CN103641305A - Beryllium silicate glass containing Cr2O3 and method for treating radioactive waste liquid - Google Patents

Beryllium silicate glass containing Cr2O3 and method for treating radioactive waste liquid Download PDF

Info

Publication number
CN103641305A
CN103641305A CN201310514592.4A CN201310514592A CN103641305A CN 103641305 A CN103641305 A CN 103641305A CN 201310514592 A CN201310514592 A CN 201310514592A CN 103641305 A CN103641305 A CN 103641305A
Authority
CN
China
Prior art keywords
glass
beo
roasting
silicate glass
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310514592.4A
Other languages
Chinese (zh)
Other versions
CN103641305B (en
Inventor
梅欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Liyang Technology Development Center
Original Assignee
LIYANG ZHEDA ACADEMIA RESEARCH SERVICE CENTER Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIYANG ZHEDA ACADEMIA RESEARCH SERVICE CENTER Co Ltd filed Critical LIYANG ZHEDA ACADEMIA RESEARCH SERVICE CENTER Co Ltd
Priority to CN201310514592.4A priority Critical patent/CN103641305B/en
Publication of CN103641305A publication Critical patent/CN103641305A/en
Application granted granted Critical
Publication of CN103641305B publication Critical patent/CN103641305B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

The invention discloses beryllium silicate glass comprising the following components by the mass percentage: a) 42-49% of SiO2; b) 15-20% of BeO; c) 11-14% of Na2O; d) 5-10% of Al2O3; e) 3-6.5% of Cr2O3; f) 3-6.5% of at least one rare earth oxide preferably selected from La2O3, Nd2O3, Gd2O3, Pr2O3 and CeO2; g) 3-6.5% of at least one actinide element oxide, such as UO2, ThO2, Am2O3, PuO2, CmO2 and NpO2; and h), 5-8% of HfO2. The glass has extremely high stability, extremely excellent mechanical strength and extremely high chemical corrosion resistance ability on radiation; and the glass can quite well seal, preserve and isolate a waste liquid under a volume shrinking condition.

Description

Comprise Cr 2o 3beryllium silicate glass and process the method for radioactive liquid waste
Technical field
The present invention relates to a kind of beryllium silicate glass for nuclear reactor power plant sealing, preservation, isolation radioactive liquid waste.
Background technology
In the nuclear fuel regeneration equipment such as nuclear reactor, can produce the radioactive wastewater of medium-activity, mainly by bituminous grouting or cement solidification, process at present.But, adopt bituminous treatment to have several main drawbacks: stability reduces, and easily catches fire, and use range is limited, and physical strength is low.Adopt the expense of cement treated moderate, use simple, physical strength is good, stability is lasting.But cement solidification has two significant shortcomings: after coated, waste material volume doubles; The predicted life of the impact material that obtains.
In addition, now people also adopt glass capsulation radioactive liquid waste in research, because it has metamict, therefore compare conventional pitch and cement has obvious advantage.But because glass is metastable material, due to the existence of the alkaline elements such as sodium, cause glass stronger to the susceptibility of chemical erosion, cause glass basis to change, sealing stability is bad.For the deleterious effect of partial offset sodium, in silica glass, add boron, thereby the glass that is called " borosilicate glass " is provided.But the stability of borosilicate glass, physical strength and resistance to corrosion still can not meet the needs that people seal medium-activity waste liquid.
Summary of the invention
The invention discloses a kind of beryllium silicate glass, it has high stability, fabulous physical strength, high resistance to chemical attack to radiation, and this glass can well seal, preserve, isolate waste liquid in the situation that of volume-diminished.
Beryllium silicate glass of the present invention comprises the following composition that mass percent represents:
a)SiO 2:42-49
b)BeO:15-20
c)Na 2O:11-14
d)Al 2O 3:5-10
e)Cr 2O 3:3-6.5;
F) at least one rare earth oxide, is preferably, La 2o 3, Nd 2o 3, Gd 2o 3, Pr 2o 3, CeO 2: 3-6.5;
G) at least one actinide elements oxide compound, for example UO 2, ThO 2, Am 2o 3, PuO 2, CmO 2, NpO 2: 3-6.5;
h)HfO 2:5-8;
And the weight percent of the moiety of described glass meets following inequality further:
(1)SiO 2+Al 2O 3<60%
(2)71%<SiO 2+BeO+Na 2O<85.5%
(3)BeO/Na 2O>1.3。
In a preferred embodiment, in described glass, the content of BeO is 16~19%; More preferably 19%.
Fe in a preferred embodiment 2o 3content be 4~6%.
The invention also discloses a kind of method of processing the radioactive liquid waste of medium-activity, wherein, selectivity is added with to the described waste liquid roasting of roasting auxiliary agent, thereby acquisition product of roasting, then vitrifying auxiliary agent is added in described product of roasting, in cold-crucible, by described product of roasting and the fusing of described vitrifying auxiliary agent, obtain melted glass, then described melted glass is cooling, obtain thus above-mentioned beryllium silicate glass.
Glass of the present invention has composition and the scope of special composition, first has the SiO that conventional silicate glass includes 2, Na 2o, Al 2o 3, the traditional performance of assurance glass, on this basis, glass of the present invention has BeO, and Be element has well offseted the disadvantageous effect that in glass, Na element brings its chemical corrosivity, has greatly strengthened stability and the corrosion resistance of glass, this is still undiscovered in prior art, comprises HfO 2having strengthened significantly physical strength, is also that in prior art, not yet someone adopts; In addition, owing to thering is transition element oxide compound, rare earth oxide and actinide elements oxide compound, favourable enhancing its stability and resistance to corrosion.Different from the applicable sealing of borosilicate glass of the prior art highly active waste, beryllium silicate glass of the present invention starts from the radioactive liquid waste of sealing medium-activity.Adopt glass capsulation medium-activity waste material of the present invention, overcome the relevant defect of bituminous treatment or cement bond.In addition, glass of the present invention can easily obtain by roasting hereinafter described, the method for cold-crucible vitrifying type.
Embodiment
Below in conjunction with embodiment, describe beryllium silicate of the present invention in detail.
Beryllium silicate glass of the present invention comprises the following composition that mass percent represents:
a)SiO 2:42-49
b)BeO:15-20
c)Na 2O:11-14
d)Al 2O 3:5-10
E) oxide compound of at least one transition element, preferably Fe 2o 3, Cr 2o 3, MnO 2, TcO 2, RuO 2: 3-6.5;
F) at least one rare earth oxide, is preferably, La 2o 3, Nd 2o 3, Gd 2o 3, Pr 2o 3, CeO 2: 3-6.5;
G) at least one actinide elements oxide compound, for example UO 2, ThO 2, Am 2o 3, PuO 2, CmO 2, NpO 2: 3-6.5;
h)HfO 2:5-8;
And the weight percent of the moiety of described glass meets following inequality further:
(1)SiO 2+Al 2O 3<60%
(2)71%<SiO 2+BeO+Na 2O<85.5%
(3)BeO/Na 2O>1.3。
Embodiment 1:
Beryllium silicate glass of the present invention comprises the following composition that mass percent represents:
a)SiO 2:45
b)BeO:16
c)Na 2O:11
d)Al 2O 3:5
e)Cr 2O 3:4;
F) at least one rare earth oxide, is preferably, La 2o 3, Nd 2o 3, Gd 2o 3, Pr 2o 3, CeO 2: 6;
G) at least one actinide elements oxide compound, for example UO 2, ThO 2, Am 2o 3, PuO 2, CmO 2, NpO 2: 5;
h)HfO 2:8。
Embodiment 2
Beryllium silicate glass of the present invention comprises the following composition that mass percent represents:
a)SiO 2:46
b)BeO:16
c)Na 2O:11
d)Al 2O 3:5
E) oxide compound of at least one transition element, preferably Fe 2o 3, Cr 2o 3, MnO 2, TcO 2, RuO 2: 4;
f)La 2O 3:6;
G) at least one actinide elements oxide compound, for example UO 2, ThO 2, Am 2o 3, PuO 2, CmO 2, NpO 2: 5;
h)HfO 2:7。
Embodiment 3
Beryllium silicate glass of the present invention comprises the following composition that mass percent represents:
a)SiO 2:45
b)BeO:19
c)Na 2O:11
d)Al 2O 3:5
E) oxide compound of at least one transition element, preferably Fe 2o 3, Cr 2o 3, MnO 2, TcO 2, RuO 2: 3.5;
F) at least one rare earth oxide, is preferably, La 2o 3, Nd 2o 3, Gd 2o 3, Pr 2o 3, CeO 2: 3.5;
g)UO 2:6;
h)HfO 2:7。
The invention also discloses a kind of method of processing the radioactive liquid waste of medium-activity, wherein, selectivity is added with to the described waste liquid roasting of roasting auxiliary agent, thereby acquisition product of roasting, then vitrifying auxiliary agent is added in described product of roasting, in cold-crucible, by described product of roasting and the fusing of described vitrifying auxiliary agent, obtain melted glass, then described melted glass is cooling, obtain thus above-mentioned beryllium silicate glass.
Wherein said roasting auxiliary agent is selected from aluminum nitrate, iron nitrate, zirconium nitrate, rare earth nitrate or their mixture.Wherein said roasting auxiliary agent is the mixture of aluminum nitrate and iron nitrate.Described product of roasting and described vitrifying auxiliary agent be melted in 1,200 ℃ to 1,300 ℃, preferably at the temperature of 1,250 ℃, carry out.
First glass of the present invention have the SiO that conventional silicate glass includes 2, Na 2o, Al 2o 3guarantee the traditional performance of glass, on this basis, glass of the present invention has BeO, beryllium is compared boron can better offset the disadvantageous effect that in glass, Na element brings its chemical corrosivity, and can not produce ghost effect, greatly strengthen stability and the corrosion resistance of glass, this is still undiscovered in prior art.The HfO that glass comprises 2can strengthen its physical strength; In addition, owing to thering is transition element oxide compound, rare earth oxide and actinide elements oxide compound, its stability and resistance to corrosion have been strengthened.
From the above description of this invention, can obviously learn, the present invention can change with many forms.And these variations can not be considered to surpass technological thought of the present invention and scope.And, to those skilled in the art, within these apparent variant are all included in the scope of protection of the invention.

Claims (5)

1. a beryllium silicate glass that comprises Fe2O3, is characterized in that, comprises the following composition that mass percent represents:
a)SiO 2:42-49
b)BeO:15-20
c)Na 2O:11-14
d)Al 2O 3:5-10
e)Cr 2O 3:3-6.5;
F) at least one rare earth oxide, is preferably, La 2o 3, Nd 2o 3, Gd 2o 3, Pr 2o 3, CeO 2: 3-6.5;
G) at least one actinide elements oxide compound, for example UO 2, ThO 2, Am 2o 3, PuO 2, CmO 2, NpO 2: 3-6.5;
h)HfO 2:5-8;
And the weight percent of the moiety of described glass meets following inequality further:
(1)SiO 2+Al 2O 3<60%
(2)71%<SiO 2+BeO+Na 2O<85.5%
(3)BeO/Na 2O>1.3。
2. glass as claimed in claim 1, is characterized in that, the content of BeO is 16~19%.
3. glass as claimed in claim 1, is characterized in that, the content of BeO is 19%.
4. glass as claimed in claim 1, is characterized in that, Cr 2o 3content be 4~6%.
5. a method of processing the radioactive liquid waste of medium-activity, wherein, selectivity is added with to the described waste liquid roasting of roasting auxiliary agent, thereby acquisition product of roasting, then vitrifying auxiliary agent is added in described product of roasting, in cold-crucible, by described product of roasting and the fusing of described vitrifying auxiliary agent, obtain melted glass, then described melted glass is cooling, obtain thus the beryllium silicate glass described in above-mentioned any one claim.
CN201310514592.4A 2013-10-26 2013-10-26 Comprise Cr 2o 3beryllium silicate glass and process radioactive liquid waste method Active CN103641305B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310514592.4A CN103641305B (en) 2013-10-26 2013-10-26 Comprise Cr 2o 3beryllium silicate glass and process radioactive liquid waste method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310514592.4A CN103641305B (en) 2013-10-26 2013-10-26 Comprise Cr 2o 3beryllium silicate glass and process radioactive liquid waste method

Publications (2)

Publication Number Publication Date
CN103641305A true CN103641305A (en) 2014-03-19
CN103641305B CN103641305B (en) 2016-02-17

Family

ID=50246642

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310514592.4A Active CN103641305B (en) 2013-10-26 2013-10-26 Comprise Cr 2o 3beryllium silicate glass and process radioactive liquid waste method

Country Status (1)

Country Link
CN (1) CN103641305B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580735A (en) * 1978-12-07 1980-06-18 Nippon Electric Glass Co Ltd Solidification treating method for high level radioactive waste
GB2133607A (en) * 1982-11-05 1984-07-25 Ca Atomic Energy Ltd Treatment of liquid radioactive waste with an ion-exchange material adapted to form a glass ceramic
US6137025A (en) * 1998-06-23 2000-10-24 The United States Of America As Represented By The United States Department Of Energy Ceramic composition for immobilization of actinides
CN101218182A (en) * 2005-07-15 2008-07-09 法国原子能委员会 Method for confining a substance by vitrification
CN102272859A (en) * 2008-12-30 2011-12-07 阿雷瓦核废料回收公司 Alumino-borosilicate glass for confining radioactive liquid effluents, and method for processing radioactive effluents

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580735A (en) * 1978-12-07 1980-06-18 Nippon Electric Glass Co Ltd Solidification treating method for high level radioactive waste
GB2133607A (en) * 1982-11-05 1984-07-25 Ca Atomic Energy Ltd Treatment of liquid radioactive waste with an ion-exchange material adapted to form a glass ceramic
US6137025A (en) * 1998-06-23 2000-10-24 The United States Of America As Represented By The United States Department Of Energy Ceramic composition for immobilization of actinides
CN101218182A (en) * 2005-07-15 2008-07-09 法国原子能委员会 Method for confining a substance by vitrification
CN102272859A (en) * 2008-12-30 2011-12-07 阿雷瓦核废料回收公司 Alumino-borosilicate glass for confining radioactive liquid effluents, and method for processing radioactive effluents

Also Published As

Publication number Publication date
CN103641305B (en) 2016-02-17

Similar Documents

Publication Publication Date Title
Duffy Optical basicity of fluorides and mixed oxide–fluoride glasses and melts
CN102763168B (en) Method for the pre-calcining treatment of an aqueous nitric solution including at least one radionuclide and optionally ruthenium
CN103613274A (en) UO2-containing beryllium silicate glass, and radioactive waste liquid treatment method
CN101096049A (en) Low-contamination type continuous casting protection slag
CN103641304A (en) Beryllium silicate glass containing CeO2 and method for treating radioactive waste liquid
US11361871B2 (en) Composition and method for the processing of hazardous sludges and ion exchange media
Gardner et al. Thermal treatment of Cs-exchanged chabazite by hot isostatic pressing to support decommissioning of Fukushima Daiichi Nuclear Power Plant
CN103723915A (en) Beryllium silicate glass containing MnO2 and method for processing radioactive waste liquid
CN103730178A (en) Beryllium silicate glass containing Gd2O3 and radioactive waste liquid treatment method
CN103641305A (en) Beryllium silicate glass containing Cr2O3 and method for treating radioactive waste liquid
CN103739198A (en) Beryllium silicate glass containing RuO2 and method for processing radioactive waste liquid
CN103641306A (en) Beryllium silicate glass containing Pr2O3 and method for treating radioactive waste liquid
KR20140021248A (en) Composition and it's manufacture method of sacrificial concrete for ex-vessel core cooling system
CN103723918A (en) Beryllium silicate glass containing Fe2O3 and method for processing radioactive waste liquid
CN103723916A (en) Beryllium silicate glass containing ThO2 and method for processing radioactive waste liquid
CN103730177A (en) Beryllium silicate glass containing TcO2 and radioactive waste liquid treatment method
CN103723917A (en) Beryllium silicate glass containing PuO2 and method for processing radioactive waste liquid
CN103730179A (en) Beryllium silicate glass containing NPO2 and radioactive waste liquid treatment method
KR102067563B1 (en) Handling method of radioactive solution
Muller et al. Iron Mössbauer redox and relation to technetium retention during vitrification
JP2019043810A (en) Processing method of glass solidified body
RU2386182C2 (en) Silicophosphate glass for immobilising radioactive wastes
Gribble et al. The impact of increased waste loading on vitrified HLW quality and durability
Paterson et al. Novel glass formulations for post-operational clean out of highly active storage tanks
RU2302048C2 (en) Silicate matrix for conditioning radioactive wastes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20170724

Address after: Licheng Town East Street Liyang city 213300 Jiangsu city of Changzhou province No. 182

Patentee after: Liyang Technology Development Center

Address before: Li Town of Liyang City, Jiangsu province 213300 Changzhou City Dongmen Street No. 67

Patentee before: LIYANG ZHEDA ACADEMIA RESEARCH SERVICE CENTER CO., LTD.

TR01 Transfer of patent right