and carbon dioxide emission reduction in the power plant while maintaining the stability of the power plant. Large-scale application of capture integration technology.
在本发明太阳能辅助二氧化碳捕集集成系统工作过程中,通过太阳能和汽轮机6抽汽共同完成再沸器16的热量需求,在太阳能提供给再沸器16的热量充足时关闭抽汽阀门19,完全由太阳能提供捕集系统解吸能耗,在太阳能不足时则开启抽汽阀门19,同时利用太阳能和汽轮机抽汽提供再沸器热量需求。During the working process of the solar energy-assisted carbon dioxide capture integrated system of the present invention, the heat demand of the
本发明中所述发电子系统与传统发电系统类似,只是在传统电厂的基础上增加了利用太阳能的给水换热器4,可以在利用太阳能和不利用太阳能加热锅炉给水之间进行切换,同时引入再沸器抽汽循环管路,增加阀门加以控制。The power generation sub-system described in the present invention is similar to the traditional power generation system, except that a feed water heat exchanger 4 using solar energy is added on the basis of the traditional power plant, which can switch between using solar energy and not using solar energy to heat the boiler feed water, while introducing Reboiler extraction cycle pipeline, add valves to control.
本发明中所述二氧化碳捕集子系统2主要适用于以醇胺类物质为基础的化学吸收剂水溶液,即可以是单种化学吸收物质配成的吸收溶液,也可以是多种化学吸收物质配比组成的混合吸收剂。本发明中所用到的吸附剂属于本领域中的成熟技术,其配方和制备工艺在此不再赘述。The carbon
所述太阳能集热子系统3中集热器系列17的选择形式可以是复合抛物聚光集热器(CPC)、槽式集热器、菲涅尔集热器、碟式集热器以及塔式集热器等形式。The selected form of the
所述太阳能集热子系统3中循环流体一般采用高温导热油作为传热介质,另外,也可以使用熔融盐或水作为传热介质,以导热油为介质与再沸器连接时需经过一级换热,而以水为换热介质时则只需直接与再沸器连接。The circulating fluid in the solar
尽管上面结合图对本发明进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨的情况下,还可以作出很多变形,这些均属于本发明的保护之内。Although the present invention has been described above in conjunction with the drawings, the present invention is not limited to the above-mentioned specific embodiments, and the above-mentioned specific embodiments are only illustrative, rather than restrictive. Under the inspiration, many modifications can be made without departing from the gist of the present invention, and these all belong to the protection of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410037906.0A CN103752142B (en) | 2014-01-26 | 2014-01-26 | A kind of solar energy auxiliary carbon dioxide trapping integrated system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410037906.0A CN103752142B (en) | 2014-01-26 | 2014-01-26 | A kind of solar energy auxiliary carbon dioxide trapping integrated system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN103752142A true CN103752142A (en) | 2014-04-30 |
CN103752142B CN103752142B (en) | 2015-12-02 |
Family
ID=50519552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410037906.0A Active CN103752142B (en) | 2014-01-26 | 2014-01-26 | A kind of solar energy auxiliary carbon dioxide trapping integrated system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103752142B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104607001A (en) * | 2015-01-13 | 2015-05-13 | 宁波瑞信能源科技有限公司 | Solar gradient phase change heat storage indirect steam assisted carbon dioxide capture system |
CN104613654A (en) * | 2015-01-13 | 2015-05-13 | 宁波瑞信能源科技有限公司 | Combined-type-solar-system power-plant water-feeding and CO2-collecting assisted integrated system |
CN105169944A (en) * | 2015-08-26 | 2015-12-23 | 中石化节能环保工程科技有限公司 | Solar heating system |
CN105258380A (en) * | 2015-10-26 | 2016-01-20 | 天津大学 | Thermally driven compact CO2 removal system using mixed working fluid |
CN105561742A (en) * | 2016-02-19 | 2016-05-11 | 天津大学 | Carbon dioxide capture system assisted by combination of solar energy and geothermal energy |
CN105797541A (en) * | 2016-05-18 | 2016-07-27 | 天津大学 | Solar photovoltaic driven aquo-complex method carbon capture system |
CN105903310A (en) * | 2016-06-02 | 2016-08-31 | 广东电网有限责任公司电力科学研究院 | CO2 trapping system and heating system for regenerating tower of CO2 trapping system |
CN106076073A (en) * | 2016-07-28 | 2016-11-09 | 天津大学 | A kind of solar energy and the energy utility system of geothermal energy united power plant low-carbon emission |
CN107744722A (en) * | 2017-11-14 | 2018-03-02 | 西安交通大学 | Collecting carbonic anhydride and recycling system and method based on Driven by Solar Energy |
CN108375218A (en) * | 2016-10-13 | 2018-08-07 | 华北电力大学 | Photovoltaic and photothermal component assistant coal unit carbon traps electricity generation system |
CN108508748A (en) * | 2018-03-28 | 2018-09-07 | 东南大学 | CO after a kind of effective photo-thermal auxiliary combustion2Trapping system progress control method |
CN108607321A (en) * | 2016-12-29 | 2018-10-02 | 中微惠创科技(上海)有限公司 | A kind of VOC gas processing system |
CN109954382A (en) * | 2019-04-12 | 2019-07-02 | 天津大学 | A solar interface evaporation direct desorption carbon capture system and its control method |
CN112126477A (en) * | 2020-09-17 | 2020-12-25 | 安徽工业大学 | Carbon dioxide capture system and method based on waste heat recovery and utilization of blast furnace slag flushing water |
CN113834224A (en) * | 2021-09-29 | 2021-12-24 | 西安交通大学 | Boiler flue gas treatment system and method based on solar energy |
CN115434885A (en) * | 2022-09-09 | 2022-12-06 | 张家港江苏科技大学产业技术研究院 | Carbon dioxide treatment system based on concentrated photovoltaic power generation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201040718Y (en) * | 2007-04-18 | 2008-03-26 | 中国科学院工程热物理研究所 | Thermochemical reaction hydrogen production system driven by solar medium and low temperature heat |
CN201487931U (en) * | 2009-06-24 | 2010-05-26 | 昆明理工大学 | Mixed heat energy saving device for solar boiler |
JP2012245510A (en) * | 2011-05-31 | 2012-12-13 | Nippon Telegr & Teleph Corp <Ntt> | Separation system of carbon dioxide |
CN103079672A (en) * | 2010-09-03 | 2013-05-01 | 西门子公司 | Fossil fuel-fired power station having a removal apparatus for carbon dioxide and process for separating carbon dioxide from an offgas from a fossil fuel-fired power station |
CN103372371A (en) * | 2013-07-04 | 2013-10-30 | 天津大学 | System device for carbon capture through solar organic Rankine cycle auxiliary coal-fired power generation |
-
2014
- 2014-01-26 CN CN201410037906.0A patent/CN103752142B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201040718Y (en) * | 2007-04-18 | 2008-03-26 | 中国科学院工程热物理研究所 | Thermochemical reaction hydrogen production system driven by solar medium and low temperature heat |
CN201487931U (en) * | 2009-06-24 | 2010-05-26 | 昆明理工大学 | Mixed heat energy saving device for solar boiler |
CN103079672A (en) * | 2010-09-03 | 2013-05-01 | 西门子公司 | Fossil fuel-fired power station having a removal apparatus for carbon dioxide and process for separating carbon dioxide from an offgas from a fossil fuel-fired power station |
JP2012245510A (en) * | 2011-05-31 | 2012-12-13 | Nippon Telegr & Teleph Corp <Ntt> | Separation system of carbon dioxide |
CN103372371A (en) * | 2013-07-04 | 2013-10-30 | 天津大学 | System device for carbon capture through solar organic Rankine cycle auxiliary coal-fired power generation |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104613654A (en) * | 2015-01-13 | 2015-05-13 | 宁波瑞信能源科技有限公司 | Combined-type-solar-system power-plant water-feeding and CO2-collecting assisted integrated system |
CN104607001A (en) * | 2015-01-13 | 2015-05-13 | 宁波瑞信能源科技有限公司 | Solar gradient phase change heat storage indirect steam assisted carbon dioxide capture system |
CN105169944A (en) * | 2015-08-26 | 2015-12-23 | 中石化节能环保工程科技有限公司 | Solar heating system |
CN105258380B (en) * | 2015-10-26 | 2018-05-11 | 天津大学 | CO is removed by the compact of thermodynamic-driven using mixed working fluid2System |
CN105258380A (en) * | 2015-10-26 | 2016-01-20 | 天津大学 | Thermally driven compact CO2 removal system using mixed working fluid |
CN105561742A (en) * | 2016-02-19 | 2016-05-11 | 天津大学 | Carbon dioxide capture system assisted by combination of solar energy and geothermal energy |
CN105561742B (en) * | 2016-02-19 | 2018-06-08 | 天津大学 | A kind of solar energy and geothermal energy united auxiliary carbon dioxide trapping system |
CN105797541A (en) * | 2016-05-18 | 2016-07-27 | 天津大学 | Solar photovoltaic driven aquo-complex method carbon capture system |
CN105903310A (en) * | 2016-06-02 | 2016-08-31 | 广东电网有限责任公司电力科学研究院 | CO2 trapping system and heating system for regenerating tower of CO2 trapping system |
CN106076073B (en) * | 2016-07-28 | 2019-01-11 | 天津大学 | A kind of energy utility system of solar energy and geothermal energy united power plant low-carbon emission |
CN106076073A (en) * | 2016-07-28 | 2016-11-09 | 天津大学 | A kind of solar energy and the energy utility system of geothermal energy united power plant low-carbon emission |
CN108375218A (en) * | 2016-10-13 | 2018-08-07 | 华北电力大学 | Photovoltaic and photothermal component assistant coal unit carbon traps electricity generation system |
CN108375218B (en) * | 2016-10-13 | 2019-12-24 | 华北电力大学 | Photovoltaic solar thermal components assist coal-fired unit carbon capture power generation system |
CN108607321A (en) * | 2016-12-29 | 2018-10-02 | 中微惠创科技(上海)有限公司 | A kind of VOC gas processing system |
CN107744722A (en) * | 2017-11-14 | 2018-03-02 | 西安交通大学 | Collecting carbonic anhydride and recycling system and method based on Driven by Solar Energy |
CN108508748A (en) * | 2018-03-28 | 2018-09-07 | 东南大学 | CO after a kind of effective photo-thermal auxiliary combustion2Trapping system progress control method |
CN108508748B (en) * | 2018-03-28 | 2020-11-03 | 东南大学 | Effective operation control method for photo-thermal auxiliary combustion post-CO 2 capture system |
CN109954382A (en) * | 2019-04-12 | 2019-07-02 | 天津大学 | A solar interface evaporation direct desorption carbon capture system and its control method |
CN109954382B (en) * | 2019-04-12 | 2023-09-08 | 天津大学 | A solar interface evaporation direct desorption carbon capture system and its control method |
CN112126477A (en) * | 2020-09-17 | 2020-12-25 | 安徽工业大学 | Carbon dioxide capture system and method based on waste heat recovery and utilization of blast furnace slag flushing water |
CN113834224A (en) * | 2021-09-29 | 2021-12-24 | 西安交通大学 | Boiler flue gas treatment system and method based on solar energy |
CN113834224B (en) * | 2021-09-29 | 2023-10-31 | 西安交通大学 | Boiler flue gas treatment system and method based on solar energy |
CN115434885A (en) * | 2022-09-09 | 2022-12-06 | 张家港江苏科技大学产业技术研究院 | Carbon dioxide treatment system based on concentrated photovoltaic power generation |
Also Published As
Publication number | Publication date |
---|---|
CN103752142B (en) | 2015-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103752142B (en) | A kind of solar energy auxiliary carbon dioxide trapping integrated system | |
US11821637B2 (en) | Energy-saving system using electric heat pump to deeply recover flue gas waste heat from heat power plant for district heating | |
DK2933484T3 (en) | SUPPLEMENTARY SOL-BIOMASS HEAT POWER SYSTEM | |
CN104174273B (en) | A kind of solar energy directly drives the integrated system and method that carbon dioxide flash distillation desorbs | |
CN104613654B (en) | Combined-type-solar-system power-plant water-feeding and CO2-collecting assisted integrated system | |
CN204582900U (en) | A kind of decarbonization system utilizing solar energy to assist reboiler to heat | |
CN204574529U (en) | The feedwater of a kind of combination type solar system supplymentary power plant and CO 2the integrated system of trapping | |
CN109945277A (en) | An energy-saving system using electric heat pump to deeply recover waste heat from flue gas of thermal power plant for central heating | |
CN203464249U (en) | Condensed water heat regenerative system with absorption heat pump | |
CN106076073B (en) | A kind of energy utility system of solar energy and geothermal energy united power plant low-carbon emission | |
CN203717051U (en) | Combined cycling low-temperature exhaust heat recycling device | |
CN203671577U (en) | Efficient waste heat recovery system of machine and boiler coupled air cooling power station | |
CN106693614B (en) | Compact ammonia-method carbon capture system driven by ammonia-water second-class absorption heat pump | |
CN106837439A (en) | The vacuum pressure and temperature varying Coupling Adsorption carbon trapping system of solar energy organic Rankine bottoming cycle auxiliary | |
CN105561742A (en) | Carbon dioxide capture system assisted by combination of solar energy and geothermal energy | |
CN106247683A (en) | A kind of CO2seizure system and technique | |
CN207394815U (en) | A kind of flue gas waste heat recovery system of solar energy and wind energy coupling absorption heat pump cycle | |
CN203036658U (en) | Boiler flue gas waste heat multipurpose utilization system | |
CN103990372B (en) | Ammonia-based carbon capture system with solar desalination assisted coal-fired power generation | |
CN207776921U (en) | A kind of CHP Heating System based on absorption heat pump cycle | |
CN106669372B (en) | Coal-fired power plant carbon capture system driven by solar heating absorption heat pump | |
CN105251316B (en) | The direct thermodynamic-driven of independent solar utilizes mixed working fluid removing CO2System | |
CN211781370U (en) | Solar-assisted coal-fired cogeneration system based on absorption heat pump | |
CN204730508U (en) | A kind ofly apply the energy-conservation device of lithium bromide | |
CN210831925U (en) | A deep recovery device for waste heat and moisture of power plant boiler exhaust flue gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |