CN103594195A - Method for making flexible, transparent and conductive film made of metal nanowires - Google Patents

Method for making flexible, transparent and conductive film made of metal nanowires Download PDF

Info

Publication number
CN103594195A
CN103594195A CN 201310520795 CN201310520795A CN103594195A CN 103594195 A CN103594195 A CN 103594195A CN 201310520795 CN201310520795 CN 201310520795 CN 201310520795 A CN201310520795 A CN 201310520795A CN 103594195 A CN103594195 A CN 103594195A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
flexible
transparent
metal
substrate
metal nanowires
Prior art date
Application number
CN 201310520795
Other languages
Chinese (zh)
Inventor
郭晓阳
刘星元
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells

Abstract

The invention provides a method for making a flexible, transparent and conductive film made of metal nanowires, and belongs to the technical field of conductive film materials. A layer of metal nanowire film is made on a rigid plane substrate according to a solution processing method, then a layer of transparent and flexible substrate is made on the metal nanowire film according to the solution processing method, and finally the flexible substrate with the metal nanowires on the surface is removed from the plane substrate to form the flexible, transparent and conductive film made of the metal nanowires. Compared with a traditional flexible, transparent and conductive film made of metal nanowires directly on a flexible substrate, the flexible, transparent and conductive film made of the metal nanowires through the method has the advantages of being high in surface flatness, large in adhesion force and the like and effectively solving the problems that a flexible, transparent and conductive film made of metal nanowires is large in roughness and small in adhesion force. The flexible, transparent and conductive film made of the metal nanowires has the potential of being applied in the fields of photoelectric devices like film solar cells and organic light-emitting diodes.

Description

一种金属纳米线柔性透明导电薄膜的制备方法 The method of preparing a flexible transparent conductive thin film of metal nanowires

技术领域 FIELD

[0001] 本发明涉及透明导电薄膜材料技术领域,具体涉及一种金属纳米线柔性透明导电薄膜的制备方法。 [0001] The present invention relates to a technical field of the transparent conductive thin film material, particularly relates to a method of preparing a flexible transparent conductive thin film of metal nanowires.

背景技术 Background technique

[0002] 透明导电薄膜是一种重要的光电功能薄膜,被广泛的应用于液晶显示、有机发光二极管、触摸屏、薄膜太阳能电池等光电器件中。 [0002] The transparent conductive film is an important feature of the photoelectric films are widely used in a liquid crystal display, an organic light emitting diode, a touch screen, a thin film solar cell and other optoelectronic devices. 随着性能的提高及其在低成本、柔性化及轻量化等方面的快速发展,光电器件对透明导电薄膜的性能也提出了更高的要求。 With the rapid development and improved performance in terms of cost, flexibility and weight reduction of the photovoltaic device performance of the transparent conductive film is also a higher demand. 目前最常用并已经商品化的透明导电薄膜是铟锡氧化物(ITO)薄膜,该薄膜具有较高的可见光透过率和较低的电阻率,常被用在有机太阳能电池和有机发光二极管等光电器件中作为透明电极。 The most commonly used and has been commercialized transparent conductive thin film is indium tin oxide (ITO) film which has a high visible light transmittance and low resistivity, is often used in organic solar cells and organic light emitting diode optoelectronic devices as the transparent electrode. 然而传统的ITO薄膜不能满足未来光电器件低成本柔性化的需求。 However, the conventional ITO film photovoltaic device can not meet the future requirements of low-cost flexible. 这主要是由于ITO薄膜较脆,在受力弯曲时面电阻会急剧增大,这就影响了其在柔性器件中的应用;另外,由于铟元素稀缺,使得ITO的制备成本逐年增加。 This is mainly because the ITO film is brittle, the force-receiving surface of the bending resistance increases dramatically, which affects its application in flexible devices; Further, since scarcity of indium element, so that the production cost is increasing year by year ITO. 因此,发展无铟低成本且耐弯曲的柔性透明导电薄膜将为未来光电器件的发展起到有益的促进作用。 Therefore, the development of low-cost indium-free and resistant to bending flexible transparent conductive film would play a useful role in promoting the future development of the photovoltaic device.

[0003]目前报道的新型透明导电薄膜主要有导电聚合物、碳纳米管、石墨烯、金属纳米线等,其中金属纳米线透明导电薄膜具有较高的透过率和较低的面电阻,目前最好的金属纳米线透明导电薄膜可以在实现89%的透过率的同时获得20 Ω / □的面电阻(NanoRes.2010, 3,564)。 [0003] The novel transparent conductive film is far reported are mainly conductive polymers, carbon nanotubes, graphene, metal nanowires, wherein the metal nanowires transparent conductive thin film having a high transmittance and low sheet resistance, the current preferably the metal nanowires can be obtained transparent conductive thin film sheet resistance of 20 Ω / □ in (NanoRes.2010, 3,564) at the same time to achieve 89% transmittance. 然而基于柔性基底的金属纳米线透明导电薄膜也存在着表面粗糙度大、附着力低以及环境稳定性差等明显的缺点,严重限制了其在光电器件中的应用。 However, the transparent conductive thin film based on metal nanowires flexible substrate there are also a large surface roughness, low adhesion and poor environmental stability significant disadvantage severely limits its application in photovoltaic devices. 因此开发表面形貌好、附着力及稳定性高的金属纳米线柔性透明导电薄膜具有重要的应用价值,将明显改善基于柔性金属纳米线电极的光电器件的性能,并推动这类透明导电薄膜在其他领域的应用及其产业化发展。 Thus the development of good surface morphology, adhesion and high stability of the metal nanowires flexible transparent conductive film has a great value, will significantly improve the performance of the photovoltaic device based on flexible metallic nanowires electrodes, and a transparent conductive film such push application and industrial development in other areas.

发明内容 SUMMARY

[0004] 本发明提供一种金属纳米线柔性透明导电薄膜的制备方法。 [0004] The present invention provides a method of preparing a flexible transparent conductive thin film of metal nanowires.

[0005] 本发明的金属纳米线柔性透明导电薄膜的制备方法的技术方案具体如下: [0005] A method aspect of flexible transparent conductive film of the present invention, metallic nanowires as follows:

[0006] 一种金属纳米线柔性透明导电薄膜的制备方法,包括以下步骤: [0006] A method of preparing a flexible transparent conductive thin film metal nanowires, comprising the steps of:

[0007] 配制金属纳米线溶液,采用溶液加工方法在刚性平面基板上制备一层金属纳米线透明导电薄膜; [0007] formulated in a metal nanowire solution, a layer of metal nanowires on a transparent conductive film prepared by solution rigid planar substrate processing method;

[0008] 然后采用溶液加工方法在金属纳米线薄膜上制备一层透明柔性基底; [0008] Preparation of a transparent and flexible substrate on the metal nanowire films using solution processing methods;

[0009] 最后将表面带有金属纳米线的柔性基底从平面基板上剥离下来形成金属纳米线柔性透明导电薄膜。 The flexible substrate [0009] Finally, the surface of the metal nanowires with peeling off the substrate is formed from a flexible planar transparent conductive thin metal nanowires.

[0010] 在上述技术方案中,所述金属纳米线溶液为Ag、Au或者Cu材料的金属纳米线(NW)分散液。 [0010] In the above aspect, the metal nanowire solution of Ag, Au or Cu material metal nanowire (NW) dispersion.

[0011] 在上述技术方案中,溶液浓度为0.l-6mg/ml。 [0011] In the above-described technique, the solution concentration is 0.l-6mg / ml.

[0012] 在上述技术方案中,所述金属纳米线的直径为30-200nm,长度为5_30 μ m。 [0012] In the above aspect, the diameter of the metal nanowire is 30-200 nm, a length 5_30 μ m. [0013] 在上述技术方案中,所述金属纳米线透明导电薄膜厚度为30_300nm。 [0013] In the above technical solution, the metal nanowire thickness of the transparent conductive film 30_300nm.

[0014] 在上述技术方案中,所述透明柔性基底为可溶液加工的塑料。 [0014] In the above aspect, the transparent substrate is a flexible solution processable plastic.

[0015] 在上述技术方案中,所述透明柔性基底为聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)或者聚丙烯腈(PAN)。 [0015] In the above aspect, the transparent substrate is a flexible polyimide (PI), polydimethylsiloxane (PDMS) or polyacrylonitrile (PAN).

[0016] 在上述技术方案中,所述透明柔性基底的厚度为5-500um。 [0016] In the above aspect, the thickness of the transparent flexible substrate 5-500um.

[0017] 在上述技术方案中,所述溶液加工方法为旋涂、滴涂、刮涂、印刷或喷涂中的任意一种。 [0017] In the above technical solution, the solution processing method is spin coating, drop coating, blade coating, printing, or spraying of any one.

[0018] 在上述技术方案中,所述刚性平面基板为玻璃、石英或半导体。 [0018] In the above aspect, the rigid planar substrate is glass, quartz or a semiconductor.

[0019] 本发明的金属纳米线柔性透明导电薄膜具有以下有益效果: [0019] The metal nanowires flexible transparent conductive film of the invention has the following advantages:

[0020] 本发明的金属纳米线柔性透明导电薄膜具有良好导电性和可见光透过率。 [0020] The metal nanowires flexible transparent conductive film of the present invention has good electrical conductivity and visible light transmittance. 与传统方法制备的金属纳米线柔性透明导电薄膜相比,本发明的金属纳米线柔性透明导电薄膜具有表面平整度高、附着力好等优点,有效地解决了金属纳米线透明导电薄膜的表面粗糙度大及附着力差的问题。 Flexible transparent conductive film and the metal nanowires as compared to the conventional method, the metal nanowires flexible transparent conductive film of the invention has high surface smoothness, good adhesion, etc., can effectively solve the metal nanowires transparent conductive thin film surface roughness degree and poor adhesion problems. 本发明的柔性透明导电薄膜具有在薄膜太阳能电池及有机发光二极管等光电器件领域应用的潜质。 Flexible transparent conductive film of the invention has potential application in the field of thin film solar cells and organic light emitting diodes and other optoelectronic devices.

附图说明 BRIEF DESCRIPTION

[0021] 图1是金属纳米线柔性透明导电薄膜的工艺结构示意图。 [0021] FIG. 1 is a schematic view of the process configuration of the flexible transparent conductive thin film of the metal nanowires.

[0022] 图2是对比例I (a)和实施例2 (b)的原子力显微镜高度图。 [0022] FIG. 2 is a microscope Comparative height FIG I (a) and atomic force Example 2 (b) of FIG.

[0023] 图3是实施例1、2、3、4的透过率谱图。 [0023] FIG. 3 is a transmittance spectrum of 1,2,3,4 embodiment. 其中实施例1、2、3、4分别为浓度为Img/ml (曲线l)、2mg/ml (曲线2)、4mg/ml (曲线3)、6mg/ml (曲线4)的AgNW制备的金属纳米线柔性透明导电薄膜。 Example 1,2,3,4 respectively, wherein a concentration of Img / ml (curve L), metal 2mg / ml (curve 2), 4mg / ml (curve 3), prepared 6mg / ml (curve 4) of the AgNW nanowires flexible transparent conductive film.

[0024] 图4是实施例9和对比例II的电流-电压特性曲线,具体的说是分别以实施例2为阴极的聚合物太阳能电池(实施例9)和以对比例I为阴极的聚合物太阳能电池(对比例II)的电流-电压特性曲线。 [0024] FIG. 9 is 4 and the current in Comparative Example II - voltage characteristic curve, specifically in Example 2 respectively of the cathode polymer solar cells (Example 9) and to the cathode of Comparative Example I was polymerized the solar cell material (Comparative Example II) is a current - voltage characteristic. 在平面基板上制备的聚合物太阳能电池的结构为阴极/有源层/阳极,其中有源层为窄带隙聚合物PBDTTT-C和[6,6]-苯基471-丁酸甲酯(PC71BM)的混合物PBDTTT-CIPC71BM薄膜,阳极为MoO3Al薄膜。 The solar cell structure of the polymer produced in the planar substrate is a cathode / an active layer / anode, wherein the narrow bandgap active layer is a polymer PBDTTT-C and [6,6] - 471- phenyl-butyric acid methyl ester (PC71BM ) was PBDTTT-CIPC71BM film, a thin film anode MoO3Al. 对比例II (曲线I)和实施例9 (曲线2)的器件结构均为PI/AgNW( 100nm)/PBDTTT-C:PC71BM(质量比为1:1.5,IOOnm)/MoO3(IOnm)/Al (IOOnm)。 To 9 (curve 2) the ratio of a device structure II (curve I) and Examples are PI / AgNW (100nm) / PBDTTT-C: PC71BM (mass ratio is 1: 1.5, IOOnm) / MoO3 (IOnm) / Al ( IOOnm).

具体实施方式 Detailed ways

[0025] 本发明的发明思想为:提供一种金属纳米线柔性透明导电薄膜的制备方法,其所涉及的透明导电薄膜的工艺结构如图1所示: [0025] The inventive idea of ​​the present invention is: providing a flexible transparent conductive thin film of a metal nanowire preparation method, the process structure to which it relates to a transparent conductive film shown in Figure 1:

[0026] 平面基板100为玻璃、石英、半导体等刚性材料的平面基板。 [0026] plane of the substrate 100 made of glass, quartz, rigid material such as a planar semiconductor substrate.

[0027] 金属纳米线层200为溶液加工的金属纳米线薄膜,厚度为30_300nm。 [0027] The metal nano wire layer 200 was processed metal nanowire film thickness 30_300nm.

[0028] 透明柔性基底层300为可溶液加工的塑料薄膜,厚度为5-500 μ m。 [0028] The base layer 300 is a transparent flexible plastic film solution processable, a thickness of 5-500 μ m.

[0029] 具体的说,本发明的金属纳米线柔性透明导电薄膜的制备方法,包括以下步骤: [0029] Specifically, a flexible method for preparing a transparent conductive film of the present invention, the metal nanowire, comprising the steps of:

[0030] 首先,配制不同浓度的金属纳米线溶液,采用溶液加工方法在平面基板100上制备厚度为30-300nm的金属纳米线层200 ;之后采用溶液加工方法在金属纳米线层200上制备厚度为5-500 μ m的透明柔性基底层300 ;最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0030] First, prepared at different concentrations of the metal nanowire solution using solution processing methods for the preparation of the planar substrate 100 having a thickness of the metal nanowire layer 200 of 30-300 nm; solution processing methods after use in the preparation of the thickness of the metal nanowire layer 200 5-500 μ m to a transparent flexible base layer 300; and finally the surface of the base layer 300 with a transparent flexible metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires.

[0031] 上述的平面基板100为玻璃、石英或半导体等刚性材料。 [0031] The planar substrate 100 such as glass, quartz or a semiconductor material rigid.

[0032] 上述的金属纳米线溶液为Ag、Au或者Cu等金属材料的纳米线分散液,所述金属纳米线的直径为30-200nm,长度为5-30 μ m,溶液浓度为0.l_6mg/ml。 [0032] The metal nanowires solution of Ag, Au nanowires metallic material such as Cu or dispersion, the diameter of the metal nanowire is 30-200 nm, a length of 5-30 μ m, the solution concentration 0.l_6mg / ml.

[0033] 上述的透明柔性基底层300为P1、PDMS、PAN等可溶液加工的塑料薄膜。 [0033] The flexible transparent base layer 300 is P1, PDMS, PAN and other solution processable plastic film.

[0034] 上述的溶液加工方法为旋涂、滴涂、刮涂、印刷、喷涂等溶液加工方法。 [0034] The processing methods of solution spin coating, drop coating, blade coating, printing, spray coating and other solution processing methods.

[0035] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。 [0035] To make the objectives, technical solutions and advantages of the present invention will become more apparent hereinafter in conjunction with embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are merely used to explain the present invention and are not intended to limit the present invention.

[0036] 以下是实施例1至9以及对比例I和II的具体说明: [0036] The following Examples 1 to 9 and Comparative detailed description I and II:

[0037] 实施例1: [0037] Example 1:

[0038] 采用滴涂方法在平面基板100上制备厚度为60nm的金属纳米线层200,之后采用滴涂方法在金属纳米线层200上制备厚度为25 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0038] The coating method for the preparation of drops on a planar substrate 100 having a thickness of the metal nanowire layer 200 of 60nm, after the drop coating methods employed for preparing metal nanowire layer 200 having a thickness of 25 μ m on a transparent flexible substrate layers 300, and finally surface of the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为玻璃基板;金属纳米线层200采用浓度为lmg/ml的银纳米线溶液制备,金属银纳米线的直径为50nm,长度为15 μ m ;透明柔性基底层300为PI基底。 Wherein the plane of the substrate 100 is a glass substrate; a metal nanowire layer 200 using a concentration of lmg / silver nanowire solution was prepared, the diameter of the metallic silver nanowires ml of 50 nm, a length of 15 μ m; the base layer 300 is a transparent flexible substrate PI.

[0039] 实施例2: [0039] Example 2:

[0040] 采用滴涂方法在平面基板100上制备厚度为IOOnm的金属纳米线层200,之后采用滴涂方法在金属纳米线层200上制备厚度为25 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0040] The dispensing method in a thickness of 100 on a plane substrate is prepared IOOnm metal nanowire layer 200, then the method using a transparent flexible dispensing preparing a metal base layer nanowire layer 200 having a thickness of 25 μ m to 300, and finally surface of the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为玻璃基板;金属纳米线层200采用浓度为2mg/ml的银纳米线溶液制备,金属银纳米线的直径为50nm,长度为15 μ m ;透明柔性基底层300为PI基底。 Wherein the plane of the substrate 100 is a glass substrate; a metal nanowire layer 200 using a concentration of 2mg / silver nanowire solution was prepared, the diameter of the metallic silver nanowires ml of 50 nm, a length of 15 μ m; the base layer 300 is a transparent flexible substrate PI.

[0041] 实施例3: [0041] Example 3:

[0042] 采用滴涂方法在平面基板100上制备厚度为200nm的金属纳米线层200,之后采用滴涂方法在金属纳米线层200上制备厚度为25 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0042] The coating method for the preparation of drops on a planar substrate 100 having a thickness of the metal nanowire layer 200 of 200nm, after dispensing using the method of producing metal nanowire layer 200 having a thickness of 25 μ m on a transparent flexible substrate layers 300, and finally surface of the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为玻璃基板;金属纳米线层200采用浓度为4mg/ml的银纳米线溶液制备,金属银纳米线的直径为50nm,长度为15 μ m ;透明柔性基底层300为PI基底。 Wherein the plane of the substrate 100 is a glass substrate; a metal nanowire layer 200 using a concentration of 4mg / silver nanowire solution is prepared, the metal silver nanowires ml of diameter 50 nm, a length of 15 μ m; the base layer 300 is a transparent flexible substrate PI.

[0043] 实施例4: [0043] Example 4:

[0044] 采用滴涂方法在平面基板100上制备厚度为300nm的金属纳米线层200,之后采用滴涂方法在金属纳米线层200上制备厚度为25 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0044] The coating method for the preparation of drops on a flat substrate 100 having a thickness of the metal nanowire layer 200 of 300nm, after the drop coating methods employed in the preparation of metal nano wire layer 200 having a thickness of 25 μ m transparent flexible base layer 300, and finally surface of the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为玻璃基板;金属纳米线层200采用浓度为6mg/ml的银纳米线溶液制备,金属银纳米线的直径为50nm,长度为15 μ m ;透明柔性基底层300为PI基底。 Wherein the plane of the substrate 100 is a glass substrate; a metal nanowire layer 200 using a concentration of 6mg / silver nanowire solution is prepared, the metal silver nanowires ml of diameter 50 nm, a length of 15 μ m; the base layer 300 is a transparent flexible substrate PI.

[0045] 对比例1:[0046] 配制浓度为2mg/ml的银纳米线溶液,采用滴涂方法在玻璃基板上制备厚度为25 μ m的PI柔性基底,之后采用滴涂方法在PI柔性基底上制备厚度为IOOnm的银纳米线薄膜,最后将外表面带有金属纳米线的柔性基底从基板上剥离下来形成金属纳米线柔性透明导电薄膜。 [0045] Comparative Example 1: [0046] formulated at a concentration of the silver nanowire solution 2mg / ml, and having a thickness of 25 μ m of PI flexible substrate on a glass substrate using the dispensing method, after using the dispensing method in the PI flexible substrate preparation IOOnm thickness of silver nanowire film, and finally the outer surface of the flexible substrate with the metal nanowires peeled from the substrate forms a flexible transparent conductive thin film of metal nanowires. 其中银纳米线的直径为50nm,长度为15μπι。 Wherein the diameter of silver nanowires of 50nm, a length of 15μπι.

[0047] 实施例5: [0047] Example 5:

[0048] 采用刮涂方法在平面基板100上制备厚度为30nm的金属纳米线层200,之后采用刮涂方法在金属纳米线层200上制备厚度为5μπι的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0048] In the preparation method of a bar coater on a flat substrate 100 having a thickness of the metal nanowire layer 200 of 30nm, after the doctor blade method on the preparation of the metal nanowire layer 200 having a thickness of 300 5μπι transparent flexible base layer. Finally, the surface of the belt the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为半导体硅平面基板;金属纳米线层200采用浓度为 Wherein the plane of the substrate 100 is a semiconductor silicon planar substrate; a metal layer 200 using nanowire concentration

0.lmg/ml的金纳米线溶液制备,金属金纳米线的直径为30nm,长度为5μπι ;透明柔性基底层300为PDMS基底。 Preparation of 0.lmg / ml solution of the gold line, the gold wire diameter of the metal is 30 nm, a length of 5μπι; PDMS transparent substrate 300 is a flexible substrate layers.

[0049] 实施例6: [0049] Example 6:

[0050] 采用喷涂方法在平面基板100上制备厚度为200nm的金属纳米线层200,之后采用喷涂方法在金属纳米线层200上制备厚度为50 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0050] The spraying in a thickness of 100 to 200nm prepared planar substrate metal nanowire layer 200, 300 after the spraying method, the surface of the belt and finally a transparent flexible base layer prepared in the metal nanowire layer 200 of a thickness of 50 μ m the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为半导体硅平面基板;金属纳米线层200采用浓度为0.5mg/ml的金纳米线溶液制备,金属金纳米线的直径为30nm,长度为5 μ m ;透明柔性基底层300为PAN基底。 Wherein the plane of the substrate 100 is a semiconductor silicon planar substrate; a metal nanowire layer 200 using a concentration of 0.5mg / ml solution was prepared gold line, the gold wire diameter of the metal is 30 nm, a length of 5 μ m; the base layer 300 is a transparent flexible PAN base.

[0051] 实施例7: [0051] Example 7:

[0052] 采用印刷方法在平面基板100上制备厚度为150nm的金属纳米线层200,之后采用印刷方法在金属纳米线层200上制备厚度为50 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0052] The printing method in a thickness of 100 to 150nm prepared planar substrate metal nanowire layer 200, after using a printing method 300, and finally a transparent flexible base layer surface of the belt in the preparation of the metal nanowire layer 200 of a thickness of 50 μ m the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为石英平面基板;金属纳米线层200采用浓度为lmg/ml的铜纳米线溶液制备,金属铜纳米线的直径为200nm,长度为30 μ m ;透明柔性基底层300为PDMS基底。 Wherein the plane of the substrate 100 is a quartz planar substrate; a metal layer 200 using nanowire diameter copper concentration of solution nanowires, metallic copper nanowires lmg / ml to 200 nm, a length of 30 μ m; the base layer 300 is a transparent flexible substrate PDMS .

[0053] 实施例8: [0053] Example 8:

[0054] 采用旋涂方法在平面基板100上制备厚度为300nm的金属纳米线层200,之后采用旋涂方法在金属纳米线层200上制备厚度为500 μ m的透明柔性基底层300,最后将表面带有金属纳米线层200的透明柔性基底层300从平面基板100上剥离下来形成金属纳米线柔性透明导电薄膜。 [0054] In the preparation using a spin coating method on a flat substrate 100 having a thickness of the metal nanowire layer 200 of 300nm, using a spin coating method after the manufacture of the metal nanowire layer 200 having a thickness of 500 μ m of a transparent flexible base layer 300, and finally surface of the flexible base layer 300 with a transparent metal nanowire layer 200 is peeled from the plane of the substrate 100 is formed a transparent conductive thin film flexible metal nanowires. 其中平面基板100为石英平面基板;金属纳米线层200采用浓度为3mg/ml的铜纳米线溶液制备,金属铜纳米线的直径为200nm,长度为30 μ m ;透明柔性基底层300为PAN基底。 Wherein the plane of the substrate 100 is a quartz planar substrate; a metal nanowire layer 200 using a concentration of 3mg / copper solution nanowires, nanowires ml of metallic copper diameter of 200 nm, a length of 30 μ m; the base layer 300 is a transparent flexible substrate PAN .

[0055] 实施例9: [0055] Example 9:

[0056] 以实施例2为阴极制备结构为PI/AgNW (IOOnm)/PBDTTT-C = PC71BM(质量比为1:1.5, IOOnm) /MoO3(IOnm) /Al (IOOnm)的聚合物太阳能电池。 [0056] In Example 2 Preparation of a cathode structure PI / AgNW (IOOnm) / PBDTTT-C = PC71BM (mass ratio is 1: 1.5, IOOnm) / MoO3 (IOnm) / Al (IOOnm) a polymer solar cell. 其中PBDTTT-C 和PC71BM共混物采用二氯苯溶解后,添加3%的二碘辛烷继续搅拌I小时,之后利用该溶液旋涂成膜,最后将上述基板放入热蒸发设备中,当真空度达4.0 X 10_4帕斯卡时,在PBDTTT-C: PC71BM薄膜上依次蒸发MoO3和Al薄膜作为阳极。 Wherein PBDTTT-C and using the blend PC71BM dichlorobenzene was dissolved, was added 3% diiodooctance stirring was continued for I hour, after which the solution was spin-coated film formation, the substrate was finally placed in a thermal evaporation device, when Pascal degree of vacuum of 4.0 X 10_4, the PBDTTT-C: PC71BM the film and Al film are sequentially evaporated MoO3 as an anode.

[0057] 对比例II:[0058] 以对比例I为阴极制备结构为PI/AgNW (100nm)/PBDTTT-C:PC71BM(质量比为1:1.5, IOOnm)/MoO3(IOnm)/Al (IOOnm)的聚合物太阳能电池。 [0057] Comparative Example II: [0058] In Comparative Example I To prepare the structure of the cathode of PI / AgNW (100nm) / PBDTTT-C: PC71BM (mass ratio is 1: 1.5, IOOnm) / MoO3 (IOnm) / Al (IOOnm ) of the polymer solar cell. PBDTTT-C:PC71BM、MoO3 和Al薄膜的制备过程与实施例9相同。 PBDTTT-C: PC71BM, MoO3 and Al film preparation process is the same as in Example 9.

[0059] 表1透明导电薄膜的性能参数对比 [0059] Table 1 Performance Parameters transparent conductive thin film of Comparative

Figure CN103594195AD00071

[0061] 表1给出了实施例1、2、3、4、5、6、7、8及对比例I的面电阻及在600nm的透过率参数。 [0061] Table 1 shows sheet resistance of Examples 7, 8 and Comparative Example I embodiment at 600nm and the transmittance of the parameters. 从表1中可以看出,采用本发明方法制备的金属纳米线柔性透明导电薄膜可以同时实现高的透过率以及低的面电阻。 As can be seen from Table 1, the transparent conductive thin film using a flexible metallic nanowires prepared by the method of the present invention can achieve high transmittance and low sheet resistance at the same time. 当金属纳米线溶液浓度逐渐增加时,所获得的金属纳米线层200的厚度也逐渐增加,因此金属纳米线柔性透明导电薄膜的透过率和面电阻均逐渐降低(实施例1、2、3、4)。 When increasing concentrations of metal nanowire solution, the thickness of the metal nanowire layer 200 is obtained by gradually increasing, and therefore transmittance and surface resistance of the transparent conductive thin film flexible metal nanowires were gradually decreased (Examples 1, 2 4). 要制备高效的柔性聚合物太阳能电池,柔性基底要同时具有高的透过率和低的面电阻,因此我们选用的金属纳米线柔性透明导电薄膜的面电阻为30Ω/□,其在600nm的透过率为83.1% (实施例2)。 Flexible polymer to be prepared and efficient solar cells, flexible substrate to both high and low transmittance sheet resistance, so we use a flexible sheet resistance of the transparent conductive film is a metal nanowire 30Ω / □, which is transparent to 600nm over 83.1% (Example 2).

[0062] 在本发明的金属纳米线柔性透明导电薄膜的制备方法的上述实施例中: [0062] In the above embodiment of the method of preparing a flexible transparent conductive thin film of metallic nanowires of the present invention:

[0063] 从图2中可以看出采用本发明方法制备的金属纳米线柔性透明导电薄膜(实施例2)的表面粗糙度明显小于采用传统方法制备的金属纳米线柔性透明导电薄膜(对比例I ),这将有利于柔性光电子器件的制备。 [0063] As can be seen in FIG 2 using a metal nanowire surface of the flexible transparent conductive film (Example 2) prepared by the method of the present invention, the roughness is significantly smaller than the transparent conductive thin film using a flexible metallic nanowires conventional method (Comparative Example I ), the preparation of which will facilitate the flexible optoelectronic devices. 另外,通过胶带粘贴法对实施例2和对比例I中的薄膜附着力进行了测试,将胶带从薄膜表面取下后,对比例I中的AgNW薄膜绝大部分脱落并粘附在胶带上,残余薄膜已不再导电,表明传统方法制备的AgNW薄膜的附着力极差,实用性很低。 Further, Example 2 and Comparative Example I The film adhesion was tested by tape stripping method, the tape is removed from the rear surface of the film, most of the film of Comparative Example I AgNW off and is adhered to the tape, the residue is no longer a conductive thin film, the film showed adhesion AgNW prepared by conventional methods poor practicability is low. 而同样的测试中实施例2的薄膜不会脱落,面电阻几乎没有变化,表明本发明方法制备的金属纳米线柔性透明导电薄膜具有很好的附着力。 The same test of Example 2 film will not fall off, almost no change in surface resistance, show a flexible transparent conductive thin metal nanowires process of the invention has good adhesion.

[0064] 从图3中可以看出采用本发明方法制备的金属纳米线柔性透明导电薄膜(实施例 [0064] As can be seen from FIG 3 the use of flexible transparent conductive thin metal nanowires prepared by the method of the present invention (Examples

1、2、3、4)可以实现可见光区的高透过率,并且其透过率随着金属纳米线溶液浓度的增加而减小。 3, 4) can achieve high transmittance in the visible region, and the transmittance with increasing solution concentration of the metal nanowires is reduced. 当金属纳米线溶液浓度相同时,采用本发明方法制备的金属纳米线柔性透明导电薄膜(实施例2)与传统方法制备的金属纳米线柔性透明导电薄膜(对比例I )透过率相当(表I)。 When the concentration of the solution is the same metal nanowire, a flexible transparent conductive thin metal nanowires method of the present invention, the metal nanowires flexible transparent conductive film (Comparative Example I) prepared in (Example 2) and conventional methods transmittance (Table I).

[0065] 图4为实施例9和对比例II的电流-电压特性曲线。 [0065] FIG. 4 is a current embodiment 9 and Comparative Example II - voltage characteristic. 对比例II和实施例9的开路电压、短路电流密度、填充因子和能量转换效率分别为0.57和0.70伏特,10.22和14.67毫安/平方厘米,0.42和0.57,2.45%和5.85%。 Comparative Example II and the open circuit voltage, short circuit current density, fill factor and energy conversion efficiency of 9 was 0.57 and 0.70 volts, respectively, 10.22 and 14.67 mA / cm, 0.57,2.45 and 0.42% and 5.85%. 结果表明,采用本发明方法制备的金属纳米线柔性透明导电薄膜为电极的器件(实施例9)性能明显高于采用传统方法制备的金属纳米线柔性透明导电薄膜为电极的器件(对比例II),这是由于本发明的制备方法大大降低了的金属纳米线柔性透明导电薄膜的表面粗糙度,使其作为器件的电极与有源层的界面电阻减小,界面接触性能更好,从而提高了聚合物太阳能电池的性能。 The results show that the flexible transparent conductive thin metal nanowires prepared by the method of the present invention, device electrodes of the device electrodes (Example 9) was significantly higher than the performance of a conventional method using the prepared metal nanowires flexible transparent conductive thin film (Comparative Example II) this is due to the production method of the present invention greatly reduces the surface roughness of the transparent conductive film of the flexible metal nanowires to act as an electrode interface resistance of the device active layer is reduced, better interfacial contact performance, thereby improving performance of polymer solar cells.

[0066] 显然,上述实施例仅仅是为清楚地说明本专利所作的举例,而并非对实施方式的限定。 [0066] Clearly, the above-described embodiments are merely to clearly illustrate examples of the present patent made, but is not limited to the embodiment. 对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。 Those of ordinary skill in the art, on the basis of the above described variations or changes may be made in various other forms. 这里无需也无法对所有的实施方式予以穷举。 It is unnecessary and can not be exhaustive of all embodiments. 而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。 The obvious changes or variations therefrom corollary is still in the scope of the inventions.

Claims (10)

  1. 1.一种金属纳米线柔性透明导电薄膜的制备方法,其特征在于,包括以下步骤: 配制金属纳米线溶液,采用溶液加工方法在刚性平面基板上制备一层金属纳米线透明导电薄膜; 然后采用溶液加工方法在金属纳米线薄膜上制备一层透明柔性基底; 最后将表面带有金属纳米线的柔性基底从平面基板上剥离下来形成金属纳米线柔性透明导电薄膜。 The method of preparing a flexible transparent conductive film A metal nanowires, characterized by comprising the steps of: preparing a metal nanowire solution, a layer of metal nanowires on a transparent conductive thin film rigid planar substrates prepared using solution processing methods; then using solution processing method of preparing a transparent flexible substrate on the metal nanowire films; Finally, the surface of the flexible substrate with metal nanowires on a flat substrate peeled from the transparent conductive thin film is formed of flexible metal nanowires.
  2. 2.根据权利要求1所述的制备方法,其特征在于,所述金属纳米线溶液为Ag、Au或者Cu材料的金属纳米线分散液。 2. The production method according to claim 1, wherein said metal nanowire dispersion solution as Ag, Au or Cu metal nanowire material.
  3. 3.根据权利要求1或2所述的制备方法,其特征在于,所述金属纳米线溶液的浓度为0.l_6mg/ml0 The production method according to claim 1 or claim 2, wherein the concentration of the metal nanowire solution was 0.l_6mg / ml0
  4. 4.根据权利要求1或2所述的制备方法,其特征在于,所述金属纳米线的直径为30_200nm,长度为5-30 μ m。 The production method of claim 1 or claim 2, wherein the diameter of the metal nanowire is 30_200nm, a length of 5-30 μ m.
  5. 5.根据权利要求1或2所述的制备方法,其特征在于,所述金属纳米线透明导电薄膜厚度为30_300nm。 The production method of claim 1 or claim 2, wherein said metal nanowire thickness of the transparent conductive film 30_300nm.
  6. 6.根据权利要求1所述的制备方法,其特征在于,所述透明柔性基底为可溶液加工的塑料。 6. The production method according to claim 1, wherein said substrate is a transparent flexible plastic solution processable.
  7. 7.根据权利要求6所述的制备方法,其特征在于,所述透明柔性基底为聚酰亚胺(PI)、聚二甲基硅氧烷(PDMS)或者聚丙烯腈(PAN)。 7. The method of preparation according to claim 6, wherein said transparent substrate is a flexible polyimide (PI), polydimethylsiloxane (PDMS) or polyacrylonitrile (PAN).
  8. 8.根据权利要求6或7所述的制备方法,其特征在于,所述透明柔性基底的厚度为5_500umo The production method of claim 6 or claim 7, wherein said transparent flexible substrate having a thickness of 5_500umo
  9. 9.根据权利要求1或2所述的制备方法,其特征在于,所述溶液加工方法为旋涂、滴涂、刮涂、印刷或喷涂中的任意一种。 9. The production method of claim 1 or claim 2, wherein said solution processing method as spin coating, drop coating, blade coating, printing, or spraying of any one.
  10. 10.根据权利要求1或2所述的制备方法,其特征在于,所述刚性平面基板为玻璃、石英或半导体。 10. The production method of claim 1 or claim 2, wherein the rigid planar substrate is glass, quartz or a semiconductor.
CN 201310520795 2013-10-28 2013-10-28 Method for making flexible, transparent and conductive film made of metal nanowires CN103594195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310520795 CN103594195A (en) 2013-10-28 2013-10-28 Method for making flexible, transparent and conductive film made of metal nanowires

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310520795 CN103594195A (en) 2013-10-28 2013-10-28 Method for making flexible, transparent and conductive film made of metal nanowires

Publications (1)

Publication Number Publication Date
CN103594195A true true CN103594195A (en) 2014-02-19

Family

ID=50084292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310520795 CN103594195A (en) 2013-10-28 2013-10-28 Method for making flexible, transparent and conductive film made of metal nanowires

Country Status (1)

Country Link
CN (1) CN103594195A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871548A (en) * 2014-02-28 2014-06-18 南京邮电大学 Flexible transparent film electrode and manufacturing method thereof
CN105070412A (en) * 2015-08-27 2015-11-18 西安交通大学 Method for transferring silver nano wire transparent electrode by use of dry method
CN106039567A (en) * 2016-06-20 2016-10-26 五邑大学 Metal nano wire transparent conductive thin film, physiotherapy instrument using metal nano wire transparent conductive thin film and working method thereof
CN106782769A (en) * 2016-11-22 2017-05-31 华中科技大学 Low-roughness and low-square-resistance flexible transparent conductive composite thin film and preparation method therefor
CN106971771A (en) * 2017-05-10 2017-07-21 江汉大学 Method of preparing carbon-coated metal nanowire conductive thin film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362A (en) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 Based on the transparent conductive nanowires
CN101582303A (en) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 Transparent conductive film with novel structure and preparation method thereof
CN102082032A (en) * 2010-09-27 2011-06-01 清华大学 Paper dye sensitization solar battery photo-anode and preparation method thereof
CN102201461A (en) * 2011-04-29 2011-09-28 杭州天裕光能科技有限公司 Polycrystalline silicon thin film and method for preparing polycrystalline silicon thin film by amorphous silicon low-temperature induction
CN102270524A (en) * 2010-05-21 2011-12-07 中国科学院福建物质结构研究所 The transparent conductive film and method for preparing thermoplastic transparent silver nanowires-based polymer
CN102971806A (en) * 2010-07-02 2013-03-13 富士胶片株式会社 A conductive layer of the transfer material and the touch panel
CN103224711A (en) * 2013-04-25 2013-07-31 中国矿业大学(北京) Preparation method of tensile transparent conductive membrane material
JP5387894B2 (en) * 2009-04-17 2014-01-15 日立化成株式会社 Conductive transfer film and method for forming a conductive pattern using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101292362A (en) * 2005-08-12 2008-10-22 凯博瑞奥斯技术公司 Based on the transparent conductive nanowires
CN101292362B (en) * 2005-08-12 2011-06-08 凯博瑞奥斯技术公司 Transparent conductors and its preparation method, lamination structure and display device
CN101582303A (en) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 Transparent conductive film with novel structure and preparation method thereof
JP5387894B2 (en) * 2009-04-17 2014-01-15 日立化成株式会社 Conductive transfer film and method for forming a conductive pattern using the same
CN102270524A (en) * 2010-05-21 2011-12-07 中国科学院福建物质结构研究所 The transparent conductive film and method for preparing thermoplastic transparent silver nanowires-based polymer
CN102971806A (en) * 2010-07-02 2013-03-13 富士胶片株式会社 A conductive layer of the transfer material and the touch panel
CN102082032A (en) * 2010-09-27 2011-06-01 清华大学 Paper dye sensitization solar battery photo-anode and preparation method thereof
CN102201461A (en) * 2011-04-29 2011-09-28 杭州天裕光能科技有限公司 Polycrystalline silicon thin film and method for preparing polycrystalline silicon thin film by amorphous silicon low-temperature induction
CN103224711A (en) * 2013-04-25 2013-07-31 中国矿业大学(北京) Preparation method of tensile transparent conductive membrane material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103871548A (en) * 2014-02-28 2014-06-18 南京邮电大学 Flexible transparent film electrode and manufacturing method thereof
CN103871548B (en) * 2014-02-28 2016-08-31 南京邮电大学 A flexible transparent film electrode and its production method
CN105070412A (en) * 2015-08-27 2015-11-18 西安交通大学 Method for transferring silver nano wire transparent electrode by use of dry method
CN106039567A (en) * 2016-06-20 2016-10-26 五邑大学 Metal nano wire transparent conductive thin film, physiotherapy instrument using metal nano wire transparent conductive thin film and working method thereof
CN106782769A (en) * 2016-11-22 2017-05-31 华中科技大学 Low-roughness and low-square-resistance flexible transparent conductive composite thin film and preparation method therefor
CN106782769B (en) * 2016-11-22 2018-06-29 华中科技大学 Flexible transparent conductive low sheet resistance of low roughness composite film and its preparation method
CN106971771A (en) * 2017-05-10 2017-07-21 江汉大学 Method of preparing carbon-coated metal nanowire conductive thin film

Similar Documents

Publication Publication Date Title
Zeng et al. A new transparent conductor: silver nanowire film buried at the surface of a transparent polymer
Akter et al. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires
Zhu et al. Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors
Musselman et al. Strong efficiency improvements in ultra‐low‐cost inorganic nanowire solar cells
Kim et al. Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells
Inganäs Organic photovoltaics: avoiding indium
Wang et al. Interface engineering of layer‐by‐layer stacked graphene anodes for high‐performance organic solar cells
Wang et al. Flexible organic light-emitting diodes with a polymeric nanocomposite anode
Rana et al. A graphene-based transparent electrode for use in flexible optoelectronic devices
CN101165883B (en) Transparent carbon nanotube electrode using conductive dispersant and production method thereof
Song et al. Superstable transparent conductive Cu@ Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics
Krantz et al. Solution‐processed metallic nanowire electrodes as indium tin oxide replacement for thin‐film solar cells
Chung et al. All‐solution‐processed flexible thin film piezoelectric nanogenerator
Coskun et al. Optimization of silver nanowire networks for polymer light emitting diode electrodes
Winkler et al. Efficient large area semitransparent organic solar cells based on highly transparent and conductive ZTO/Ag/ZTO multilayer top electrodes
Kim et al. Enhancing the conductivity of transparent graphene films via doping
Lim et al. Simple brush-painting of flexible and transparent Ag nanowire network electrodes as an alternative ITO anode for cost-efficient flexible organic solar cells
Yim et al. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode
Yu et al. Recent development of carbon nanotube transparent conductive films
CN102087884A (en) Flexible transparent conductive film based on organic polymers and silver nanowires and preparation method thereof
Im et al. Flexible transparent conducting hybrid film using a surface-embedded copper nanowire network: a highly oxidation-resistant copper nanowire electrode for flexible optoelectronics
Zou et al. Interfacial engineering of ultrathin metal film transparent electrode for flexible organic photovoltaic cells
Guo et al. Flexible transparent conductors based on metal nanowire networks
CN102522145A (en) Nanometer silver transparent electrode material and preparation method thereof
Song et al. Transparent electrodes printed with nanocrystal inks for flexible smart devices

Legal Events

Date Code Title Description
C06 Publication
RJ01