CN103624990B - A self-crimping fiber material prepared using a polymer film - Google Patents

A self-crimping fiber material prepared using a polymer film Download PDF

Info

Publication number
CN103624990B
CN103624990B CN 201310586346 CN201310586346A CN103624990B CN 103624990 B CN103624990 B CN 103624990B CN 201310586346 CN201310586346 CN 201310586346 CN 201310586346 A CN201310586346 A CN 201310586346A CN 103624990 B CN103624990 B CN 103624990B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
film
scratches
fibrous material
method
poly
Prior art date
Application number
CN 201310586346
Other languages
Chinese (zh)
Other versions
CN103624990A (en )
Inventor
韩志超
许杉杉
Original Assignee
无锡中科光远生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种利用聚合物薄膜自卷曲制备纤维材料的方法。 The present invention relates to a process for the preparation of self-crimping fiber material with a polymer film. 本发明通过在酸性水溶液中对图案化的聚-4-乙烯基嘧啶薄膜进行可控自卷曲制备了一种新型的纤维材料;在进行卷曲之前,聚合物薄膜用不同的表面处理技术进行处理(如等离子体化学激活,金属溅射,纳米颗粒沉积等等),然后用金属刀片在薄膜上单向刮伤间隔为几百微米的刮痕,卷曲从平行的刮痕开始最终形成双轴纤维。 The present invention is poly-4-vinyl pyridine film patterned in a controlled self-crimping a new fibrous material prepared by the acidic aqueous solution; prior to crimping, a polymer film with different surface treatment processes ( the plasma chemical activation, metal sputtering, nanoparticle deposition, etc.), and then with a metal blade unidirectional scratches on the film at intervals of several hundred micrometers scratches, curl eventually start from scratch biaxially fibers parallel. 本发明每50cm2的图案化薄膜可以产出1cm3的纤维材料,提高了纤维材料的产量,具有大规模工业应用的前景。 Each 50cm2 patterned film of the present invention can produce 1cm3 of fibrous material, improve the yield of fibrous material, with the prospect of large-scale industrial applications.

Description

一种利用聚合物薄膜自卷曲制备纤维材料的方法 A self-crimping fiber material prepared using a polymer film

技术领域 FIELD

[0001]本发明涉及一种新型纳米纤维的制备方法,尤其涉及一种利用图案化的聚合物薄膜自卷曲制备纤维材料的方法。 [0001] The present invention relates to a novel method for preparing nanofiber, in particular a polymer film prepared from crimped relates to a fiber material patterned.

背景技术 Background technique

[0002]具有先进功能的纤维材料在医学、化学工程、细胞动力学等领域都有非常广泛的应用,智能纤维及其产品能够被开发成用于活体组织再生的支架材料、可控药物释放的容器、电活性人造肌肉的构件元素、传感器和光电子器件等。 [0002] fiber material with advanced features in the field of medicine, chemical engineering, cell dynamics have a very wide range of applications, intelligent fiber and its products can be developed into a living tissue regeneration scaffolds, controlled drug release container, artificial muscle member electrically active elements, sensors, and optoelectronic devices. 在大部分的应用中,功能纤维的先进功能依赖于其复杂的结构和精确的制造程序。 In most applications, advanced features functional fiber depends on its complex structure and precision of the manufacturing process. 电活性纤维由导电聚合物,电解质和电极形成的连续外壳构成,具有空心结构的纤维可以利用核-壳静电纺丝的方法制备,或者通过在具有微孔结构的模板膜的内部沉积聚合物的方法制备。 Continuous housing electroactive polymer fibers formed from a conductive, electrolyte and electrode, having a hollow fiber structure may be utilized Core - Shell electrostatic spinning method, or by depositing a polymer having a template within the microporous structure of the membrane preparation. 这种纤维具有非常广泛的应用如药物传递,催化和红外传导。 Such fibers have a very wide range of applications such as drug delivery, catalysis and infrared conduction.

[0003]具有不同自然属性的微拉伸薄膜的自卷曲近年来已经被广泛研究用于一种制备微米或亚微米宽的管状和卷轴状材料的方法;伴随着起皱和膨胀,薄膜的卷曲构成一种内部的面内压力的松弛模式,对于脱离基底的通常会有结构多相性的薄膜来说卷曲是非常常见的;对于聚合物来说,多相性与薄膜的上部和外面的不同的化学组成有关系。 [0003] Since curling micro stretched film having different natural properties has been studied extensively in recent years or sub-micron wide tubular spool and a process for preparing micron-like material used; corrugation and swelling associated with the film curl an internal configuration of the inner surface of the pressure release mode for multiphase resistance films often have the structure from the substrate is very common for curling; for polymers, of different chemical heterogeneity of the upper film outside and the composition of matter. 现有技术中,附着有功能性微纳米颗粒的纤维状材料的开发方面的研究较少,且这类纤维材料的产量很低。 In the prior art, there are few studies adhered to the development of micro fibrous materials functional nanoparticles, and a low material yield such fibers.

发明内容 SUMMARY

[0004]本发明制备了一种新型的纤维材料,这种材料是利用刺激相应型聚合物如交联聚-4-乙烯基嘧啶的微卷曲制备的,微卷曲是通过在亚毫米宽的条纹中图案化处理的聚-4-乙烯基嘧啶的薄膜的自卷曲形成的。 [0004] A novel fiber material prepared according to the present invention, the use of this material to stimulate the respective type polymers such as crosslinked poly-4-vinyl pyridine micro crimped prepared by micro-crimps in the sub-millimeter wide stripe patterning the poly-4-vinyl pyridine film formed from curling. 在进行卷曲之前,聚合物薄膜可以用不同的表面处理技术进行处理(如等离子体化学激活,金属溅射,纳米颗粒沉积等等)。 Before crimping, the polymer film may be processed (e.g., plasma chemical activation, metal sputtering, nanoparticle deposition, etc.) with different surface treatment technology. 本发明表明,自卷曲程序可以用来开发大量制备具有卷轴状内部结构的聚合物纤维材料,也制备磁性微米颗粒(Fe304)功能化的纤维材料并用于过氧化氢降解的催化剂,纤维材料的力学性能可以通过在乙醇中用氯化铜溶液着色进行增强。 The present invention shows that self-crimping procedure can be used to develop polymer fiber material having an internal structure of a reel-like bulk preparation, also preparing the magnetic microparticles (Fe3O4) functionalized fiber material for the hydrogen peroxide and catalyst degradation, mechanical fiber material performance can be enhanced by coloring cupric chloride solution by ethanol.

[0005]具体制备方法如下: [0005] DETAILED prepared as follows:

[0006] (1)基底的制备:首先制备3 %的聚-4-乙烯基嘧啶(w/v)的三氯甲烷溶液,然后在玻璃基底上利用旋涂的方法(旋涂参数为:速度1000〜3500tpm,时间50〜100s)制备出0.32〜0.45微米厚的聚4-乙烯基嘧啶薄膜,薄膜先用紫外照射(波长=254nm,照射强度=2.0〜 [0006] Preparation of the substrate (1): Preparation of 3% of the first poly-4-vinyl pyridine (w / v) chloroform solution, and then using the spin coating method on a glass substrate (spin parameters: Speed poly-4-vinyl pyridine film 1000~3500tpm, time 50~100s) prepared 0.32~0.45 micron thick film is first irradiated with UV (wavelength = 254nm, irradiation intensity = 2.0~

2.5J/cm2)进行交联,再用空气等离子体(0.065Torr)处理50〜100s进行亲水性改性,用金属刀片在薄膜上单向刮伤间隔为80〜300微米的刮痕。 2.5J / cm2) is crosslinked, and then air plasma (0.065Torr) for processing 50~100s hydrophilic modified with a metal blade spacing unidirectional scratches scratches on the film 80~300 microns.

[0007] (2)纤维材料的制备:基底用一层酸性溶液(pH=2 ;0.1 %的HC1水溶液)浸泡,纤维在酸性溶液的作用下20〜40s就会形成并且肉眼可见,纤维用巴氏灭菌的移液管收集到试管中,然后将悬浮物与2〜5«〖%的氯化铜乙醇溶液混合,这时会发现纤维团聚成相对紧凑的块状结构,将纤维的团聚体转移到蒸馏水中,然后冷冻干燥,最后,样品在犯浴中-80°C低压(10〜15Torr)冷冻干燥。 [0007] Preparation of fibrous material (2): a substrate with a layer of an acidic solution (pH = 2; 0.1% aqueous solution of HC1) soaked fibers 20~40s will form under the effect of the acidic solution and visible, fibers bar pasteurized pipette collected into tubes, and then the suspension with 2 ~ 5 «mixed copper chloride [% ethanol solution, then will find that the fiber aggregate into a relatively compact block structure, the fiber aggregate transferred to distilled water, then freeze-dried, and finally, samples were made in a low pressure bath at -80 ° C (10~15Torr) freeze-dried.

[0008]本发明中,通过在酸性水溶液中对图案化的聚-4-乙烯基嘧啶薄膜进行可控自卷曲制备了一种新型的纤维材料。 [0008] In the present invention, a controlled self-crimping fiber of a new material prepared by poly-4-vinyl pyridine film patterned in an acidic aqueous solution. 卷曲从平行的刮痕开始最终形成双轴纤维,纤维通过用CuCl2盐溶液着色和冷冻干燥的方法进行固定,纤维材料的产量每50cm2的图案化薄膜可以产出lcm3的纤维材料。 Start crimped fibrous material eventually forming a biaxially fibers, is fixed by treatment with CuCl2 coloring salt solution and freeze drying, the yield per 50cm2 fibrous material can produce a patterned film from scratches lcm3 parallel.

具体实施方式 Detailed ways

[0009]为了加深对本发明的理解,下面结合具体实例做进一步的说明。 [0009] For better understanding of the present invention, in conjunction with the following specific examples further illustrate.

[0010] (1)基底的制备:首先制备3 %的聚-4 -乙烯基嘧啶(w / V)的三氯甲烷溶液,然后在玻璃基底上利用旋涂的方法(速度2000tpm,时间70s)制备出0.43微米厚的聚4-乙烯基嘧啶薄膜;薄膜先用紫外照射(波长=254nm,照射强度为2.3J/cm2)进行交联,用空气等离子体(0.065Torr)处理60s进行亲水性改性,再用金属刀片在薄膜上单向刮伤间隔为120微米的刮痕。 Preparation of substrate [0010] (1): Preparation of 3% Poly first -4-- vinyl pyrimidine (w / V) chloroform solution, and then using the spin coating method on a glass substrate (speed 2000tpm, time 70s) poly-4-vinyl pyridine film prepared 0.43 micron thick; first film with ultraviolet radiation (wavelength = 254nm, irradiation intensity of 2.3J / cm2) crosslinking, (0.065Torr) was treated with air plasma for 60s hydrophilic modified, and then a metal blade unidirectional scratches on the film at intervals of 120 microns scratches.

[0011 ] (2)纤维材料的制备:基底用一层酸性溶液(pH=2 ;0.1 %的HC1水溶液)浸泡,纤维在酸性溶液的作用下25秒钟就会形成并且肉眼可见,纤维用巴氏灭菌的移液管收集到试管中,然后将悬浮物与3被%的氯化铜乙醇溶液混合,这时会发现纤维团聚成相对紧凑的块状结构,将纤维的团聚体转移到蒸馏水中,然后冷冻干燥。 [0011] Preparation of fibrous material (2): a substrate with a layer of an acidic solution (pH = 2; 0.1% aqueous solution of HC1) soaking, the fibers will be formed under the action of acid solution for 25 seconds and is visible, fibers bar pasteurized pipette collected into tubes, and then mixing the suspension with 3% ethanol solution of copper chloride, then will find that the fiber aggregate into a relatively compact block structure, the fiber aggregate was transferred to distilled water and then freeze-dried. 最后,样品在仏浴中_80°C低压(12Torr)冷冻干燥。 Finally, the sample Fo bath _80 ° C low pressure (12 Torr) freeze-dried.

Claims (3)

  1. 1.一种聚合物薄膜自卷曲制备纤维材料的方法,步骤如下: (1)基底的制备: 制备质量体积百分数为3%的聚-4-乙烯基嘧啶的三氯甲烷溶液,然后在玻璃基底上利用旋涂的方法制备出0.32〜0.45微米厚的聚4-乙烯基嘧啶薄膜,薄膜先用紫外照射进行交联,再用空气等离子体处理50〜100s进行亲水性改性,用金属刀片在薄膜上单向刮伤间隔为80〜300微米的刮痕; 所述旋涂方法的速度为1000〜3500tpm,旋涂时间为50〜100s; 所述紫外照射的参数为:波长=254nm,照射强度=2.0〜2.5J/cm2; 所述空气等离子体压强为0.065Torr ; (2)纤维材料的制备: 基底用一层酸性溶液浸泡,纤维在酸性溶液的作用下20〜40 s就会形成并且肉眼可见,纤维用巴氏灭菌的移液管收集到试管中,然后将悬浮物与2〜5wt%的氯化铜乙醇溶液混合,将纤维的团聚体转移到蒸馏水中,在N2浴中-80°C 10〜15Torr的压强下冷冻 1. A method of preparing a polymer film from crimped fibrous material, the steps of: preparing a substrate (1): Preparation of a volume percentage of 3% by mass of poly-4-vinyl pyridine in chloroform solution, and then the glass substrate 0.32~0.45 micron thick prepared using the method of spin coating the poly-4-vinyl pyridine film, the first film is crosslinked with ultraviolet radiation, then air plasma treatment for 50~100s hydrophilic modified with a metal blade scratches on the film at intervals of unidirectional scratches 80~300 microns; the speed of the spin coating method is 1000~3500tpm, spin coating time 50~100s; the ultraviolet irradiation parameters are: wavelength = 254nm, irradiation strength = 2.0~2.5J / cm2; the pressure of air plasma 0.065Torr; preparation (2) of fibrous material: a layer of a substrate soaked with an acid solution, the fibers will form 20~40 s under the action of an acidic solution and visible, the fibers were collected with a pipette tube pasteurized in a test tube, then the mixed suspension with a solution of cupric chloride ethanol 2~5wt%, the fiber aggregate was transferred to distilled water, in an N2 bath - frozen pressure of 80 ° C 10~15Torr 燥; 所述酸性溶液为:pH=2,0.1 %的HC1水溶液。 Drying; the acid solution is: pH = 2,0.1% aqueous solution of HC1.
  2. 2.如权利要求1所述的制备纤维材料的方法,其特征在于:所述旋涂方法的参数为:速度2500tpm,时间70s,制备出的聚4-乙烯基嘧啶薄膜厚度为0.41微米。 2. The method of preparing a fiber material according to claim 1, wherein: said spin coating method parameters were: speed 2500tpm, time 70s, poly-4-vinyl pyridine film thickness of 0.41 m was prepared.
  3. 3.如权利要求1所述的制备纤维材料的方法,其特征在于:金属刀片在薄膜上造成的单向刮痕间隔为200微米。 The method of preparing a fiber material according to claim 1, wherein: a metal blade unidirectional scratches caused on the film at intervals of 200 m.
CN 201310586346 2013-11-15 2013-11-15 A self-crimping fiber material prepared using a polymer film CN103624990B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310586346 CN103624990B (en) 2013-11-15 2013-11-15 A self-crimping fiber material prepared using a polymer film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310586346 CN103624990B (en) 2013-11-15 2013-11-15 A self-crimping fiber material prepared using a polymer film

Publications (2)

Publication Number Publication Date
CN103624990A true CN103624990A (en) 2014-03-12
CN103624990B true CN103624990B (en) 2016-04-13

Family

ID=50206612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310586346 CN103624990B (en) 2013-11-15 2013-11-15 A self-crimping fiber material prepared using a polymer film

Country Status (1)

Country Link
CN (1) CN103624990B (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078682A1 (en) * 1981-10-29 1983-05-11 Kanebo, Ltd. Wadding materials
CN1304436A (en) * 1998-06-01 2001-07-18 陶氏化学公司 Method of making washable, dryable elastic erticles
WO2004020708A1 (en) * 2002-08-30 2004-03-11 Toray Industries, Inc. Polylactic acid fiber, yarn package, and textile product
CN1505660A (en) * 2000-05-11 2004-06-16 陶氏化学公司 Method of making elastic articles having improved heat-resistance
CN101301496A (en) * 2007-05-08 2008-11-12 中国科学院化学研究所 Biodegradable and absorbable polymer superfine fibre film with radioactive nuclide marker and preparation and use thereof
CN101805938A (en) * 2010-03-23 2010-08-18 扬州大学 Biocompatible nano-conductive fiber and preparation method thereof
CN102534835A (en) * 2011-11-04 2012-07-04 无锡中科光远生物材料有限公司 Composite fiber material containing multi-walled carbon nanotube and preparation method thereof
CN103113605A (en) * 2013-01-15 2013-05-22 东华大学 Preparation method of PVA (Polyvinyl Acetate)/PEI (Polyethylenimine)-T nanofiber membrane capable of specifically adsorbing mercury ions

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0078682A1 (en) * 1981-10-29 1983-05-11 Kanebo, Ltd. Wadding materials
CN1304436A (en) * 1998-06-01 2001-07-18 陶氏化学公司 Method of making washable, dryable elastic erticles
CN1505660A (en) * 2000-05-11 2004-06-16 陶氏化学公司 Method of making elastic articles having improved heat-resistance
WO2004020708A1 (en) * 2002-08-30 2004-03-11 Toray Industries, Inc. Polylactic acid fiber, yarn package, and textile product
CN101301496A (en) * 2007-05-08 2008-11-12 中国科学院化学研究所 Biodegradable and absorbable polymer superfine fibre film with radioactive nuclide marker and preparation and use thereof
CN101805938A (en) * 2010-03-23 2010-08-18 扬州大学 Biocompatible nano-conductive fiber and preparation method thereof
CN102534835A (en) * 2011-11-04 2012-07-04 无锡中科光远生物材料有限公司 Composite fiber material containing multi-walled carbon nanotube and preparation method thereof
CN103113605A (en) * 2013-01-15 2013-05-22 东华大学 Preparation method of PVA (Polyvinyl Acetate)/PEI (Polyethylenimine)-T nanofiber membrane capable of specifically adsorbing mercury ions

Also Published As

Publication number Publication date Type
CN103624990A (en) 2014-03-12 application

Similar Documents

Publication Publication Date Title
Krasemann et al. Selective ion transport across self-assembled alternating multilayers of cationic and anionic polyelectrolytes
Escalé et al. Recent advances in honeycomb-structured porous polymer films prepared via breath figures
Hammond Engineering materials layer‐by‐layer: Challenges and opportunities in multilayer assembly
Chen et al. Organic–Inorganic Hybrid Hollow Spheres Prepared from TiO2‐Stabilized Pickering Emulsion Polymerization
Li et al. Layer-by-layer assembly for rapid fabrication of thick polymeric films
Reneker et al. Nanometre diameter fibres of polymer, produced by electrospinning
Azzaroni Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields
Cho et al. Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties
Aizenberg Crystallization in patterns: a bio‐inspired approach
De Villiers et al. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly
Liao et al. Engineering superhydrophobic surface on poly (vinylidene fluoride) nanofiber membranes for direct contact membrane distillation
Tang et al. In situ cross-linking of electrospun poly (vinyl alcohol) nanofibers
Ai et al. Highly flexible polyelectrolyte nanotubes
Schlenoff Retrospective on the future of polyelectrolyte multilayers
Cho et al. Polymeric multilayer films comprising deconstructible hydrogen-bonded stacks confined between electrostatically assembled layers
Payne et al. Chitosan: a soft interconnect for hierarchical assembly of nano-scale components
Dubas et al. Multiple membranes from “true” polyelectrolyte multilayers
Georgieva et al. Permeation of macromolecules into polyelectrolyte microcapsules
Cho et al. Fabrication of highly ordered multilayer films using a spin self‐assembly method
Jeon et al. Functional nanoporous membranes for drug delivery
US20010046564A1 (en) Assembly of free-standing films using a layer-by-layer process
Bunz Breath figures as a dynamic templating method for polymers and nanomaterials
Lee et al. Electrospun chitosan nanofibers with controlled levels of silver nanoparticles. Preparation, characterization and antibacterial activity
Krogman et al. Automated process for improved uniformity and versatility of layer-by-layer deposition
Köhler et al. Drastic morphological modification of polyelectrolyte microcapsules induced by high temperature

Legal Events

Date Code Title Description
C10 Entry into substantive examination
C14 Grant of patent or utility model