Connect public, paid and private patent data with Google Patents Public Datasets

Nano vanadium carbide ferrofluid and preparation method thereof

Download PDF

Info

Publication number
CN103606428A
CN103606428A CN 201310486724 CN201310486724A CN103606428A CN 103606428 A CN103606428 A CN 103606428A CN 201310486724 CN201310486724 CN 201310486724 CN 201310486724 A CN201310486724 A CN 201310486724A CN 103606428 A CN103606428 A CN 103606428A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
vanadium
nano
carbide
ferrofluid
method
Prior art date
Application number
CN 201310486724
Other languages
Chinese (zh)
Other versions
CN103606428B (en )
Inventor
唐建成
叶楠
卓海鸥
吴桐
Original Assignee
南昌大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a nano vanadium carbide ferrofluid and a preparation method thereof. High-energy ball milling nano magnetic vanadium carbide with the particle size between 30nm and 60nm is used as magnetic particles in the ferrofluid, the precursor is prepared through an aqueous solution batching method, and nano vanadium carbide is prepared through a direct carbonization method of vanadium oxides; nano magnetic vanadium carbide is prepared after high-energy ball milling, nano magnetic vanadium carbide particles are pre-dispersed in a base solution and subjected to surface modification to obtain the nano vanadium carbide ferrofluid. According to the nano vanadium carbide ferrofluid and the preparation method thereof, the nano vanadium carbide particle size is between 30nm and 60nm, aggregation is not serious, ferromagnetism is provided after high-energy ball milling, the saturated magnetization is 48.02 emu/g, the saturated magnetic field intensity is 4000 Oe, the nano vanadium carbide particles have good dispersity and stability in the base solution after surface modification, the ferrofluid saturated magnetization is 6.87 emu/g, and the ferrofluid can be used for ferrofluid sealing, lubrication, damping and the like and can be used in specific environments such as the strong oxidizing environment.

Description

一种纳米碳化钒磁流体及其制备方法 A nano-vanadium carbide magnetic fluid and its preparation method

技术领域 FIELD

[0001] 本发明属磁性流体材料及制备领域。 [0001] The present invention belongs to the field of magnetic fluid material and preparation.

背景技术 Background technique

[0002] 磁性流体,又称磁流体(Ferrof Iuid),是由纳米级的铁磁性或亚铁磁性微粒,经表面改性后,均匀弥散地分布于液态基液中形成的一种高稳定性胶体体系。 A high-stability of the [0002] magnetic fluid, also known as the magnetic fluid (Ferrof Iuid), is a ferromagnetic or ferrimagnetic microparticles nanoscale, after surface modification, distributed uniformly dispersed in the liquid mixture formed in the base colloidal system. 磁流体由于兼具固体的磁性和液体的流动性,磁场作用下能够表现出许多优良的特殊性能,在电子信息、航空航天、国防军工、精密制造和生物医学等方面表现出良好的应用前景。 Since the magnetic fluid flow both magnetic and solid liquid, the magnetic field can exhibit many excellent special performance, showing good prospects in terms of electronic information, aerospace, defense industry, precision manufacturing and bio-medicine.

[0003] 磁流体按磁性微粒种类可以分为铁氧体磁流体、金属及其合金磁流体和氮化铁磁流体。 [0003] The magnetic fluid according to the kind of magnetic particles can be divided ferrite magnetic fluid, the magnetic fluid and alloys thereof and nitrides ferrofluid. 目前研究和应用最多的是纳米四氧化三铁(Fe3O4)磁流体,它是将共沉淀法制备的纳米Fe3O4磁性微粒经表面改性后,分散于基液中制备而成。 At present most of research and application of nano triiron tetroxide (Fe3O4) magnetic fluid, it is of Fe3O4 magnetic particles prepared by co-precipitation after surface modification, prepared by dispersing in the base fluid. 虽然Fe3O4磁流体具有制备工艺简单方便、成本低廉等优点,但是由于纳米Fe3O4具有很高的比表面积,在制备、贮存和使用过程中容易氧化,变成Fe2O3导致磁性能大大降低,影响使用;另外Fe3O4磁流体对使用环境要求比较高,只能在特定的PH值下保持稳定,过酸或者过碱都会使磁流体失稳,甚至会溶解Fe3O4纳米微粒。 Although Fe3O4 magnetic fluid having a simple manufacturing process, low cost, etc., but because of Fe3O4 with high specific surface area, in the manufacture, storage and use easily oxidized into Fe2O3 magnetic leads can greatly reduce, the use of impact; Further Fe3O4 magnetic fluid is relatively high use of environmental requirements, only stable under certain PH value, or too alkaline peracid magnetic fluid will cause instability, even dissolve Fe3O4 nanoparticles.

[0004] 采用钒氧化物直接碳化法能够制备出纳米碳化钒(VC),高能球磨会使原本不具有磁性的纳米碳化钒微粒产生铁磁性,而且这种铁磁性是不可逆的,即在高能球磨后纳米碳化钒的铁磁性通过退火或者其它工艺也无法消除。 [0004] can be prepared nano-vanadium carbide (VC) using direct carbonization vanadium oxide, high energy ball milling will not originally magnetic nanoparticles ferromagnetism vanadium carbide particles, ferromagnetic and this is irreversible, i.e., high energy ball milling Hou Nami ferromagnetic vanadium carbide can not be eliminated by an annealing or other processes. 利用高能球磨纳米碳化钒微粒的这一特性,制备了纳米碳化f凡磁流体。 High-energy ball milling the nano-vanadium carbide particles characteristics, where f carbide nano magnetic fluid prepared.

发明内容 SUMMARY

[0005] 本发明的目的是,针对上述铁氧体磁流体材料和制备工艺上的不足,提供了一种磁性能好、稳定性优良、耐氧化的新型纳米碳化钒磁流体材料。 Objective [0005] The present invention is, for the lack of the ferrite material and the magnetic fluid manufacturing process, a good magnetic properties, good stability, resistance to oxidation of the magnetic fluid novel nano-vanadium carbide material.

[0006] 本发明还提供了一种工艺简单、可用于工业生产的纳米碳化钒磁流体的制备方法,这一制备方法还适用于其他表面改性碳化物磁流体的制备,适用范围广泛。 [0006] The present invention also provides a simple process, industrial production method of vanadium carbide nano magnetic fluid may be used for this production method is also applicable to prepare other surface modification of the magnetic fluid in a carbide, a wide range.

[0007] 本发明是通过以下技术方案实现的。 [0007] The present invention is achieved by the following technical solutions.

[0008] 本发明所述的纳米碳化钒磁流体的成分是:基液、纳米磁性碳化钒微粒和表面改性剂;其中纳米磁性碳化钒微粒的粒径为30〜60nm,基液可以是水、二甲基硅油或者煤油。 [0008] The nano-vanadium carbide content of the magnetic fluid of the present invention is: a base fluid, nano-magnetic particles and a vanadium carbide surface modifying agent; wherein the nanomagnetic particle diameter of the vanadium carbide particle 30~60nm, the base fluid may be water , dimethyl silicone oil or kerosene.

[0009] 纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10。 [0009] The mass ratio of the vanadium carbide particles and nano-magnetic base fluid is 1: 40~3: 10.

[0010] 表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2。 [0010] The surface modifier of the magnetic nano-vanadium carbide particle mass ratio of 1: 20~1: 2.

[0011] 本发明采用的具体制备步骤如下。 DETAILED preparation steps employed in the invention [0011] This follows.

[0012] (I)配料:采用水溶液配料的方法制备前驱体粉末。 [0012] (I) Ingredients: The method of preparing an aqueous solution formulation of the precursor powder. 按照钒源和碳源中钒:碳的摩尔比为1: 3〜1:1的比例,将一定量的三氧化二钒(或其他钒源,如偏钒酸铵[NH4VO3]、多钒酸铵[(NH4)2V6O16]、草酸氧钒[VOC2O4]等)与葡萄糖(或其他水溶性碳源,如果糖、蔗糖、水溶酚醛树脂等),溶于加热的去离子水中,电动搅拌使原料充分混合,去离子水的温度应不低于80°C以保证混料均匀。 Vanadium and carbon source according to vanadium: carbon molar ratio of 1: 3~1: 1 ratio, the amount of vanadium trioxide (V or other sources, such as ammonium metavanadate [NH4VO3], multi-vanadate ammonium [(NH4) 2V6O16], vanadyl oxalate [VOC2O4], etc.) with glucose (or other soluble carbon source such as fructose, sucrose, water-soluble phenol resin), was dissolved in deionized water heating, electric sufficiently stirring the raw material mixing, the temperature of the deionized water should not be less than 80 ° C to ensure a uniform blend. 原料混合均匀后采用喷雾干燥的方法制备出碳化要用的前驱体粉末。 Raw materials are mixed uniformly spray drying method for preparing a precursor powder of carbonized use.

[0013] (2)碳化:将步骤(I)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550°C保温lh,使前驱体粉末分解成钒氧化物和游离活性炭,然后升至碳化温度为1100〜1300°C,升温速率8〜10°C /min,碳化保温时间为2〜5h。 [0013] (2) carbonization: the step (I) prepared in precursor powder was placed in a tube furnace in an atmosphere for carbonization under a hydrogen atmosphere, using stepwise heating, the first at 550 ° C incubation LH, so that precursor vanadium oxide powder and broken down into free active carbon, the carbonization temperature is then raised to 1100~1300 ° C, heating rate of 8~10 ° C / min, holding time of carbonization 2~5h. 碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30 〜60nmo After the carbonization, passivated with an inert gas before the powder is released, the resulting product is a nano-vanadium carbide particle, a particle size of 30 ~60nmo

[0014] (3)高能球磨:将步骤(2)中制得的纳米碳化钥;微粒在不锈钢球磨罐中高能球磨5〜8h,球料比10: I,转速400r/min,球磨后所得产物为纳米磁性碳化f凡微粒。 [0014] (3) high-energy ball milling: the step (2) carbonized prepared nano key; particles in a stainless steel ball mill jar energy ball milling 5~8h, Charge Ratio 10: I, the rotational speed of 400r / min, the resultant product was milled where f is the magnetic nanoparticles carbide particles.

[0015] (4)洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10的比例,加入一定量的基液,机械搅拌的同时用不同频率的超声波振荡20〜60 min,进行预分散,制备成纳米磁性碳化钒磁浆。 [0015] (4) washing and pre-dispersed: sedimentation using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, remove carbon and other non magnetic impurities; magnetic nanoparticles according carbonized mass ratio of fine particles and the solution of the vanadium was 1: 10 ratio, a certain amount of base fluid, a mechanical stirring while shaking 20~60 min with ultrasonic waves of different frequencies, pre-dispersion to prepare a magnetic nanoparticles carbide: 40~3 vanadium magnetic paint. 其中基液可以是水、二甲基硅油或者煤油。 Wherein the base fluid may be water, dimethyl silicone oil or kerosene.

[0016] (5)表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60〜85°C,改性时间为2〜5h,产物为纳米碳化钒磁流体。 [0016] (5) Surface modification: In accordance with the particle surface modifier mass nanomagnetic vanadium carbide ratio of 1: 2 ratio, the surface modifying agent is added to the pre-dispersed magnetic nanomagnetic vanadium carbide slurry: 20~1 , electric surface modification reaction with stirring, the reaction temperature is 60~85 ° C, the modified time 2~5h, vanadium carbide product nano magnetic fluid. 三种基液对应的表面改性剂分别为:水一油酸钠、二甲基硅油一娃烷偶联剂KH-550+羧基硅油、煤油一油酸。 Surface modifiers corresponding to three primary solution are: sodium water-oil, a dimethicone baby silane coupling agent KH-550 + silicone carboxyl, kerosene monooleate.

[0017] 本发明采用水溶液配料法制备前驱体,在碳化升温过程中前驱体中的钒源会转变为氧化钒,碳源会转变为活性炭;钒氧化物直接碳化法制备纳米碳化钒,由于溶液配料后钒源和碳源是分子级的均匀混合,大大缩短了反应的扩散距离,降低了反应温度和反应时间,抑制了碳化过程中晶粒的长大,从而得到纳米级碳化钒。 [0017] The present invention is an aqueous formulation was prepared by Method precursor, the carbonization process of heating the precursor source of vanadium in the vanadium oxide will be converted to, will be converted into activated carbon; directly vanadium oxide prepared by carbonization nano vanadium carbide, since the solution after the vanadium and carbon source ingredients are uniformly mixed in molecular level, greatly reducing the diffusion distance of the reaction, the reaction temperature and reducing the reaction time restrained the growth of crystal grains during the carbonization, to obtain nanoscale vanadium carbide. 高能球磨后制得纳米磁性碳化钒,然后将纳米磁性碳化钒微粒预分散于基液中,表面改性后得到纳米碳化钒磁流体。 Nanomagnetic obtained after high energy ball milling, vanadium carbide, vanadium carbide and the nanomagnetic particles pre-dispersed in the base solution to obtain nano-vanadium carbide surface treated magnetic fluid. 高能球磨促使C进入V的晶格,使V的晶格常数d膨胀,产生交换偶合效应使原本没有磁性的碳化钒具有铁磁性。 C into the lattice energy ball milling causes the V, D V lattice constant expansion of the exchange coupling to produce vanadium carbide had no effect of magnetic ferromagnetic. 表面改性反应会在纳米磁性碳化钒微粒表面形成包覆层,增加碳化钒与基液的亲和性,减小碳化钒与基液之间的密度差,并且具有一定的空间位阻作用,从而维持磁流体的稳定性,防止产生团聚和沉降。 The reaction surface modification coating layer formed on the surface of the nanomagnetic particles, vanadium carbide, vanadium carbide increases the affinity with the base liquid, the density difference between the reduced vanadium carbide base fluid difference, and has some steric hindrance, thereby maintaining the stability of the magnetic fluid, prevent agglomeration and sedimentation.

[0018] 本发明制备出的纳米碳化钒微粒粒径为30〜60nm,而且团聚并不严重,经高能球磨后具有铁磁性,饱和磁化强度为48.02emu/g,饱和磁场强度40000e。 [0018] The nano-vanadium carbide particle diameter of the present invention is prepared by 30~60nm, but not serious agglomeration, high energy ball milling after having ferromagnetic, saturation magnetization 48.02emu / g, saturation magnetization 40000e. 表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度6.87emu/g。 Hou Nami surface-modified magnetic particle of vanadium carbide in the base liquid having good dispersibility, good stability of the magnetic fluid, allowed to stand at 30 days gravitational field, magnetic field was allowed to stand for one week, no significant settling and agglomeration, saturation magnetization of magnetic fluid 6.87emu / g. 采用此发明方法制备的纳米碳化钒磁流体,磁性能好、稳定性优良并且耐氧化,能够有效的推进磁流体技术的发展,可应用于磁流体密封、磁流体润滑和磁流体阻尼等,并可应用于强氧化性等特殊的环境下。 Prepared by the method of this invention, vanadium carbide nano magnetic fluid, good magnetic properties, excellent stability and resistance to oxidation, can effectively promote the development of technology, the magnetic fluid may be applied to the magnetic fluid seal, the magnetic fluid lubrication and damping magnetic fluid, and under special circumstances it may be used in strong oxidizing and the like.

附图说明 BRIEF DESCRIPTION

[0019] 图1为实施例1制备出的纳米磁性碳化钒的TEM照片。 [0019] FIG. 1 is a TEM photograph of the nano-magnetic vanadium carbide prepared in Example 1.

[0020] 图2为实施例1制备出的纳米磁性碳化钒的磁滞回线。 [0020] The embodiment of FIG. 2 is a hysteresis loop of magnetic nano vanadium carbide prepared in Example 1.

[0021] 图3为实施例1制备出的纳米碳化钒水基磁流体的磁滞回线。 Hysteresis loop vanadium carbide nano aqueous ferrofluid [0021] FIG. 3 is prepared as in Example 1. 具体实施方式 detailed description

[0022] 本发明将通过以下实施例作进一步说明,但本发明的保护范围不限于此。 [0022] The present invention is further illustrated by the following examples for, but the scope of the invention is not limited thereto.

[0023] 实施例1。 [0023] Example 1.

[0024] 称取三氧化二钒30g、无水葡萄糖12g,溶于80°C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0024] vanadium trioxide was weighed 30g, anhydrous glucose 12g, was dissolved to 80 ° C deionized water, stirring the raw material after the electric sufficiently mixed by spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550°C保温Ih后升至碳化温度为1200°C,升温速率10°C /min,碳化保温时间3h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 ° C the carbonization temperature is 1200 ° C, heating rate 10 ° C / min, holding time carbonization 3h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨6h,球料比10:1,转速400r/min。 The obtained after carbonization vanadium carbide particles in a stainless steel ball mill jar energy ball milling 6h, Charge Ratio 10: 1, speed of 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。 Sedimentation using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, remove carbon and other non magnetic impurities, and then added to the base fluid a certain percentage of water, while stirring with a mechanical ultrasonic oscillations of different frequencies of 30 min, the pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75°C,改性时间为2.5h,其中各成分的比例为:基液水质量分数为80%,纳米磁性碳化钒质量分数为17%,表面改性剂油酸钠质量分数为3%,表面改性后产物即为水基纳米碳化钒磁流体。 A certain percentage of the surface modifying agent is added to the pre-dispersed sodium oleate nanomagnetic vanadium carbide slurry magnetic, electric surface modification reaction with stirring, the temperature of the surface modification is 75 ° C, the modified time of 2.5h, wherein each ratio of the component: water-based liquid mass fraction of 80%, the magnetic nano-vanadium carbide content of 17%, a surface modifier oleate content was 3% vanadium carbide product that is water-based nano magnetic surface treated fluid. 所得的纳米磁性碳化钒饱和磁化强度为48.02emu/g,饱和磁场强度40000e。 Magnetic nano-vanadium carbide saturation magnetization of the resulting 48.02emu / g, saturation magnetization 40000e. 表面改性后纳米磁性碳化钒微粒在基液中具有很好的分散性,磁流体稳定性良好,重力场下静置30天、强磁场下静置一周,均未出现明显的沉降和团聚,磁流体饱和磁化强度为6.87emu/g。 Hou Nami surface-modified magnetic particle of vanadium carbide in the base liquid having good dispersibility, good stability of the magnetic fluid, allowed to stand at 30 days gravitational field, magnetic field was allowed to stand for one week, no significant settling and agglomeration, a saturation magnetization of magnetic fluid 6.87emu / g.

[0025] 实施例2。 [0025] Example 2.

[0026] 称取偏钒酸铵20g、无水葡萄糖Sg,溶于80°C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 After [0026] ammonium metavanadate was weighed 20g, anhydrous glucose Sg, dissolved in deionized water to 80 ° C, the raw material power was stirred thoroughly mixed by spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550°C保温Ih后升至碳化温度为1150°C,升温速率8°C /min,碳化保温时间4h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 ° C the carbonization temperature is 1150 ° C, heating rate 8 ° C / min, holding time carbonization 4h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨7h,球料比10:1,转速400r/min。 The obtained after carbonization vanadium carbide particles in a stainless steel ball mill jar 7H energy ball milling, ball to powder ratio of 10: 1, speed of 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液煤油中,机械搅拌的同时用不同频率的超声波振荡20 min,进行预分散。 Sedimentation while using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, remove carbon and other non magnetic impurities, and then added to the base fluid a certain percentage of kerosene, mechanically stirred 20 min by an ultrasonic oscillation of different frequencies, preliminary dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸,电动搅拌下进行表面改性反应,表面改性温度为65°C,改性时间为4h,其中各成分的比例为:基液煤油质量分数为80%,纳米磁性碳化钒质量分数为16%,表面改性剂油酸质量分数为4%,表面改性后产物即为煤油基纳米碳化钒磁流体。 Was added to a certain percentage of the pre-dispersed magnetic nanoparticles in magnetic paint vanadium carbide surface modifiers oleic acid, carried out at a stirring power surface modification reaction, the modified surface temperature of 65 ° C, the modified time of 4h, where each component ratio: kerosene base liquid fraction is 80% by mass, the magnetic nano-vanadium carbide content of 16% oleic acid mass fraction of the surface modifier is 4%, the product is the kerosene-based nano-vanadium carbide surface treated magnetic fluid. 所得的磁流体饱和磁化强度6.32emu/g。 The resulting ferrofluid saturation magnetization 6.32emu / g.

[0027] 实施例3。 [0027] Example 3.

[0028] 称取多钒酸铵30g、无水葡萄糖15g,溶于80°C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0028] Multi-vanadate weighed 30g, anhydrous glucose 15g, was dissolved to 80 ° C deionized water, stirring the raw material after the electric sufficiently mixed by spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550°C保温Ih后升至碳化温度为1300°C,升温速率10°C /min,碳化保温时间2.5h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 ° C the carbonization temperature is 1300 ° C, heating rate 10 ° C / min, holding time carbonization 2.5h. 将碳化后制得的碳化钒微粒在不锈钢球磨罐中高能球磨8h,球料比10:1,转速400r/min。 The obtained after carbonization vanadium carbide particles in a stainless steel ball mill jar energy ball milling 8h, Charge Ratio 10: 1, speed of 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液二甲基硅油中,机械搅拌的同时用不同频率的超声波振荡40 min,进行预分散。 Sedimentation using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, remove carbon and other non magnetic impurities, and then added to a proportion of a base fluid in dimethicone, mechanical while stirring, shaking 40 min with ultrasonic waves of different frequencies, preliminary dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂硅烷偶联剂KH-550和羧基硅油,电动搅拌下进行表面改性反应,表面改性温度为80°C,改性时间为3h,其中各成分的比例为:基液二甲基硅油质量分数为76%,纳米磁性碳化钒质量分数为20%,表面改性剂硅烷偶联剂KH-550质量分数为2%、羧基硅油质量分数为2%,表面改性后产物即为硅油基纳米碳化钒磁流体。 Was added to the pre-dispersed slurry nanomagnetic vanadium carbide in a certain percentage of the magnetic surface modifier and a silane coupling agent KH-550 silicone carboxyl, electric surface modification reaction with stirring, the temperature of the surface modification is 80 ° C, modified time was 3h, wherein the proportion of each component is: dimethyl silicone oil base liquid fraction of 76% by mass, the magnetic nano-vanadium carbide content of 20%, silane coupling agent KH-550 surface modifier mass fraction of 2%, a carboxyl group content of 2% silicone oil, silicone-based nano-vanadium carbide product to be surface treated magnetic fluid. 所得磁流体饱和磁化强度7.17emu/g。 The resulting saturation magnetization of the magnetic fluid 7.17emu / g.

[0029] 实施例4。 [0029] Example 4.

[0030] 称取草酸氧钒25g、无水葡萄糖Sg,溶于80°C的去离子水中,电动搅拌使原料充分混合后,采用喷雾干燥的办法制备出碳化所需的前驱体。 [0030] Weigh vanadyl oxalate 25g, anhydrous glucose Sg, dissolved in deionized water to 80 ° C, after stirring for electric feedstock mixed, spray drying to prepare the desired precursor carbonization. 将前驱体粉末放入管式气氛炉中,通入氢气进行碳化,550°C保温Ih后升至碳化温度为1250°C,升温速率10°C/min,碳化保温时间3.5h。 The precursor powder was placed in a tubular atmosphere furnace, introducing hydrogen carbonization, after Ih incubation was raised to 550 ° C the carbonization temperature is 1250 ° C, heating rate 10 ° C / min, holding time carbonization 3.5h. 将碳化后制得的碳化钥;微粒在不锈钢球磨罐中高能球磨5h,球料比10:1,转速400r/min。 The obtained carbonized after carbonization key; particles in a stainless steel ball mill jar energy ball milling 5h, Charge Ratio 10: 1, speed of 400r / min. 利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质,然后加入到一定比例的基液水中,机械搅拌的同时用不同频率的超声波振荡30 min,进行预分散。 Sedimentation using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, remove carbon and other non magnetic impurities, and then added to the base fluid a certain percentage of water, while stirring with a mechanical ultrasonic oscillations of different frequencies of 30 min, the pre-dispersion. 按照一定比例向预分散的纳米磁性碳化钒磁浆中加入表面改性剂油酸钠,电动搅拌下进行表面改性反应,表面改性温度为75°C,改性时间为3h,其中各成分的比例为:基液水质量分数为88%,纳米磁性碳化钒质量分数为10%,表面改性剂油酸钠质量分数为2%,表面改性后产物即为水基纳米碳化钒磁流体。 A certain percentage of the surface modifying agent is added to the pre-dispersed sodium oleate nanomagnetic vanadium carbide slurry magnetic, electric surface modification reaction with stirring, the temperature of the surface modification is 75 ° C, the modified time of 3h, wherein the components ratio: water-based liquid mass fraction of 88%, carbide, vanadium nanomagnetic mass fraction of 10%, a surface modifier oleate mass fraction of 2% water-based nano-vanadium carbide product to be surface treated magnetic fluid . 所得磁流体饱和磁化强度4.03emu/g。 The resulting saturation magnetization of the magnetic fluid 4.03emu / g.

Claims (2)

1.一种纳米碳化f凡磁流体,其特征是成分是:基液、纳米磁性碳化f凡微粒和表面改性剂;所述的纳米磁性碳化钒微粒的粒径为30〜60nm,基液是水、二甲基硅油或者煤油;其中: 纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10; 表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2。 A magnetic fluid where the nanometer f carbide, characterized in that the components are: a base fluid, where f nanomagnetic carbide particles and a surface modifying agent; the nanomagnetic particle diameter of the vanadium carbide particle 30~60nm, base fluid water, kerosene or simethicone; wherein: a mass ratio of the vanadium carbide particles and nano-magnetic base fluid is 1: 40~3: 10; nanomagnetic surface modifier to vanadium carbide particle mass ratio of 1: 20~1 : 2.
2.权利要求1所述的纳米碳化钒磁流体的制备方法,其特征是步骤如下: (1)配料:按照钒源和碳源中钒:碳的摩尔比为1: 3〜1:1的比例,将三氧化二钒、偏钒酸铵、多钒酸铵或草酸氧钒与葡萄糖、果糖、蔗糖或水溶酚醛树脂,溶于温度高于80°C的去离子水中,电动搅拌使原料充分混合,然后采用喷雾干燥的方法制备出碳化要用的前驱体粉末; (2)碳化:将步骤(I)中制得的前驱体粉末放入管式气氛炉中,在氢气气氛下进行碳化,采用分步升温,先在550°C保温lh,然后升至碳化温度为1100〜1300°C,升温速率8〜IO0C /min,碳化保温时间为2〜5h ;碳化结束后,在粉末出炉前用惰性气体进行钝化处理,所得产物为纳米碳化钒微粒,其粒径为30〜60nm ; (3)高能球磨:将步骤(2)中制得的纳米碳化钥;微粒在不锈钢球磨罐中高能球磨5〜8h,球料比10: I,转速400r/min,球磨后所得产物为纳米 Preparation of vanadium carbide nano magnetic fluid according to claim 1, wherein the following steps: (1) Ingredients: vanadium in accordance with vanadium and carbon source: carbon molar ratio of 1: 3~1: 1 the proportion of the vanadium trioxide, ammonium metavanadate, ammonium vanadate or multi vanadyl oxalate with glucose, fructose, sucrose, or water-soluble phenolic resin, a temperature above was dissolved in deionized water to 80 ° C, the raw material sufficiently stirring motor mixed, and then using the precursor powder prepared carbonized use of spray-drying method; (2) carbonization: the step (I) prepared in precursor powder was placed in a tube furnace in an atmosphere for carbonization under a hydrogen atmosphere, using stepwise heating, the first insulation LH at 550 ° C, the carbonization temperature is then raised to 1100~1300 ° C, heating rate 8~IO0C / min, a holding time of carbonization 2~5h; after carbonization furnace for use in the powder before passivation inert gas, the resulting product is a nano-vanadium carbide particle, a particle size of 30~60nm; (3) high-energy ball milling: the step (2) carbonized prepared nano key; particle energy ball milling in a stainless steel ball mill jar 5~8h, ball feed ratio of 10: I, the rotational speed of 400r / min, the resulting product was ball milled nano 性碳化f凡微粒; (4)洗涤和预分散:利用强磁场的沉降作用,将纳米磁性碳化钒微粒用二次去离子水和无水乙醇反复洗涤,除去余碳和其他非磁性杂质;按照纳米磁性碳化钒微粒与基液的质量比为1: 40〜3: 10的比例,加入基液水、二甲基硅油或者煤油,机械搅拌的同时用不同频率的超声波振荡20〜60 min,进行预分散,制备成纳米磁性碳化f凡磁衆; (5)表面改性:按照表面改性剂与纳米磁性碳化钒微粒质量比为1: 20〜1: 2的比例,向预分散的纳米磁性碳化钒磁浆中加入表面改性剂,电动搅拌下进行表面改性反应,反应温度为60〜85°C,改性时间为2〜5h,产物为纳米碳化钒磁流体; 三种基液对应的表面改性剂分别为:水一油酸钠、二甲基硅油一硅烷偶联剂KH-550+羧基硅油、煤油一油酸。 Where the particles of carbide f; (4) washing and pre-dispersed: sedimentation using a strong magnetic field, the magnetic nano-vanadium carbide particles with deionized water and the second ethanol repeatedly, I remove carbon and other non magnetic impurities; according mass ratio of the vanadium carbide particles and nano-magnetic substrate solution is 1: 10 ratio of water added to the base liquid, dimethyl silicone oil or kerosene, while stirring mechanically shaking 20~60 min with ultrasonic waves of different frequencies, for: 40~3 pre-dispersion to prepare a magnetic nanoparticles carbide f where all magnetic; (5) the surface-modified: mass surface modifier particles in accordance with the nanomagnetic carbide, vanadium ratio of 1: 20~1: 2 ratio, the pre-dispersed magnetic nanoparticles magnetic paint was added vanadium carbide surface modifiers, surface modification reaction was carried out under stirring power, the reaction temperature is 60~85 ° C, the modified time 2~5h, vanadium carbide product nano magnetic fluid; liquid corresponding to three primary surface modifiers are: a sodium water oil, a silane coupling agent dimethicone KH-550 + silicone carboxyl, kerosene monooleate.
CN 201310486724 2013-10-17 2013-10-17 A nano-vanadium carbide magnetic fluid and its preparation method CN103606428B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310486724 CN103606428B (en) 2013-10-17 2013-10-17 A nano-vanadium carbide magnetic fluid and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310486724 CN103606428B (en) 2013-10-17 2013-10-17 A nano-vanadium carbide magnetic fluid and its preparation method

Publications (2)

Publication Number Publication Date
CN103606428A true true CN103606428A (en) 2014-02-26
CN103606428B CN103606428B (en) 2016-01-20

Family

ID=50124644

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310486724 CN103606428B (en) 2013-10-17 2013-10-17 A nano-vanadium carbide magnetic fluid and its preparation method

Country Status (1)

Country Link
CN (1) CN103606428B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101198442A (en) * 2005-07-22 2008-06-11 Tdy工业公司 Composite materials
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560160B2 (en) * 2002-11-25 2009-07-14 Materials Modification, Inc. Multifunctional particulate material, fluid, and composition
CN101198442A (en) * 2005-07-22 2008-06-11 Tdy工业公司 Composite materials

Also Published As

Publication number Publication date Type
CN103606428B (en) 2016-01-20 grant

Similar Documents

Publication Publication Date Title
Maensiri et al. Egg white synthesis and photoluminescence of platelike clusters of CeO2 nanoparticles
Li et al. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from iron alkoxide precursors
Sapieszko et al. Preparation of well-defined colloidal particles by thermal decomposition of metal chelates. I. Iron oxides
Zhang et al. Fabrication and characterization of Fe3O4 octahedrons via an EDTA-assisted route
Deng et al. Solvothermal in situ synthesis of Fe3O4-multi-walled carbon nanotubes with enhanced heterogeneous Fenton-like activity
CN1387968A (en) Prepn of superfine spherical silver powder
Zhang et al. Preparation of copper nanoparticles by chemical reduction method using potassium borohydride
Parada et al. Microwave-assisted synthesis and magnetic study of nanosized Ni/NiO materials
Esmaeili et al. Modified single-phase hematite nanoparticles via a facile approach for large-scale synthesis
Tang et al. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation
Gong et al. Strategy for ultrafine Ni fibers and investigation of the electromagnetic characteristics
JP2005281786A (en) Magnetic metal particle and production method therefor
Zhang et al. Single phase Mn3O4 nanoparticles obtained by pulsed laser ablation in liquid and their application in rapid removal of trace pentachlorophenol
CN1565782A (en) Method for preparing nanometer tungsten combined powder by collosoling, spraying and desiccating and hot reducing
CN101049976A (en) Method for preparing superfine even Fe2O3
Kim et al. Low-temperature crystallization of barium ferrite nanoparticles by a sodium citrate-aided synthetic process
CN101337695A (en) Method for preparing nanometer ferroferric oxide microballoons with particle diameter adjustable by microwave
Liu et al. Fabrication and photoluminescence properties of hollow Gd 2 O 3: Ln (Ln= Eu3+, Sm3+) spheres via a sacrificial template method
Santosh et al. Effect of cation proportion on the structural and magnetic properties of ni-zn ferrites nano-size particles prepared by co-precipitation technique
US3672867A (en) Submicron ferromagnetic alloy particles containing cobalt,boron,and zinc
Wang et al. Effect of MWCNTs content on the magnetic and wave absorbing properties of ferrite-MWCNTs composites
Sakar et al. Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method
CN101569937A (en) Preparation method for high-dispersing silver powder used for conductive silver paste
CN102786097A (en) Hydrothermal preparation method for carbon cladded nanometer ferriferrous oxide particles
Senapati et al. Capping agent assisted and Ag-catalyzed growth of Ni nanoflowers

Legal Events

Date Code Title Description
C06 Publication
C14 Grant of patent or utility model