CN103591967A - Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test - Google Patents
Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test Download PDFInfo
- Publication number
- CN103591967A CN103591967A CN201310516068.0A CN201310516068A CN103591967A CN 103591967 A CN103591967 A CN 103591967A CN 201310516068 A CN201310516068 A CN 201310516068A CN 103591967 A CN103591967 A CN 103591967A
- Authority
- CN
- China
- Prior art keywords
- chirp signal
- optical
- spectrum curve
- servo system
- theodolite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 55
- 238000001228 spectrum Methods 0.000 title claims abstract description 37
- 238000012360 testing method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 title claims abstract description 23
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 title description 10
- 238000003384 imaging method Methods 0.000 claims abstract description 7
- 238000012545 processing Methods 0.000 claims abstract description 7
- 238000004891 communication Methods 0.000 claims description 13
- 230000003595 spectral effect Effects 0.000 claims description 6
- CKQBSDUWDZEMJL-UHFFFAOYSA-N [W].[Br] Chemical group [W].[Br] CKQBSDUWDZEMJL-UHFFFAOYSA-N 0.000 claims description 4
- 230000001133 acceleration Effects 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000001514 detection method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C25/00—Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C1/00—Measuring angles
- G01C1/02—Theodolites
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本发明涉及光电测量设备精密检测领域,特别涉及一种用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法。The invention relates to the field of precision detection of photoelectric measuring equipment, in particular to an optical Chirp signal generation method used for spectrum curve testing of an optical servo system.
背景技术Background technique
光电经纬仪伺服系统的跟踪性能是光电经纬仪动态性能的一项重要指标,是光电经纬仪出厂时必须检测的指标。目前,光电经纬仪伺服系统动态性能室内检测方法主要有光学动态靶标检测、等效正弦引导检测两种方法。这两种方法都是在时域内对跟踪性能进行测试,只能反映设备特定速度、加速度值时的性能指标,无法对光电经纬仪的整体跟踪性能做出评价。The tracking performance of the photoelectric theodolite servo system is an important index of the dynamic performance of the photoelectric theodolite, and it is an index that must be tested when the photoelectric theodolite leaves the factory. At present, the indoor detection methods of the dynamic performance of the photoelectric theodolite servo system mainly include optical dynamic target detection and equivalent sinusoidal guidance detection. These two methods test the tracking performance in the time domain, which can only reflect the performance indicators of the equipment at specific speed and acceleration values, and cannot evaluate the overall tracking performance of the photoelectric theodolite.
为解决这个问题,提出通过测试光电经纬仪频谱特性曲线,进而利用频谱曲线中幅频曲线部分间接地完成对光电经纬仪整体跟踪性能评价。该评价方法的理论基础是光电经纬仪伺服控制系统是一个单输入单输出的线性系统,根据经典控制理论,微分方程、传递函数、频率特性均可表征系统的运动规律。为了测试光电经纬仪的频谱特性,其方法是利用设备产生动态目标作为输入信号,光电经纬仪跟踪目标并将跟踪误差作为输出,利用频谱曲线处理方法进行数据处理得到光电经纬仪频谱曲线。为了准确测得曲线,要求输入信号能够充分激励光电经纬仪伺服系统的所有模态或特征。从谱分析的角度,也就意味着输入信号的频谱必须足可以覆盖系统的频谱。In order to solve this problem, it is proposed to test the spectrum characteristic curve of the photoelectric theodolite, and then use the amplitude-frequency curve part of the spectrum curve to indirectly complete the overall tracking performance evaluation of the photoelectric theodolite. The theoretical basis of this evaluation method is that the photoelectric theodolite servo control system is a linear system with single input and single output. According to classical control theory, differential equations, transfer functions, and frequency characteristics can all characterize the motion laws of the system. In order to test the spectral characteristics of the photoelectric theodolite, the method is to use the equipment to generate a dynamic target as an input signal, the photoelectric theodolite tracks the target and outputs the tracking error, and uses the spectrum curve processing method to process the data to obtain the photoelectric theodolite spectrum curve. In order to measure the curve accurately, it is required that the input signal can fully excite all modes or characteristics of the photoelectric theodolite servo system. From the perspective of spectrum analysis, it means that the spectrum of the input signal must be sufficient to cover the spectrum of the system.
为完成对光电经纬仪频谱曲线的测试,算法处理需要的数据样本包括准确可测的输入、输出数据。光电经纬仪输入信号必须为光信号,保证能够在成像传感器上成像。输出信号为光电测量设备伺服控制系统跟踪误差。In order to complete the test of the spectrum curve of the photoelectric theodolite, the data samples required for algorithm processing include accurate and measurable input and output data. The input signal of the photoelectric theodolite must be an optical signal to ensure that it can be imaged on the imaging sensor. The output signal is the tracking error of the servo control system of the photoelectric measuring equipment.
为解决这个问题,提出采用连续线性调频模型,也即Chirp信号模型产生输入信号。并且在现有检测设备——动态靶标上产生了Chirp信号,又利用多个型号的光电经纬仪进行了跟踪试验。但是由于动态靶标空间模型关系,导致产生的Chirp信号模型是一系列信号的谐波叠加模式,光电经纬仪输出信号同样为谐波信号叠加模式。目前,由于缺少有效的分离Chirp信号谐波方法,导致无法准确获得光电经纬仪伺服系统频谱曲线。In order to solve this problem, a continuous linear frequency modulation model, that is, a Chirp signal model is proposed to generate an input signal. And the Chirp signal was generated on the existing detection equipment—the dynamic target, and the tracking test was carried out by using multiple types of photoelectric theodolites. However, due to the relationship between the dynamic target space model, the generated Chirp signal model is a series of harmonic signal superposition mode, and the output signal of the photoelectric theodolite is also a harmonic signal superposition mode. At present, due to the lack of an effective method for separating the harmonics of the Chirp signal, it is impossible to accurately obtain the spectrum curve of the photoelectric theodolite servo system.
发明内容Contents of the invention
本发明要解决现有技术中无法完成光电经纬仪频谱曲线的测试的技术问题,提供一种能够产生符合频谱测试要求的,用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法。The invention solves the technical problem that the photoelectric theodolite spectrum curve cannot be tested in the prior art, and provides an optical chirp signal generation method that can meet the spectrum test requirements and is used for the spectrum curve test of the optical servo system.
为了解决上述技术问题,本发明的技术方案具体如下:In order to solve the problems of the technologies described above, the technical solution of the present invention is specifically as follows:
一种用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法,包括以下步骤:A method for generating an optical Chirp signal for optical servo system spectrum curve test, comprising the following steps:
步骤一,由平行光管产生可在光电经纬仪成像传感器上成像的目标,使平行光管的目标能够在光电经纬仪上清晰成像;Step 1, the collimator produces a target that can be imaged on the photoelectric theodolite imaging sensor, so that the target of the collimator can be clearly imaged on the photoelectric theodolite;
步骤二,通过时统终端在光学Chirp信号生成装置和光电经纬仪之间建立统一时间基准;
建立主控计算机和光电经纬仪之间的串行通讯,利用主控计算机设置光学Chirp信号的幅值、信号包络、线性调频斜率参数,然后通过RS422串口通讯将参数给伺服控制器;Establish serial communication between the main control computer and the photoelectric theodolite, use the main control computer to set the amplitude, signal envelope, and chirp slope parameters of the optical Chirp signal, and then send the parameters to the servo controller through RS422 serial port communication;
伺服控制器进行控制处理后产生PWM信号送至伺服驱动器;After the servo controller performs control processing, it generates a PWM signal and sends it to the servo driver;
伺服驱动器驱动力矩电机转动,使旋转臂绕精密轴系摆动;The servo driver drives the torque motor to rotate, so that the rotating arm swings around the precision shaft system;
24位绝对式光电编码器完成对旋转臂的角位置和角速度的精密测量;The 24-bit absolute photoelectric encoder completes the precise measurement of the angular position and angular velocity of the rotating arm;
根据被检测光电经纬仪的性能指标,按照光学Chirp信号生成公式计算光学Chirp信号的信号包络、线性调频斜率和幅度值,使生成的光学Chirp信号能够覆盖被检测光电经纬仪工作角速度范围;According to the performance index of the detected photoelectric theodolite, calculate the signal envelope, chirp slope and amplitude value of the optical Chirp signal according to the optical Chirp signal generation formula, so that the generated optical Chirp signal can cover the working angular velocity range of the detected photoelectric theodolite;
通过在主控计算机光学Chirp信号的信号包络、线性调频斜率和幅度值,并启动设备工作;Through the signal envelope, linear frequency modulation slope and amplitude value of the optical Chirp signal in the main control computer, and start the device to work;
使旋转臂按照设定速度和幅度带动平行光管摆动,产生光学Chirp信号;Make the rotating arm drive the collimator to swing according to the set speed and amplitude, and generate an optical Chirp signal;
步骤三,光电经纬仪跟踪光学Chirp信号,并将跟踪误差信息通过串行通讯接口发送至主控计算机,由主控计算机完成对光电经纬仪频谱曲线的计算处理。
在上述技术方案中,所述平行光管产生的光谱范围能够覆盖可见至长波红外波段。In the above technical solution, the spectral range generated by the collimator can cover visible to long-wave infrared bands.
在上述技术方案中,所述平行光管为溴钨灯。In the above technical solution, the collimator is a bromine tungsten lamp.
在上述技术方案中,所述平行光管的目标板为星点孔、十字丝或分划板。In the above technical solution, the target plate of the collimator is a star point hole, a reticle or a reticle.
在上述技术方案中,步骤二中,被检测光电经纬仪的性能指标包括:保精度工作角速度范围、跟踪精度,以及最高角速度、角加速度。In the above technical solution, in
本发明具有以下的有益效果:The present invention has following beneficial effect:
本发明提出的用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法,可以为光电经纬仪伺服系统频谱曲线测试提供输入信号,在此基础上利用相应算法和手段即可完成光电经纬仪伺服系统频谱曲线的测试,对光电经纬仪跟踪性能的室内评价具有重要意义。The optical Chirp signal generation method for the optical servo system spectrum curve test proposed by the present invention can provide input signals for the photoelectric theodolite servo system spectrum curve test, and on this basis, the photoelectric theodolite servo system spectrum curve can be completed by using corresponding algorithms and means The test is of great significance to the indoor evaluation of the tracking performance of the photoelectric theodolite.
附图说明Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and specific embodiments.
图1是本发明方法中配备的光学Chirp信号生成装置结构示意图。Fig. 1 is a schematic structural diagram of an optical Chirp signal generating device equipped in the method of the present invention.
图2是本发明方法中生成的光学Chirp信号运动轨迹示意图。Fig. 2 is a schematic diagram of the trajectory of the optical Chirp signal generated in the method of the present invention.
图中的附图标记表示为:The reference signs in the figure represent:
1-平行光管、2-可升降支撑架、3-旋转臂、4-平台台面、5-24位绝对式光电编码器、6-力矩电机、7-导电环、8-精密轴系、9-光电经纬仪、10-供电通讯电缆、11-控制机柜、12-主控计算机、13-伺服控制器、14-时统终端、15-伺服驱动器、16-直流稳压电源。1-collimator, 2-lifting support frame, 3-rotating arm, 4-platform table, 5-24-bit absolute photoelectric encoder, 6-torque motor, 7-conductive ring, 8-precision shafting, 9 -Photoelectric theodolite, 10-power supply communication cable, 11-control cabinet, 12-main control computer, 13-servo controller, 14-time system terminal, 15-servo driver, 16-DC regulated power supply.
具体实施方式Detailed ways
为了完成对光电经纬仪伺服系统频谱特性曲线测试,本发明提出一种新的光学Chirp信号生成方法,将生成的光学Chirp信号作为频谱特性曲线测试的输入信号。In order to complete the test of the spectral characteristic curve of the photoelectric theodolite servo system, the present invention proposes a new optical Chirp signal generation method, which uses the generated optical Chirp signal as an input signal for the spectral characteristic curve test.
下面结合附图对本发明做以详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings.
本发明的用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法,包括以下步骤:The optical chirp signal generating method for optical servo system spectrum curve test of the present invention comprises the following steps:
步骤一,配备一套光学Chirp信号生成装置,如图1所示。包括平行光管1、可升降支撑架2、旋转臂3、平台台面4、24位绝对式光电编码器5、力矩电机6、导电环7、精密轴系8、供电通讯电缆10、控制机柜11、主控计算机12、伺服控制器13、时统终端14、伺服驱动器15、直流稳压电源16。平行光管1用于产生可以在光电经纬仪成像传感器上成像的目标。平行光管1光源采用溴钨灯,产生的光谱范围能够覆盖可见至长波红外波段。平行光管1的目标板可以选用星点孔、十字丝、分划板等。可升降支撑架2用于固定平行光管1。根据光电经纬仪9的高度不同,可以调节可升降支撑架2的高度和方向,保证平行光管1的目标能够在光电经纬仪9上清晰成像。Step 1, equip a set of optical Chirp signal generation device, as shown in Figure 1. Including parallel light tube 1,
步骤二,将被测的光电经纬仪9固定在平台台面4上。通过时统终端14,在光学Chirp信号生成装置和光电经纬仪9之间建立统一时间基准。并通过主控计算机12和光电经纬仪9之间建立串行通讯。利用主控计算机12中的主控软件,设置光学Chirp信号的幅值、信号包络、线性调频斜率参数,然后通过RS422串口通讯将参数给伺服控制器13。伺服控制器13进行控制处理后产生PWM信号送至伺服驱动器15。伺服驱动器15驱动力矩电机6转动,使旋转臂3绕精密轴系8摆动。24位绝对式光电编码器5完成对旋转臂3的角位置和角速度的精密测量。根据被检测光电经纬仪的保精度工作角速度范围、跟踪精度,以及最高角速度、角加速度等性能指标,按照光学Chirp信号生成公式计算光学Chirp信号的信号包络、线性调频斜率和幅度值,使生成的光学Chirp信号能够覆盖被检测光电经纬仪工作角速度范围。通过在主控计算机12光学Chirp信号的信号包络、线性调频斜率和幅度值,并启动设备工作。使旋转臂3按照设定速度和幅度带动平行光管1摆动,即可产生光学Chirp信号。
步骤三,光电经纬仪9跟踪光学Chirp信号,并将跟踪误差信息通过串行通讯接口发送至主控计算机12。主控计算机12中的主控软件完成对光电经纬仪频谱曲线的计算处理。
工作原理说明:Description of working principle:
选择Chirp信号作为光电经纬仪9频谱曲线测试的输入信号,是因为Chirp信号的频谱能够充分覆盖光电经纬仪伺服系统的频谱。这是光电经纬仪伺服系统频谱能够测试的首要条件。The reason why the Chirp signal is selected as the input signal of the
光学Chirp信号生成装置的信号产生原理是旋转臂3在主控计算机12的控制下,绕精密轴系8摆动,带动平行光管1摆动产生Chirp信号。平行光管摆动公式在时域上可以公式(1)描述。The signal generation principle of the optical Chirp signal generating device is that the
s(t)=Asin((α+βt)t),0≤t≤T (1)s(t)=Asin((α+βt)t), 0≤t≤T (1)
其中α为信号包络,β为信号线性调频斜率,A为信号的幅度值,T为信号持续时间。例如当α=0.2513,β=0.0013,A=1时,光学Chirp信号生成装置目标运动轨迹如图2所示。利用该运动轨迹作为输入信号,光电经纬仪的跟踪误差作为输出信号。输出信号的类型、信号包络、线性调频斜率与输入信号类似,只有幅值不同。Among them, α is the signal envelope, β is the signal linear frequency modulation slope, A is the amplitude value of the signal, and T is the signal duration. For example, when α=0.2513, β=0.0013, and A=1, the target motion trajectory of the optical Chirp signal generating device is shown in Figure 2 . The motion trajectory is used as the input signal, and the tracking error of the photoelectric theodolite is used as the output signal. The type, signal envelope, and chirp slope of the output signal are similar to the input signal, only the amplitude is different.
本发明的用于光学伺服系统频谱曲线测试的光学Chirp信号生成方法的上述具体实施方式中:In the above-mentioned embodiment of the optical Chirp signal generation method for optical servo system spectrum curve test of the present invention:
平行光管1采用卡塞格林结构,口径Φ100mm,焦距1000mm,光源采用溴钨灯,光谱波段覆盖可见光0.4μm~0.8μm、中波红外3μm~5μm、长波红外8μm~12μm;可升降支撑架2、旋转臂3、平台台面4等结构体由长春奥普光电公司定制;24位绝对式光电编码器5采用长春光机所研制的绝对式光电编码器,精度1″,分辨率0.077″;力矩电机6采用成都精密电机厂产品;导电环7采用杭州全盛公司导电环产品;精密轴系8由长春奥普光电公司定制;主控计算机12主要包括包含带有PCI插槽的工控机、显示器、输入设备、串行通讯卡等,串行通讯卡采用研华公司的CP-134U四串口采集卡。光学Chirp信号生成装置的幅度、信号包络和线性调频率等参数,根据光电经纬仪伺服系统性能指标选择,通过主控计算机12设置完成。Collimator 1 adopts Cassegrain structure, diameter Φ100mm, focal length 1000mm, light source adopts bromine tungsten lamp, spectrum band covers visible light 0.4μm~0.8μm, medium wave infrared 3μm~5μm, long wave infrared 8μm~12μm; lifting
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。Apparently, the above-mentioned embodiments are only examples for clear description, rather than limiting the implementation. For those of ordinary skill in the art, other changes or changes in different forms can be made on the basis of the above description. It is not necessary and impossible to exhaustively list all the implementation manners here. And the obvious changes or changes derived therefrom are still within the scope of protection of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310516068.0A CN103591967A (en) | 2013-10-28 | 2013-10-28 | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310516068.0A CN103591967A (en) | 2013-10-28 | 2013-10-28 | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103591967A true CN103591967A (en) | 2014-02-19 |
Family
ID=50082198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310516068.0A Pending CN103591967A (en) | 2013-10-28 | 2013-10-28 | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103591967A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104316082A (en) * | 2014-10-28 | 2015-01-28 | 中国科学院长春光学精密机械与物理研究所 | Theodolite external field infinite remote calibration method |
CN106768339A (en) * | 2016-12-30 | 2017-05-31 | 上海镭昊光电股份有限公司 | A kind of multispectral optical performance detector and method |
CN109798915A (en) * | 2017-11-16 | 2019-05-24 | 中国科学院长春光学精密机械与物理研究所 | A kind of error calibrating method of directionally aligning instrument system |
CN110488228A (en) * | 2019-07-11 | 2019-11-22 | 中国科学院电子学研究所 | Linear FM signal generation method, device and storage medium |
CN114966087A (en) * | 2022-05-12 | 2022-08-30 | 中国科学院西安光学精密机械研究所 | Wide-application-range testing device for tracking angular velocity of photoelectric tracking instrument |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04195408A (en) * | 1990-11-28 | 1992-07-15 | Yaskawa Electric Corp | Servo motor control method |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
-
2013
- 2013-10-28 CN CN201310516068.0A patent/CN103591967A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04195408A (en) * | 1990-11-28 | 1992-07-15 | Yaskawa Electric Corp | Servo motor control method |
CN103344258A (en) * | 2013-07-04 | 2013-10-09 | 中国科学院长春光学精密机械与物理研究所 | Device and method for testing performance of servo system of electro-optic theodolite |
Non-Patent Citations (2)
Title |
---|
张宁: "利用动态靶标装置的光电经纬仪跟踪性能评价研究", 《中国优秀博士学位论文全文数据库信息科技辑》 * |
张宁: "基于幅频特性曲线的光电经纬仪跟踪性能评价", 《激光与红外》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104316082A (en) * | 2014-10-28 | 2015-01-28 | 中国科学院长春光学精密机械与物理研究所 | Theodolite external field infinite remote calibration method |
CN106768339A (en) * | 2016-12-30 | 2017-05-31 | 上海镭昊光电股份有限公司 | A kind of multispectral optical performance detector and method |
CN109798915A (en) * | 2017-11-16 | 2019-05-24 | 中国科学院长春光学精密机械与物理研究所 | A kind of error calibrating method of directionally aligning instrument system |
CN110488228A (en) * | 2019-07-11 | 2019-11-22 | 中国科学院电子学研究所 | Linear FM signal generation method, device and storage medium |
CN114966087A (en) * | 2022-05-12 | 2022-08-30 | 中国科学院西安光学精密机械研究所 | Wide-application-range testing device for tracking angular velocity of photoelectric tracking instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103591967A (en) | Optical Chirp Signal Generation Method for Optical Servo System Spectrum Curve Test | |
CN104316081B (en) | Based on the turntable error of division detection method of laser gyro | |
CN110987013A (en) | Method and device for calibrating gyroscope angular motion measurement system | |
CN107449460A (en) | A kind of compensation method of rotary encoder and compensation system | |
CN102879032A (en) | Dynamic measuring device for angle measurement precision | |
CN204405004U (en) | Valve spring physical dimension measures testing machine | |
CN103471620A (en) | Angular accuracy computing and tracking accuracy assessing system and method | |
CN103925938B (en) | Inverted pendulum formula simulated target source for the detection of photoelectric measurement equipment performance indications | |
CN102706367A (en) | Accuracy testing and calculating method of single-beam laser speedometer for combined navigation | |
CN102679970A (en) | Static balance test method applied to gyroscope position marker spindle | |
CN203550935U (en) | Device used for measuring static radius of precision centrifuge | |
CN101424543B (en) | Measuring set and method of gyroscope phase response | |
CN110230977B (en) | Dynamic error analysis device and method for rotary transformer equipment, controller and storage medium | |
CN112461274B (en) | A kind of circular grating encoder signal generation method | |
CN103884352B (en) | Method that optical fibre gyro output delay time is measured automatically and device | |
CN104458655A (en) | Device and method for measuring bidirectional scattering characteristics of material | |
CN208382983U (en) | A kind of new type tank panzer week visor | |
Yan et al. | A calibration scheme with combination of the optical shaft encoder and laser triangulation sensor for low-frequency angular acceleration rotary table | |
CN202974319U (en) | Dynamic measuring device for angle measurement precision | |
CN105758299B (en) | New Two Dimensional Laser Scanning Equipment | |
CN205301353U (en) | Ball machine rotational speed testing arrangement and system | |
CN104457791B (en) | Method for measuring fiber-optic gyroscope bandwidth under static condition | |
CN207601311U (en) | A kind of laser ranging system | |
CN208155896U (en) | A kind of intelligent X-ray machine X with the accurate ranging of laser and sensor measuring angle | |
CN105758369B (en) | Laser tracking measurement system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20140219 |