CN103532005A - Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers - Google Patents

Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers Download PDF

Info

Publication number
CN103532005A
CN103532005A CN201310496020.8A CN201310496020A CN103532005A CN 103532005 A CN103532005 A CN 103532005A CN 201310496020 A CN201310496020 A CN 201310496020A CN 103532005 A CN103532005 A CN 103532005A
Authority
CN
China
Prior art keywords
solid state
laser
state laser
solid
high reflective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310496020.8A
Other languages
Chinese (zh)
Inventor
赵鹏飞
林学春
林培晨
农光壹
董智勇
李达
姜乃方
常亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JIANGSU ZKSX LASER TECHNOLOGY Co Ltd
Original Assignee
JIANGSU ZKSX LASER TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JIANGSU ZKSX LASER TECHNOLOGY Co Ltd filed Critical JIANGSU ZKSX LASER TECHNOLOGY Co Ltd
Priority to CN201310496020.8A priority Critical patent/CN103532005A/en
Publication of CN103532005A publication Critical patent/CN103532005A/en
Pending legal-status Critical Current

Links

Images

Abstract

The invention relates to a staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers. The method comprises the following steps that 1, an all-solid-state laser with an equivalent resonant cavity is designed; 2, the staggered parallel connection beam combination of two independent all-solid-state lasers is carried out; and 3, the staggered parallel connection beam combination of N independent all-solid-state lasers is carried out. The staggered parallel connection beam combing method has the advantages that the laser emitted by the N independent all-solid-state lasers can be output in the same emitting optical axis, the same girdling position and the same emitting angle in a superposed way, the N-times amplification of the power is realized, and in addition, through the reflection and the transmission of a 45-degree coupling output mirror on the laser, the energy coupling is built among the N all-solid-state lasers. When the condition occurs, the partial interference effect is formed in a laser beam output by a combined beam, and the laser light beam quality after the beam combination is equal to or higher than the light beam quality of the single all-solid-state laser.

Description

A kind of dislocation association bundle method that realizes all solid state laser high-power output
Technical field
The present invention relates to a kind of dislocation association bundle method that realizes all solid state laser power expansion, belong to Solid State Laser technical field.
Background technology
All solid state laser refers to the solid state laser of semiconductor laser pumping, have the advantages such as efficiency is high, life-span length, good beam quality, compact conformation, the process unit based on such laser is widely used in the fields such as automobile, railway, boats and ships, metallurgy, petrochemical industry, national defence and Aero-Space.
At present generally in series by several laser cell modules for the high power all solid state laser of industrial processes, the mode of amplifying by resonance or resonance realizes high-power output, has the advantages such as simple in structure, easy realization.Laser module is the critical piece that forms all solid state laser, by tens to up to a hundred semiconductor lasers, to line up ring-type to carry out pumping from the side of crystal bar, by the semiconductor laser light source of Rational Arrangement pumping, on the cross section of crystal bar, form and be from inside to outside parabolic gain profiles.Semiconductor laser as pumping source extends the situation that has red shift of wavelength or power attenuation with service time, tens semiconductor lasers generally can synchronously not change in time, indivedual semiconductor lasers even there will be random failure, the randomness that this pump light source changes can cause crystal bar pumping homogeneity to change, and minor shifts occurs at gain center.This small skew can cause the skew of the optical axis generation minute angle of laser in cascaded structure, thereby affects stability and the reliability of whole laser system.In commercial Application, as stability and the reliability that in the high power all solid state laser of laser processing equipment light source, a most important index is system.
" a kind of also association bundle method that realizes all solid state laser high-power output " (publication number: 2013102561881) of the applicant's application, be by the N laser that independently all solid state laser sends with identical transmitting optical axis, identical beam waist position and identical angle of divergence stack output, realize power N stack doubly.The present invention adopts that dislocation is in parallel can will can obtain same output effect, but has reduced the optical element adopting while realizing beam combination, make laser debug easier, structure is compacter, reliability is higher.
Summary of the invention
In order to overcome the deficiencies in the prior art, the object of the present invention is to provide a kind of brand-new power expansion method---dislocation association bundle, that can realize a plurality of independent all solid state laser outgoing laser beams closes bundle completely, make the laser that various lasers is sent export, and close and restraint the beam quality that the laser beam quality of exporting is not less than single laser Output of laser with identical optical axis, identical beam waist position and size, identical angle of divergence stack.
To achieve these goals, technical scheme of the present invention realizes by following steps: a kind of dislocation association bundle method that realizes all solid state laser high-power output, comprises the following steps: all solid state laser that 1) designs an equivalent resonant cavity; 2) dislocation of 2 independent all solid state lasers association bundle; 3) dislocation the association bundle of N independent all solid state laser; It is characterized in that:
1), design all solid state laser of an equivalent resonant cavity: the lens (15) and 1 laser head (16) that 3 high reflective mirrors (11,12,13), 1 output coupling mirror (14), 1,1 or multi-disc, consist of form, the distance L of the spot center on output coupling mirror (14) and high reflective mirror (12) 11between 20~380mm, the distance L of the upper spot center of lens (15) and output coupling mirror (14) 12and the distance L between high reflective mirror (13) and lens (15) 13by following mathematical relationship, determined:
L 12=f 1-L 11and L 13=f 1
2), dislocation the association bundle of 2 independent all solid state lasers: the 2nd all solid state laser of transverse shifting, makes lateral separation L between the 2nd all solid state laser high reflective mirror (22) and the 1st all solid state laser high reflective mirror (12) 22, and distance L between the 1st all solid state laser (1) and the 2nd all solid state laser (2) 1equate,
L 22=L 1
And the distance L of spot center and high reflective mirror (12) on output coupling mirror (14) coated surface 11distance L with spot center and high reflective mirror (22) on output coupling mirror (24) coated surface 21by following mathematical relationship, determined:
|L 11-L 21|=L 1
3), dislocation the association bundle of N independent all solid state laser: n all solid state laser of transverse shifting, makes lateral separation L between n all solid state laser high reflective mirror (n2) and n-1 all solid state laser high reflective mirror ((n-1) 2) n2, and distance L between n all solid state laser (n) and n-1 all solid state laser (n-1) n-1by following mathematical relationship, determined:
L n2=L n-1
And the distance L of spot center and high reflective mirror (n2) on output coupling mirror (n4) coated surface n1distance L with spot center and high reflective mirror ((n-1) 2) on output coupling mirror ((n-1) 4) coated surface (n-1) 1by following mathematical relationship, determined:
|L (n-1)1-L n1|=L n-1
The present invention, not only can be by the N laser that independently all solid state laser sends with identical transmitting optical axis, identical beam waist position and identical angle of divergence stack output, realize power N amplification doubly, and because 45 ° of output coupling mirrors are to swashing reflection of light and transmission, will between N all solid state laser, set up Energy Coupling.The generation of this kind of situation is forming section interference effect in closing the laser beam of bundle output, makes to close the beam quality that laser beam quality after bundle equals or be better than single all solid state laser.
Accompanying drawing explanation
Fig. 1 is equivalent resonant cavity schematic diagram of the present invention.
Fig. 2 is the schematic diagram of two independent all solid state lasers of the present invention association bundle.
Fig. 3 is the reflectivity of 45 ° of output coupling mirrors in equivalent resonant cavity of the present invention and the corresponding relation figure of average resonant cavity output coupling mirror reflectivity.
Fig. 4 is the schematic diagram of N of the present invention independent all solid state laser association bundle.
Fig. 5 is 2 independent all solid state lasers providing of embodiments of the invention the pumping current and the relation of closing bundle power output of association bundle.
Fig. 6 is 3 independent all solid state lasers providing of embodiments of the invention the pumping current and the relation of closing bundle power output of association bundle.
In figure: n. all solid state laser; N1. high reflective mirror; N2. high reflective mirror; N3. high reflective mirror; N4. output coupling mirror; N5. lens; N6. laser head; N7. lens; (above n is desirable 1,2,3 ..., N).
Specific embodiment
The present embodiment is referring to Fig. 1~Fig. 4, adopts DPLM40-81 laser head (n6) that my company produces, commercial the lens (15) that 0 ° of incidence reflection rate of 1064nm laser is greater than 99.8% high reflective mirror (n1, n2, n3), the anti-reflection focal length of output coupling mirror (n4) and surface that is 16% to 45 ° of incidence reflection rates of 1064nm laser is 300mm are built to 2 all solid state lasers realize also association bundle.
1, the realization of the average cavity resonator structure of first all solid state laser equivalence
1) to select the physics chamber of average resonant cavity of equivalence long be 800mm to this example, so the distance between high reflective mirror (11), (12) is 800mm.
2) determine the parameter of output coupling mirror (14) and lens (15).The angle of the central axis of the crystal bar in output coupling mirror surface normal and laser head (16) is 45 °, it is chosen with reference to figure 2 reflectivity of laser, because the reflectivity of the output coupling mirror of average resonant cavity equivalent in this example is 30%, the reflectivity of therefore choosing output coupling mirror (14) is 18%(Fig. 3); It is f that lens in this example (15) are selected focal length 1the einzel lens of=300mm.
3) determine optical mirror slip location parameter.According to mathematical relationship described in step 1, select L 11=270mm, L 12=30mm and L 13=300mm.
2, the realization of 2 independent all solid state lasers association bundle
Determine the location parameter of two all solid state lasers (1,2).This example is selected L 1=120mm, is known by step 2, L 21=150mm, L 22=120mm.The relation curve that closes bundle power output and pumping current that the present embodiment provides as shown in Figure 5.Wherein all solid state laser 1 and 2 peak power outputs are respectively 0.715kW and 0.654kW, close bundle power output and are 1.25kW to the maximum, close bundle efficiency and equal 91.3%.
3, the realization of 3 independent all solid state lasers association bundle
Determine the location parameter of 3 all solid state lasers (1,2,3).This example is selected L 1=L 2=120mm, L 11=270mm, L 12=30mm, L 13=300mm, is known by step 2, L 21=150mm, is known by step 3, L 31=30mm, L 32=120mm.The relation curve that closes bundle power output and pumping current that the present embodiment provides as shown in Figure 6.Wherein all solid state laser 1,2 and 3 peak power outputs are respectively 0.715kW, 0.654kW, and 0.667kW closes bundle power output and is 1.82kW to the maximum, closes bundle efficiency and equals 89.3%.
The high power all solid state laser that utilizes the method to realize can be realized modular construction, the pumping homogeneity that can effectively reduce single laser module changes the impact on complete machine, be conducive to improve stability and the reliability of complete machine, to realizing the high power of technical grade, high reliability, to be easy to the modularization all solid state laser safeguarded significant.Advantage of the present invention is to adopt less optical element to obtain identical power output and beam quality, and laser structure is compacter, and reliability is higher.

Claims (1)

1. the dislocation the association bundle method that realize all solid state laser high-power output, comprise the following steps: all solid state laser that 1) designs an equivalent resonant cavity; 2) dislocation of 2 independent all solid state lasers association bundle; 3) dislocation the association bundle of N independent all solid state laser; It is characterized in that:
1), design all solid state laser of an equivalent resonant cavity: the lens (15) and 1 laser head (16) that 3 high reflective mirrors (11,12,13), 1 output coupling mirror (14), 1,1 or multi-disc, consist of form, the distance L of the spot center on output coupling mirror (14) and high reflective mirror (12) 11between 20~380mm, the distance L of the upper spot center of lens (15) and output coupling mirror (14) 12and the distance L between high reflective mirror (13) and lens (15) 13by following mathematical relationship, determined:
L 12=f 1-L 11and L 13=f 1
2), dislocation the association bundle of 2 independent all solid state lasers: the 2nd all solid state laser of transverse shifting, makes lateral separation L between the 2nd all solid state laser high reflective mirror (22) and the 1st all solid state laser high reflective mirror (12) 22, and distance L between the 1st all solid state laser (1) and the 2nd all solid state laser (2) 1equate,
L 22=L 1
And the distance L of spot center and high reflective mirror (12) on output coupling mirror (14) coated surface 11distance L with spot center and high reflective mirror (22) on output coupling mirror (24) coated surface 21by following mathematical relationship, determined:
|L 11-L 21|=L 1
3), dislocation the association bundle of N independent all solid state laser: n all solid state laser of transverse shifting, makes lateral separation L between n all solid state laser high reflective mirror (n2) and n-1 all solid state laser high reflective mirror ((n-1) 2) n2, and distance L between n all solid state laser (n) and n-1 all solid state laser (n-1) n-1by following mathematical relationship, determined:
L n2=L n-1
And the distance L of spot center and high reflective mirror (n2) on output coupling mirror (n4) coated surface n1distance L with spot center and high reflective mirror ((n-1) 2) on output coupling mirror ((n-1) 4) coated surface (n-1) 1by following mathematical relationship, determined:
|L (n-1)1-L n1|=L n-1
CN201310496020.8A 2013-10-21 2013-10-21 Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers Pending CN103532005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310496020.8A CN103532005A (en) 2013-10-21 2013-10-21 Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310496020.8A CN103532005A (en) 2013-10-21 2013-10-21 Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers

Publications (1)

Publication Number Publication Date
CN103532005A true CN103532005A (en) 2014-01-22

Family

ID=49933806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310496020.8A Pending CN103532005A (en) 2013-10-21 2013-10-21 Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers

Country Status (1)

Country Link
CN (1) CN103532005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006732A (en) * 2015-08-12 2015-10-28 广州安特激光技术有限公司 Medium and small power LD parallelly pumped high-power green laser
CN105006738A (en) * 2015-08-12 2015-10-28 广州安特激光技术有限公司 Parallel connection end-pumped series amplifying high-power laser

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067016A1 (en) * 2002-10-07 2004-04-08 Anikitchev Serguei G. Method and apparatus for coupling radiation from a stack of diode-laser bars into a single-core optical fiber
CN201177693Y (en) * 2008-04-07 2009-01-07 北京工业大学 Large power semi-conductor laser beam composite apparatus
CN103326230A (en) * 2013-06-25 2013-09-25 江苏中科四象激光科技有限公司 Parallel beam-combining method for achieving all-solid-state laser high-power output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067016A1 (en) * 2002-10-07 2004-04-08 Anikitchev Serguei G. Method and apparatus for coupling radiation from a stack of diode-laser bars into a single-core optical fiber
CN201177693Y (en) * 2008-04-07 2009-01-07 北京工业大学 Large power semi-conductor laser beam composite apparatus
CN103326230A (en) * 2013-06-25 2013-09-25 江苏中科四象激光科技有限公司 Parallel beam-combining method for achieving all-solid-state laser high-power output

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105006732A (en) * 2015-08-12 2015-10-28 广州安特激光技术有限公司 Medium and small power LD parallelly pumped high-power green laser
CN105006738A (en) * 2015-08-12 2015-10-28 广州安特激光技术有限公司 Parallel connection end-pumped series amplifying high-power laser

Similar Documents

Publication Publication Date Title
CN103326230B (en) A kind of also association bundle method realizing all solid state laser high-power output
CN105428975B (en) High power femto second optical fiber laser
CN102664338B (en) Multi-wavelength crystal Raman medium frequency shift
CN102684061B (en) All solid-state angular momentum tunable laser device with stable pulse energy
CN102244362A (en) Three-level multi-channel principal oscillation-power amplification coherent compound myriawatt-level optical fiber laser
CN201868728U (en) Alkali vapor laser
CN104767108A (en) Regenerative amplifier provided with multiplied resonator cavity
CN105006738A (en) Parallel connection end-pumped series amplifying high-power laser
CN101464564B (en) High-power semiconductor laser beam composite apparatus
CN103346472A (en) 100MHz high repetition frequency, 1ns narrow pulse width narrow line width laser mixing amplifying device and method
CN203617543U (en) Offset parallel combined beam laser capable of achieving all-solid-state high power output
CN103944040A (en) Novel bicrystal tandem connection dual-wavelength laser
CN103532005A (en) Staggered parallel connection beam combing method for realizing high-power output of all-solid-state lasers
CN205248608U (en) High power flies a second fiber laser
CN114336254A (en) High-brightness main oscillation power amplification picosecond laser system
CN101710669B (en) Double-output end face pumping all-solid-state laser
CN209029672U (en) Pump module and solid state laser with it
CN105024274A (en) Raman laser device for optimizing pumping laser by means of two-stage stimulated Brillouin scattering method
CN204441699U (en) A kind of pulse optical fiber
CN108199253B (en) Efficient frequency doubling device and method
CN106711751B (en) All-solid-state dual-wavelength ultrafast laser and working method thereof
CN102208740A (en) Nanosecond pulse fiber laser with circle structure
CN104917053A (en) V-type resonant cavity and laser based on V-type resonant cavity
CN201541050U (en) Double-output end-face pump whole solid state laser
CN114883896A (en) 2 mu m laser

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20140122