CN103545397B - UV detectors and thin film preparation method and application - Google Patents

UV detectors and thin film preparation method and application Download PDF

Info

Publication number
CN103545397B
CN103545397B CN 201310521558 CN201310521558A CN103545397B CN 103545397 B CN103545397 B CN 103545397B CN 201310521558 CN201310521558 CN 201310521558 CN 201310521558 A CN201310521558 A CN 201310521558A CN 103545397 B CN103545397 B CN 103545397B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
layer
film
detector
zinc oxide
photoconductive
Prior art date
Application number
CN 201310521558
Other languages
Chinese (zh)
Other versions
CN103545397A (en )
Inventor
靳志文
王吉政
Original Assignee
中国科学院化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明公开了一种薄膜紫外光探测器及其制备方法与应用。 The present invention discloses a thin film UV detector and a preparation method and application. 该薄膜光电导探测器,包括基底和在其上的图案化的电极层,在所述图案化的电极层的正极和负极之间具有光敏感层,所述光敏感层包括氧化锌层和纳米金颗粒层。 The film photoconductive detector, comprising a substrate and a patterned electrode layer thereon in between the positive electrode and the negative electrode layer having a patterned light-sensitive layer, said light-sensitive layer and a layer comprising zinc oxide nano gold particles layer. 该探测器结合了氧化锌的高迁移率和金纳米颗粒与氧化锌界面形成的大面积的氧空位层低导电层,高迁移率导致了短的电子渡越时间,大面积的氧空位低导电层导致了长的光激子的寿命,当光照射到器件上时,材料吸光产生载流子很快并大量的被电极收集产生很大的G值,从而提高了探测器的灵敏度。 The detector incorporates a large area zinc oxide and the high mobility of gold particles and zinc oxide interface layer is formed of low oxygen vacancies conductive layer, resulting in a high-mobility electron transit time is short, a large area of ​​low conductivity oxygen vacancies layer leads to a long lifetime light excitons, when light is irradiated on the device, the light-absorbing material to generate carriers and a large number of quickly collected by the electrode to produce a large G value, thereby improving the sensitivity of the detector. 同时器件所用到的超薄的活性层材料对可见光的吸收与散射特别低,其透光性能也极佳。 While the thin layer of active material components used in the absorption and scattering of visible light is particularly low, its light transmission properties are also excellent. 因此,这种薄膜紫外光探测器具有重要的应用价值。 Thus, such a film UV detectors has important application value.

Description

薄膜紫外光探测器及其制备方法与应用 UV detectors and thin film preparation method and application

技术领域 FIELD

[0001] 本发明涉及一种薄膜紫外光探测器及其制备方法与应用。 [0001] The present invention relates to a UV detector and a thin film preparation method and application.

背景技术 Background technique

[0002] 目前,公知的紫外光探测器结构是由两个水平电极以及中间的光敏感层组成。 [0002] Currently, well-known UV detector structure consists of two electrodes and an intermediate level of light-sensitive layers. 将光电导器件接成回路并加一个偏置电场,当入射光与探测器接触时,探测器内部的光敏感层产生电子空穴对,电子空穴对在电场的作用下分离并被电极收集形成光电流,通过光电流的强度来表征光的强度与大小,可以用来进行光检测、图像成像或生物传感等方向。 The photoconductive device connected to a circuit and a bias electric field is applied, when the incident light to the detector in contact with the inner layer of light-sensitive detectors generate electron-hole pairs, the electron-hole pair separation in the collecting electrode an electric field and the photo-currents, characterized by the intensity and size of the light intensity of the light current can be used to detect light, imaging or image sensing and other biological direction. 因此器件对光的敏感度相当重要,通常我们用两个重要的参数来表征这样的一种敏感度:响应度R和光电增益G。 Thus the device's sensitivity to light is important, we usually use two important parameters to characterize such a sensitivity: R and photo responsivity gain G. R表示产生的光电流与引入的光强度的一个比值,G表示的是器件每吸收一个光子器件内部流过的电荷。 R represents a ratio of the optical intensity of the light generated current is introduced, G represents the device per absorb the charge flowing inside a photonic device.

[0003] 这两个值可以用下面的公式表示: [0003] These two values ​​can be represented by the following formula:

[0004] G表不光电增益: [0004] G photoelectric gain table does not:

Figure CN103545397BD00031

[0006] R表示响应度(AW1): [0006] R represents the responsivity (AW1):

Figure CN103545397BD00032

[0008] 其他三个同样重要的参数可以用下面的公式表示: [0008] The three other equally important parameters can be represented by the following formula:

[0009] P表示信噪比: [0009] P represents a signal to noise ratio:

Figure CN103545397BD00033

[0011] D*表示灵敏度(以jones为单位): [0011] D * indicates the sensitivity (in units jones):

Figure CN103545397BD00034

[0013] LDR表示线性动态范围(以dB为单位): [0013] LDR represents a linear dynamic range (in dB):

Figure CN103545397BD00035

[0015] (EQE是外量子效应,λ是入射光波长,h是普朗克常数,c是光速,q是电荷量,L 是器件沟道长度(两个电极间的距离),E是外加的电场强度,μn是电子迀移率,μ p是空穴迀移率,τ是光激子的寿命,tn是电子渡越时间,tp是空穴渡越时间,P 111是入射光功率, Illght是光电流,I DaA是暗电流,S是受照射面积,Jugh^ lmW/cm 2时的光电流密度,Jtok是暗电流密度)。 [0015] (EQE is external quantum effect, λ is the wavelength of incident light, h is Planck's constant, c is the speed of light, q is a charge amount, L is a channel length of the device (the distance between the two electrodes), E is the applied the electric field strength, μn Gan electron drift rate, μ p is the hole Gan drift rate, [tau] is the lifetime of a light exciton, TN is the electron transit time, tp is the hole transit time, P 111 is the incident optical power, Illght a photocurrent, I DaA dark current, S is the illuminated area, Jugh ^ lmW / cm at current density of the light, Jtok dark current density).

[0016] 薄膜紫外光探测器能够在民用和国防中应用,比如可以贴在玻璃上,显示屏幕上或者其他光电器件上。 [0016] UV detectors can be used in film and civil defense, such as may be attached to the glass, the screen display or other photovoltaic device. 对于理想的薄膜紫外光探测器,基本的要求有:(1)大的G,R,D*和LDR值;(2)与入射光可以呈现很好的线性关系;(3)高入射光透过率;(4)简单的结构;(5) 低价的制备工艺;(6)低温操作。 For an ideal film UV detectors, the basic requirements are: (1) a large G, R, D * and LDR value; (2) the incident light may exhibit good linear relationship; (3) high permeability incident through rate; (4) a simple structure; (5) low-cost manufacturing process; (6) Low-temperature operation. 宽禁带半导体的禁带可以只吸收紫外光而透过可见光。 Wide bandgap semiconductor bandgap can only absorb ultraviolet light and transmits visible light. 其中氧化锌的禁带宽度为3. 2eV,同时它又是一种环境友好型材料。 Wherein the band gap of zinc oxide 3. 2eV, while it is an environmentally friendly material. 并且将氧化锌用于实现紫外光探测器还具有如下两个重要的原因:(1)能通过简单多样的方法来实现高的迀移率,在各种不同的基底上,高的迀移率能降低电子渡越时间;(2)氧气能吸附在氧化锌表面造成很大的氧空位,形成一层低导电层,这一层的存在会导致光生电荷很难复合,增大光激子的寿命。 And zinc oxide for achieving UV detectors also has the following two important reasons: (1) by a simple variety of methods to achieve a high rate of shift Gan, on a variety of substrates, high shift rate Gan to reduce the electron transit time; (2) oxygen can be adsorbed on the surface of zinc oxide cause great oxygen vacancies, forming a low-conductive layer, which leads to the presence of photogenerated charge hard composite, an increase in exciton life. 这两个原因都会引起大的G值,从而提高器件的性能。 These two reasons will cause a large G value, thereby improving the performance of the device.

[0017] 过去一段时间,关于这方面的研究针对于如何提高材料的迀移率,获得的R大约有1.5AW ^它的灵敏度远远不够,因为氧化锌表面积太小。 [0017] Over a period of time, research on this aspect is directed to how to improve the material Gan drift rate, R 1.5AW ^ obtained about its sensitivity is not enough, since the surface area of ​​the zinc oxide is too small. 目前,大多数的研究主要关注于纳米结构复合而成的薄膜器件,因为这样的纳米结构有很大的比表面积,从而产生了大的氧空位低电阻层。 Currently, most research focused on thin film device formed nanostructure composite, since such nanostructures have a large surface area, resulting in a large low-resistance layer of oxygen vacancies. 比如利用氧化锌纳米颗粒制成的薄膜器件的R值高达61AW \利用电纺丝氧化锌纳米线制成的器件的R值高达790AW ^但是各种纳米结构导致在两个电极间更长的载流子传输距离而降低了迀移率。 R value of the film using a device such as zinc oxide nanoparticles made up 61AW \ electrospinning devices made using zinc oxide nano wire 790AW ^ R value up to but longer cause a variety of nanostructures contained between two electrodes carrier transmission distance shift Gan reduced rate. 同时这种纳米结构产生了大的光散射而影响了可见光的透过。 Such nanostructures simultaneously produces a large light scattering and influence the transmission of visible light. 因此,目前利用简单的方法制备高R和G值的透明氧化锌薄膜紫外光探测器是一个大的挑战。 Thus, currently preparing a transparent zinc oxide thin film of high UV detectors G and R values ​​by a simple method is a big challenge.

发明内容 SUMMARY

[0018] 本发明为了克服现有薄膜光电导探测器性能低和透光率差的缺点,提供一种结构简单、制备方法简便、具有非常高的光电增益和响应度的薄膜紫外光电导探测器。 Simple [0018] The present invention is to overcome the conventional thin-film photoelectric detector performance and low on the shortcomings of poor light transmittance, there is provided a structure, easy preparation method, a film having very high UV photodetector responsivity of the photoelectric gain and .

[0019] 本发明的另一个目的是提供上述薄膜紫外光探测器的制备方法。 [0019] Another object of the present invention to provide a UV detector the thin film preparation.

[0020] 本发明的另一个目的是提供上述薄膜紫外光探测器的用途。 [0020] Another object of the present invention is to provide use of the thin film UV detectors.

[0021] 本发明通过如下技术方案实现: [0021] The present invention is achieved by the following technical solutions:

[0022] -种薄膜光电导探测器,其特征在于,所述探测器包括基底和在其上的图案化的电极层,在所述图案化的电极层的正极和负极之间具有光敏感层,所述光敏感层包括氧化锌层、和纳米金颗粒层。 [0022] - thin-film photoconductive detector, wherein the detector comprises a substrate and a patterned electrode layer thereon in having a light-sensitive layer between the positive electrode and the negative electrode layer of the patterned the light-sensitive layer comprises a zinc oxide layer, and a layer of gold nanoparticles.

[0023] 根据本发明,所述氧化锌层位于基底之上,所述纳米金颗粒层位于所述氧化锌层之上。 [0023] According to the invention, the zinc oxide layer is located above the substrate, the gold nano-particle layer located over the zinc oxide layer.

[0024] 根据本发明,所述氧化锌层的厚度为3-30nm,优选4-20nm,例如5nm。 [0024] According to the present invention, the thickness of the zinc oxide layer is 3-30 nm, preferably 4-20nm, e.g. 5nm.

[0025] 根据本发明,所述金纳米颗粒分布在氧化锌薄膜上,优选均匀分散,所述金纳米颗粒的直径大小优选为2-50nm粒径分布,更优选为2-4nm的粒径分布。 [0025] According to the invention, the gold particles are distributed on the zinc oxide thin film, preferably uniformly disperse, the diameter of gold particles is preferably 2-50nm size distribution, the particle size distribution is more preferably 2-4nm .

[0026] 根据本发明,所述基底可为刚性基底或柔性基底,所述刚性基底例如为玻璃或硅, 所述柔性基底可为选自聚酰亚胺和聚酯薄膜中的至少一种。 [0026] According to the present invention, the substrate may be a rigid substrate or a flexible substrate, the rigid substrate, for example, glass or silicon, the flexible substrate may be a polyimide film and at least one polyester is selected.

[0027] 根据本发明,所述聚酰亚胺的相对分子量优选为10000-100000g/mol,更优选20000-60000g/mol,例如45000g/mol ;所述聚酯的相对分子量优选为10000-100000g/mol, 更优选20000-80000g/mol,例如70000g/mol。 [0027] According to the invention, the relative molecular weight of the polyimide is preferably 10000-100000g / mol, more preferably 20000-60000g / mol, e.g. 45000g / mol; relative molecular weight of the polyester is preferably 10000-100000g / mol, more preferably 20000-80000g / mol, e.g. 70000g / mol.

[0028] 根据本发明,所述电极层的材料优选自氧化铟锡(ITO),掺氟的氧化锡(FTO)或铝电极中的至少一种,优选为ITO电极。 [0028] According to the present invention, the material is preferably indium tin oxide from the electrode layer (ITO), fluorine-doped tin oxide (FTO), or at least one aluminum electrode is preferably an ITO electrode. 所述图案化的电极层由位于同一层的正极层和负极层组成,所述正极层与负极层的水平间距为10-1000 μπι,优选为30-500 μπι,更优选为50 μ m。 The patterned electrode layer positioned by the positive electrode layer and negative electrode layer composed of the same layer of the positive electrode layer and negative electrode layer is horizontal spacing 10-1000 μπι, preferably 30-500 μπι, more preferably 50 μ m. 电极层的厚度为30-200nm,优选为50_150nm,更优选为50nm。 The thickness of the electrode layer is 30-200nm, preferably 50_150nm, more preferably 50nm.

[0029] 根据本发明,所述薄膜光电导探测器为透明的薄膜光电导探测器。 [0029] According to the invention, the detector is a transparent photoconductive film a thin film photoconductive detectors.

[0030] 根据本发明,所述薄膜光电导探测器由以下各层组成:基底、图案化的电极层和光敏感层。 [0030] According to the present invention, the thin film of photoconductive detector composed of the following layers: a substrate, a patterned electrode layer and a light-sensitive layer. 所述图案化的电极层和光敏感层均沉积在基底上,且所述光敏感层位于所述图案化的电极层的正极和负极之间。 The patterned electrode layer and a light-sensitive layers are deposited on the substrate, and the light-sensitive layer is located between the positive electrode and the negative electrode layer is patterned. 所述光敏感层包括氧化锌层和纳米金颗粒层。 The light-sensitive layer comprises a zinc oxide layer and a layer of gold nanoparticles. 所述氧化锌层沉积在基底上,所述纳米金颗粒层沉积在所述氧化锌层上。 The zinc oxide layer deposited on the substrate, the gold nanoparticle layer is deposited on the zinc oxide layer. 本发明还提供了一种制备所述薄膜光电导探测器的方法,包括如下步骤: The present invention further provides a method of preparing the thin film of photoconductive detector, comprising the steps of:

[0031] 1)在所述具有图案化的电极的基底上制备氧化锌层; [0031] 1) Preparation of a zinc oxide layer on a substrate having the patterned electrode;

[0032] 2)在所述氧化锌层上制备金纳米颗粒层,得到所述探测器。 [0032] 2) Preparation of gold particle layer on the zinc oxide layer, to obtain a probe.

[0033] 根据本发明,在上述方法中,制备所述氧化锌层和金纳米颗粒层的方法均为溶液旋涂法。 [0033] According to the present invention, in the above method, the method of preparing the zinc oxide layer and the particle layer are gold solution was spin-coating method.

[0034] 根据本发明,所述旋涂法中,所使用的氧化锌溶液的浓度为l-10mg/ml,例如6mg/ml ;旋涂的速度为500-10000rpm,例如3000rpm ;所使用的金纳米颗粒溶液的浓度为0· 1-lmg/ml,例如0· 5mg/ml ;旋涂的速度为500_10000rpm,例如6000rpm。 [0034] According to the invention, the spin coating method, the solution concentration of zinc oxide used is l-10mg / ml, e.g. 6mg / ml; spin coating speed of 500-10000rpm, 3000 rpm for example; gold used nanoparticle solution concentration of 0 · 1-lmg / ml, for example, 0 · 5mg / ml; spin coating speed of 500_10000rpm, e.g. 6000rpm.

[0035] 根据本发明,在上述制备方法的步骤1)之前,还可先将具有图案化的电极的基底做如下预处理:将所述基底先后用去离子水,丙酮和异丙醇清洗,再烘干。 [0035] According to the present invention, prior to the step of the above production method 1), further having a first base electrode patterned pretreatment as follows: the substrate successively with deionized water, washed with acetone and isopropanol, and then drying.

[0036] 根据本发明,制备电极层的方法均为常规方法,例如可选真空蒸镀法和溅射法中的任意一种; [0036] According to the present invention, a method for preparing an electrode layer are conventional methods, for example, any of the optional vacuum deposition method and a sputtering method;

[0037] 所述溅射法中,溅射的真空度为10 4_10 5Pa,优选为1X10 4Pa。 The [0037] sputtering method, sputtering vacuum degree of 10 4_10 5Pa, preferably 1X10 4Pa.

[0038] 所述真空蒸镀法中,蒸镀电极层的真空度为10 4-10 5Pa,优选为IX 10 4Pa。 [0038] In the vacuum vapor deposition method, vacuum vapor deposition of the electrode layer 10 4-10 5Pa, preferably IX 10 4Pa.

[0039] 本发明还提供了所述探测器的用途,其可用于制备光检测器、图像成像器件或生物传感器, [0039] The present invention also provides the use of the probe, which may be used to prepare the light detector, the image forming device or a biosensor,

[0040] 本发明还提供了一种光检测器,其包括本发明所述的探测器。 [0040] The present invention further provides an optical detector, which comprises a detector according to the present invention.

[0041] 本发明还提供了一种图像成像器件,其包括本发明所述的探测器。 [0041] The present invention further provides an image forming device, which comprises a detector according to the present invention.

[0042] 本发明还提供了一种生物传感器,其包括本发明所述的探测器。 [0042] The present invention also provides a biosensor that includes a probe according to the present invention.

[0043] 本发明所述的薄膜紫外光电导探测器,结构简单,制备方法简便,且具有非常高的光电增益和响应度。 [0043] The film UV photodetector according to the present invention, simple structure, simple production method, and has a very high degree of gain and photoelectric response. 该探测器结合了氧化锌的高迀移率和金纳米颗粒与氧化锌界面形成的大面积的氧空位低导电层,高迀移率导致了短的电子渡越时间,大面积的氧空位低导电层导致了长的光激子的寿命,所以当光照射到器件上时,材料吸光产生载流子很快并大量的被电极收集从而具有很大的G和R值。 The combination of large area detector shift rate and gold and zinc oxide particles formed at the interface of the high oxygen vacancies Gan zinc oxide conductive layer low, resulting in high rates of shift Gan short electron transit time, a large area of ​​low oxygen vacancies a conductive layer leads to a long lifetime of the exciton light, when the light is irradiated onto the device, the light-absorbing material to generate carriers and a large number of quickly collected by the electrode so as to have a large R and G values. 因此该光电导探测器具有很大的光电增益,从而提高了光电导探测器对光的响应度,进而提高了薄膜光电导器件的灵敏度。 Photoconductive detector so that the photoelectric great gain, thereby improving the responsivity of the photoconductive detector light, thereby increasing sensitivity of the thin-film photoelectric conductive device. 因此本发明的探测器具有重要的应用价值。 Thus the detector of the present invention has important application value.

附图说明 BRIEF DESCRIPTION

[0044] 图Ia为实施例1的薄膜紫外光探测器件的结构示意图。 [0044] FIG. Ia is a schematic view of a film structure of Example 1 of the ultraviolet light detector element embodiment.

[0045] 图Ib为实施例1的薄膜紫外光探测器件的截面扫描电镜图。 [0045] The embodiment of FIG. Ib is a cross-sectional SEM view of a thin film of a UV detector member.

[0046] 图2a为氧化锌薄膜的SEM图像。 [0046] Figure 2a is an SEM image of the zinc oxide thin film.

[0047] 图2b为氧化锌薄膜的光电子能谱分析图。 [0047] FIG. 2b photoelectron spectroscopy analysis FIG zinc oxide thin film.

[0048] 图2c为金纳米颗粒的透射电镜图。 [0048] FIG. 2c is a TEM gold nanoparticles.

[0049] 图2d为金纳米颗粒的XRD图。 [0049] FIG. 2d XRD view of gold nanoparticles.

[0050] 图3a为金纳米颗粒与氧化锌复合膜的转移曲线图。 [0050] Figure 3a is a gold nanoparticle composite zinc oxide film transfer curve in FIG.

[0051] 图3b为器件的光响应与波长的关系。 [0051] 3b is a photoresponsive device in relation to the wavelength FIG.

[0052] 图3c为器件在光与暗处的IV曲线图。 [0052] Figure 3c is a graph showing the IV device in the light and dark areas.

[0053] 图3d为金纳米颗粒与电极沟道长度对器件的光响应情况的影响。 [0053] 3d Effect FIG optical response of gold nanoparticles device is the channel length of the electrode.

[0054] 图4a为器件对光的开关特性的重复性。 [0054] FIG 4a is a repetitive switching characteristics of the optical device.

[0055] 图4b为器件的G和R的计算结果。 [0055] Figure 4b is a calculation result R and G of the device.

[0056] 图4c为器件的D*的计算结果。 [0056] Figure 4c is a device D * calculation.

[0057] 图4d为器件的光生电流随光强呈线性关系。 [0057] Figure 4d is a photo-generated current of the device with the light intensity is linear.

具体实施方式 detailed description

[0058] 下面结合具体实施例对本发明作进一步阐述。 [0058] Specific embodiments of the present invention in conjunction with the following be further illustrated. 所述方法如无特别说明均为常规方法。 The method according to a conventional method are not particularly described. 所述原材料如无特别说明均能从公开商业途径而得。 As the starting material can no special instructions obtained from commercial sources disclosed.

[0059] ZnO · XH2O, 97% 购自Sigma-Aldrich 公司,产品编号为475319 ; [0059] ZnO · XH2O, 97% purchased from Sigma-Aldrich Corporation, Product No. 475319;

[0060] 氢氧化铵购自Sigma-Aldrich公司,产品编号为320145 ; [0060] The ammonium hydroxide was purchased from Sigma-Aldrich Corporation, Product No. 320145;

[0061] 实施例1 [0061] Example 1

[0062] 1)将ZnO · XH2O溶于氢氧化铵中获得6mg/ml浓度的溶液,3000rpm旋涂60s在厚度为3mm的带有ITO电极3的玻璃基底5上并退火180°C lh,重复三次获得厚度为5nm的载流子传输层4。 [0062] 1) The ZnO · XH2O dissolved 6mg / ml concentration to obtain a solution of ammonium hydroxide, 3000rpm 60s spin coating in a thickness of 53 on a glass substrate with an ITO electrode 3mm and annealed 180 ° C lh, repeat 5nm carrier three times a thickness of the transport layer 4 is obtained.

[0063] 构成吸收紫外光和载流子传输层的材料为氧化锌,1表不入射光; [0063] The material constituting the absorbing ultraviolet light and a carrier transport layer is a zinc oxide, a table is not incident;

[0064] 2)金纳米颗粒采用两相法合成。 [0064] 2) gold nanoparticles using a two-phase synthesis. 将0. 63g的HAuCl4 · XH2O溶于水中,且将3g四辛基溴化铵溶于160ml对二甲苯中。 The HAuCl4 · XH2O 0. 63g is dissolved in water, and the 3g tetraoctylammonium bromide dissolved in 160ml of xylene. 把两个溶液混好了并搅拌均匀静置。 The two solutions are mixed and stirred uniformly good standing. 收集有机相继续搅拌加入0. 8ml硫醇。 The organic phase was collected added and stirring was continued 0. 8ml thiol. 将0. 76g NaBH4溶于50ml水中并缓慢加入上述有机相中在冰水浴中继续搅拌2个小时。 To 0. 76g NaBH4 dissolved in 50ml of water and the organic phase was slowly added to the stirring was continued for 2 hours in an ice-water bath. 最后得到的金纳米颗粒粒径分布在2 - 4nm。 The resulting particle size distribution of gold in 2 - 4nm.

[0065] 3)在步骤1)所得的氧化锌薄膜上旋涂制备一层很薄的金纳米颗粒层2。 [0065] 3) In step 1) a thin layer of gold particle layer 2 was spin-coated on the resultant preparation of zinc oxide thin film. 具体步骤包括:将金纳米颗粒溶于二氯甲烧中获得0. 5mg/ml浓度的溶液,6000rpm旋涂60s并退火180°C 24h获得金纳米颗粒层2。 These steps include: gold nanoparticles obtained was dissolved in methylene burning ml concentration 0. 5mg / solution, 6000rpm 60s spin-coated and annealed 180 ° C 24h gold particle layer 2 is obtained.

[0066] 如图Ia所示为该透明薄膜紫外光探测器件的结构示意图。 [0066] FIG. Ia shown in the schematic structure of a transparent film for the ultraviolet detector element.

[0067] 如图Ib所示为该透明薄膜紫外光探测器件的截面扫描电镜图。 [0067] SEM cross-sectional view of the same transparent film UV detectors member shown in FIG Ib.

[0068] 测试时将该探测器的电极3与外电路相连。 [0068] The test probe electrode 3 is connected to an external circuit. 测试所用的光源为卤钨灯白光光源, 强度可以进行变化,所用的单色光源的光强为10. 6 μ W/cm2。 The light source used in the test for tungsten-halogen white light source, the intensity may be varied, the intensity of the monochromatic source used was 10. 6 μ W / cm2. 在测试前所有光强通过辐照计进行校准。 All the light intensity by radiometer calibrated prior to testing. 迀移率的测试所用的基片为Si/Si02,其中Si为η型重掺杂,SiOJ? 300nm,电容为10nF。 Gan shift of the substrate used in the test was the Si / Si02, which is η-type heavily doped Si, SiOJ? 300nm, a capacitance of 10nF.

[0069] 如图2a为氧化锌薄膜的SEM图像。 [0069] Figure 2a is an SEM image of the zinc oxide thin film.

[0070] 如图2b为氧化锌薄膜的光电子能谱分析图。 [0070] As shown in FIG. 2b is a photoelectron spectroscopy zinc oxide thin film.

[0071] 由图2a与2b可知,所得到的氧化锌薄膜为小的晶簇组成,能产生很大的表面积, 由光电子能谱分析得知薄膜的组成材料为氧化锌。 [0071] 2a and 2b seen from the figure, the zinc oxide thin film obtained is composed of small vugs, it can produce a large surface area, that the composition of the photoelectron spectroscopy material film is zinc oxide.

[0072] 如图2c为金纳米颗粒的透射电镜图。 [0072] Figure 2c is a TEM gold nanoparticles FIG.

[0073] 如图2d为金纳米颗粒的XRD图。 [0073] Figure 2d is a XRD pattern of gold nanoparticles.

[0074] 由图2c和2d可知,金纳米颗粒粒径分布在2 - 4nm。 [0074] FIG. 2c and 2d can be seen, the particle size distribution of gold in 2 - 4nm.

[0075] 图3a为金纳米颗粒与氧化锌复合膜的转移曲线图。 [0075] Figure 3a is a gold nanoparticle composite zinc oxide film transfer curve in FIG. 给出了其高的电子迀移率I. 78cm2. V1-S10 Given its high electron Gan shift of I. 78cm2. V1-S10

[0076] 如图3b为器件的光响应与波长的关系。 [0076] Figure 3b is a photoresponsive device in relation to the wavelength.

[0077] 如图3c为器件在光与暗处的IV曲线图。 [0077] Figure 3c is a graph showing the IV device in the light and dark areas.

[0078] 如图3d所示为金纳米颗粒与电极沟道长度对器件的光响应情况的影响。 Effect [0078] Figure 3d shows the gold particles and the channel length of the electrode of the optical response of the device.

[0079] 由图3可知,以金纳米颗粒与氧化锌复合膜做成的探测器有很好的光响应与对光波长的选择性。 [0079] Figure 3 shows, to gold particles and a composite film made of zinc oxide have good light detector responsive to light wavelength selectivity. 金纳米颗粒与氧化锌界面能形成的大面积的氧空位层会增长光激子的寿命。 Oxygen vacancy layer grow light exciton lifetime of gold nanoparticles with a large area can be formed of zinc oxide interface. 同时随着缩短沟道长度可以降低电子的渡越时间。 The same time as the channel length can be reduced to shorten the transit time of electrons. 这两方面都能大大提高所述器件的性能。 Both can significantly improve the performance of the device.

[0080] 如图4a为器件对光的开关特性的重复性。 [0080] FIG 4a is a repetitive switching characteristics of the optical device.

[0081] 如图4b为器件的光电增益(G)和响应度(R)的计算结果。 [0081] Figure 4b is a photo gain device (G) and responsivity (R) calculation.

[0082] 如图4c为器件的灵敏度(D*)的计算结果。 The results [0082] Figure 4c is a sensitivity of the device (D *) of.

[0083] 如图4d为器件的光生电流随光强呈线性关系。 [0083] Figure 4d is a photo-generated current of the device with the light intensity is linear.

[0084] 由图4可知,以金纳米颗粒与氧化锌复合膜做成的紫外光探测器有优异的性能, 且光生电流随光强呈线性关系,计算所得LDR为60dB,完全能够满足应用。 [0084] From Figure 4, with the gold nanoparticles to a composite film made of zinc oxide ultraviolet detector has excellent performance, and the photo-generated current is linear with the light intensity, calculated as the LDR 60dB, fully able to meet the application.

Claims (21)

  1. 1. 一种薄膜光电导探测器,其包括基底和在其上的图案化的电极层,在所述图案化的电极层的正极和负极之间具有光敏感层,所述光敏感层包括氧化锌层和金纳米颗粒层,且所述氧化锌层位于基底之上,所述金纳米颗粒层位于所述氧化锌层之上。 1. A thin-film photoconductive detector, comprising a substrate and a patterned electrode layer thereon, a light sensitive layer between the positive electrode and the negative electrode layer is patterned, the light-sensitive layer comprising oxide zinc layer and gold particle layer, and a zinc oxide layer is located above the substrate, the gold nanoparticle layer is located above the zinc oxide layer.
  2. 2. 根据权利要求1所述的薄膜光电导探测器,所述氧化锌层的厚度为3-30nm。 2. The film of claim 1, the photoconductive detector, the zinc oxide layer has a thickness of 3-30nm.
  3. 3. 根据权利要求2所述的薄膜光电导探测器,所述氧化锌层的厚度为4-20nm。 3. A film according to claim 2, the photoconductive detector, the zinc oxide layer has a thickness of 4-20nm.
  4. 4. 根据权利要求2所述的薄膜光电导探测器,所述氧化锌层的厚度为5nm。 A thin film according to claim 2, the photoconductive detector, the zinc oxide layer has a thickness of 5nm.
  5. 5. 根据权利要求1所述的薄膜光电导探测器,所述金纳米颗粒分布在氧化锌薄膜上, 所述金纳米颗粒的直径大小为2-50nm粒径分布。 The thin-film photoconductive detector according to claim 1, the gold particles are distributed on the zinc oxide thin film, the diameter of the gold particles have a particle size distribution 2-50nm.
  6. 6. 根据权利要求5所述的薄膜光电导探测器,其中,所述金纳米颗粒的直径大小为2_4nm的粒径分布。 The thin film of the photoconductive detector as claimed in claim 5, wherein the diameter of the particle size distribution of the gold particles of 2_4nm.
  7. 7. 根据权利要求1-6任一项所述的薄膜光电导探测器,所述电极层的材料选自氧化铟锡(ITO),掺氟的氧化锡(FTO)或铝电极中的至少一种。 The thin film photoconductive detector according to any of claims 1-6, selected from indium tin oxide material of the electrode layer (ITO), fluorine-doped tin oxide (FTO), or at least one aluminum electrode species.
  8. 8. 根据权利要求1-6任一项所述的薄膜光电导探测器,其中,所述图案化的电极层的正极和负极之间的水平间距为10-1000μm。 8. The film of claim photoconductive detector according to any one of 1-6, wherein the horizontal distance between the positive electrode layer and the negative electrode of the patterned spacing 10-1000μm.
  9. 9. 根据权利要求8所述的薄膜光电导探测器,其中,所述图案化的电极层的正极和负极之间的水平间距为30-500μm。 9. The film of claim 8, said photoconductive detector, wherein the horizontal spacing between the positive electrode of the patterned layer and the negative electrode is 30-500μm.
  10. 10. 根据权利要求8所述的薄膜光电导探测器,其中,所述图案化的电极层的正极和负极之间的水平间距为50μm。 10. The film of claim 8, said photoconductive detector, wherein the horizontal distance between the positive electrode layer and the patterned negative electrode pitch of 50μm.
  11. 11. 根据权利要求1-6任一项所述的薄膜光电导探测器,所述电极层的厚度为30-200nm〇 11. The film of claim photoconductive detector according to any of 1-6, the thickness of the electrode layer is 30-200nm〇
  12. 12. 根据权利要求11所述的薄膜光电导探测器,所述电极层的厚度为50-150nm。 12. The film of claim 11, wherein the photoconductive detector, the thickness of the electrode layer is 50-150nm.
  13. 13. 根据权利要求12所述的薄膜光电导探测器,所述电极层的厚度为50nm。 Photoconductive detector 13. The film of claim 12, wherein the thickness of the electrode layer is 50nm.
  14. 14. 根据权利要求1-6任一项所述的薄膜光电导探测器,所述基底为刚性基底或柔性基底,所述刚性基底为玻璃或硅,所述柔性基底选自聚酰亚胺和聚酯薄膜中的至少一种。 14. The film of claim photoconductive detector according to any of 1-6, the substrate is a rigid substrate or a flexible substrate, the rigid substrate is a glass or silicon, the flexible substrate is selected from polyimide and at least one polyester film.
  15. 15. 根据权利要求14所述的薄膜光电导探测器,其中所述聚酰亚胺的相对分子质量为10000-100000g/mol;所述聚酯的相对分子质量为10000-100000g/mol。 15. The film of claim photoconductive detector of claim 14, wherein the molecular weight of the polyimide is 10000-100000g / mol; molecular weight of the polyester is 10000-100000g / mol.
  16. 16. 根据权利要求15所述的薄膜光电导探测器,所述聚酰亚胺的相对分子质量为45000g/mol;所述聚酯的相对分子质量为70000g/mol。 16. The film of claim photoconductive detector 15, the molecular weight of the polyimide is 45000g / mol; molecular weight of the polyester is 70000g / mol.
  17. 17. -种制备权利要求1-16任一项所述的薄膜光电导探测器的方法,包括如下步骤: 1) 在所述具有图案化的电极的基底上制备氧化锌层; 2) 在所述氧化锌层上制备金纳米颗粒层,得到所述探测器; 其中,制备所述氧化锌层和金纳米颗粒层的方法均为溶液旋涂法。 17. - a thin film of a photoconductive detector according to any of claims 1-16 prepared as claimed species, comprising the following steps: 1) preparation of the zinc oxide layer having the patterned base electrode; 2) in the preparation of gold particle layer on said zinc oxide layer, to obtain the detector; wherein the method of preparing the zinc oxide layer and the particle layer are gold solution was spin-coating method.
  18. 18. 权利要求1-16任一项所述的薄膜光电导探测器的用途,其用于制备光检测器、图像成像器件或生物传感器。 18. The use of a thin-film photoconductive detector according to any of claims 1 to 16 for the preparation of a photodetector, an image forming device or a biosensor.
  19. 19. 一种光检测器,其包括权利要求1-16任一项所述的薄膜光电导探测器。 19. An optical detector, which detector comprises a photoconductive thin film of any one of claims 1-16.
  20. 20. -种图像成像器件,其包括权利要求1-16任一项所述的薄膜光电导探测器。 20. - kinds of image forming device, which comprises a photoconductive thin film detector as claimed in any one of the claims 1-16.
  21. 21. -种生物传感器,其包括权利要求1-16任一项所述的薄膜光电导探测器。 21. - kind of biosensor, which comprises a photoconductive thin film detector as claimed in any one of the claims 1-16.
CN 201310521558 2013-10-29 2013-10-29 UV detectors and thin film preparation method and application CN103545397B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310521558 CN103545397B (en) 2013-10-29 2013-10-29 UV detectors and thin film preparation method and application

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310521558 CN103545397B (en) 2013-10-29 2013-10-29 UV detectors and thin film preparation method and application

Publications (2)

Publication Number Publication Date
CN103545397A true CN103545397A (en) 2014-01-29
CN103545397B true CN103545397B (en) 2016-02-24

Family

ID=49968660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310521558 CN103545397B (en) 2013-10-29 2013-10-29 UV detectors and thin film preparation method and application

Country Status (1)

Country Link
CN (1) CN103545397B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872155B (en) * 2014-03-19 2016-08-17 南京大学 One kind of plasmon-enhanced superconducting single-photon detector and its preparation method Surface
US9928727B2 (en) 2015-07-28 2018-03-27 Carrier Corporation Flame detectors
US9806125B2 (en) 2015-07-28 2017-10-31 Carrier Corporation Compositionally graded photodetectors
US9865766B2 (en) 2015-07-28 2018-01-09 Carrier Corporation Ultraviolet photodetectors and methods of making ultraviolet photodetectors
CN105609588B (en) * 2016-01-22 2018-01-05 南京理工大学 Au nanoparticle enhanced performance nanocrystalline inorganic perovskite CsPbX3 visible light detector
CN105679942A (en) * 2016-01-22 2016-06-15 南京理工大学 High-performance all-inorganic perovskite CsPbX3 nanocrystalline visible-light detector with vertical structure
CN106449987A (en) * 2016-11-15 2017-02-22 华南理工大学 Photoconductive organic semiconductor detector and production method thereof
CN106784061A (en) * 2016-12-28 2017-05-31 中国科学院长春光学精密机械与物理研究所 Ultraviolet detector and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001650A1 (en) * 2000-06-26 2002-01-03 University Of Maryland Mgzno based uv detectors
JP2002176191A (en) * 2000-09-27 2002-06-21 Fuji Photo Film Co Ltd Sensitive light receiving element and image sensor
CN1400674A (en) * 2002-08-05 2003-03-05 浙江大学 Preparation method of zinc oxide UV photodetector prototype device
CN101055903A (en) * 2007-04-30 2007-10-17 西安交通大学 A making method for high-performance ZnO MSM ultra-violet photoconduction detector
CN101514908A (en) * 2009-03-17 2009-08-26 中国石油大学(北京) Infrared laser sensitive fast response angular position detector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002001650A1 (en) * 2000-06-26 2002-01-03 University Of Maryland Mgzno based uv detectors
JP2002176191A (en) * 2000-09-27 2002-06-21 Fuji Photo Film Co Ltd Sensitive light receiving element and image sensor
CN1400674A (en) * 2002-08-05 2003-03-05 浙江大学 Preparation method of zinc oxide UV photodetector prototype device
CN101055903A (en) * 2007-04-30 2007-10-17 西安交通大学 A making method for high-performance ZnO MSM ultra-violet photoconduction detector
CN101514908A (en) * 2009-03-17 2009-08-26 中国石油大学(北京) Infrared laser sensitive fast response angular position detector

Also Published As

Publication number Publication date Type
CN103545397A (en) 2014-01-29 application

Similar Documents

Publication Publication Date Title
Zhang et al. High efficiency hybrid PEDOT: PSS/nanostructured silicon Schottky junction solar cells by doping-free rear contact
Wang et al. MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high‐detectivity, self‐driven visible–near infrared photodetectors
Beek et al. Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles
Chen et al. New concept ultraviolet photodetectors
Moazzami et al. Sub-bandgap photoconductivity in ZnO epilayers and extraction of trap density spectra
Heo et al. High‐Performance Organic Optoelectronic Devices Enhanced by Surface Plasmon Resonance
Saran et al. Lead sulphide nanocrystal photodetector technologies
Gogurla et al. Multifunctional Au-ZnO plasmonic nanostructures for enhanced UV photodetector and room temperature NO sensing devices
Prades et al. The effects of electron–hole separation on the photoconductivity of individual metal oxide nanowires
Musselman et al. Strong efficiency improvements in ultra‐low‐cost inorganic nanowire solar cells
Kind et al. Nanowire ultraviolet photodetectors and optical switches
Pal et al. High‐Sensitivity p–n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots
Jin et al. High-performance flexible ultraviolet photoconductors based on solution-processed ultrathin ZnO/Au nanoparticle composite films
Tsai et al. Ultra-high-responsivity broadband detection of Si metal–semiconductor–metal schottky photodetectors improved by ZnO nanorod arrays
Kong et al. Graphene‐β‐Ga2O3 heterojunction for highly sensitive deep UV photodetector application
Lin et al. Enhanced UV photoresponse from heterostructured Ag–ZnO nanowires
Jin et al. Self-powered high performance photodetectors based on CdSe nanobelt/graphene Schottky junctions
Bora et al. Highly efficient ZnO/Au Schottky barrier dye-sensitized solar cells: Role of gold nanoparticles on the charge-transfer process
US20110278541A1 (en) Color-selective quantum dot photodetectors
Spina et al. Micro-engineered CH $ _3 $ NH $ _3 $ PbI $ _3 $ nanowire/graphene phototransistor for low intensity light detection at room temperature
Dong et al. Improving All‐Inorganic Perovskite Photodetectors by Preferred Orientation and Plasmonic Effect
de Luna Bugallo et al. Visible-blind photodetector based on p–i–n junction GaN nanowire ensembles
Zhang et al. Characterization and modeling of a ZnO nanowire ultraviolet photodetector with graphene transparent contact
Liu et al. Tunable hybrid photodetectors with superhigh responsivity
Kang et al. An Ultrahigh‐Performance Photodetector based on a Perovskite–Transition‐Metal‐Dichalcogenide Hybrid Structure

Legal Events

Date Code Title Description
C06 Publication
C14 Grant of patent or utility model