CN103482729A - 一种处理地下水硝基苯污染的装置及方法 - Google Patents

一种处理地下水硝基苯污染的装置及方法 Download PDF

Info

Publication number
CN103482729A
CN103482729A CN201310361757.9A CN201310361757A CN103482729A CN 103482729 A CN103482729 A CN 103482729A CN 201310361757 A CN201310361757 A CN 201310361757A CN 103482729 A CN103482729 A CN 103482729A
Authority
CN
China
Prior art keywords
main body
reaction chamber
body reaction
nitrobenzene
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310361757.9A
Other languages
English (en)
Inventor
卢宏玮
任丽霞
何理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201310361757.9A priority Critical patent/CN103482729A/zh
Publication of CN103482729A publication Critical patent/CN103482729A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种处理地下水硝基苯污染的装置及方法,其特征在于:所述装置包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵;电极阳极附近设置加料口,主体反应室的底部设置回流口,其侧壁上端设置进水口,其侧壁下端设置出水口,其内部中央插设搅拌器,主体反应室内平行插设电极阳极和电极阴极,电极阴极附近插设曝气充氧装置,主体反应室外部上方设置电源和汞灯,电极阳极和汞灯的一端均连接电源正极,电极阴极和汞灯的另一端均连接电源负极;储液槽位于主体反应室外部,储液槽的一端连接主体反应室的出水口,其另一端通过回流泵连接主体反应室的回流口。本发明可以广泛用于处理含硝基苯的地下水。

Description

一种处理地下水硝基苯污染的装置及方法
技术领域
本发明涉及一种处理地下水的装置及方法,特别是关于一种处理地下水硝基苯污染的装置及方法。
背景技术
硝基苯是一种无色或微黄色具苦杏仁味的油状液体,具有生物积累性和致癌、致畸、致突变的三致作用,被列于世界“环境优先控制有毒有机污染物”的名单前列,同时也属于我国确定的52种优先控制的有毒化学品中的一种。它是一种常见的、广泛使用的剧毒化工原料,主要应用于合成染料、医药、除草剂、杀虫剂、洗涤剂、炸药、橡胶及塑料助剂等。由于我国社会经济和工业发展造成废水排污量的急剧上升,加上废水处理过程中的渗漏、事故排放和污泥处置过程中经渗滤液的渗漏,因此导致大量硝基苯类化合物进入地表水及地下水环境。据不完全统计,全球每年约有1.2万吨硝基苯进入环境,而硝基苯在水中具有极高的稳定性,其不溶于水且密度大于水,进入水体的硝基苯会沉入水底,长期保持不变,因此造成的水体污染会持续相当长的时间。另外,硝基苯可能通过呼吸作用、皮肤吸收和食物进食等方式进入人体内并对人类的血液、肝及中枢神经系统产生毒害作用。
目前国内外关于硝基苯污染的地下水处理方法包括物理法、化学法和生物法。物理法主要包括吸附法、气提法和萃取法;化学法包括臭氧氧化法、电化学方法、Fenton试剂氧化法、超声波氧化法、超临界水氧化法和脉冲等离子放电法等;生物法主要包括好氧生物法、厌氧生物法和多步处理法。对于物理法而言,污染物只是从一个污染场地被转移到另一个污染场地,并不能从根本上去除硝基苯污染物,且处理周期长,工作量大;化学法去除硝基苯效率高,反应速度快,但所需药品费用和能耗较高;生物法具有处理量大、成本低、不会造成二次污染等优点,但通常需要与前处理及预处理联合使用,因其处理过程复杂,人类对硝基苯类化合物降解途径仍知之甚少,另外,若地下水中硝基苯的浓度很高,微生物就有可能中毒,其作用被抑制。
始于20世纪80年代的电Fenton法作为电化学方法中的一种,其实质是在电解过程中直接生成Fenton试剂,电化学反应生成的Fe2+和H2O2作为Fenton试剂的持续来源,Fe2+和H2O2反应生成具有高度活性的·OH(羟基自由基)。·OH的氧化电位达2.8ev,并具有很强的氧化性,它能无选择地将绝大多数有机物彻底降解氧化成CO2、H2O和其他无机物。电Fenton法根据Fe2+和H2O2的产生方式可以分为不同类型,如阴极电Fenton法(即O2在阴极还原生成H2O2,Fe2+由外界加入)、牺牲阳极法(Fe2+由Fe在阳极氧化产生,H2O2由外界加入)、电Fenton一铁还原法(Fe2+由Fe3+电极在阴极氧化产生,H2O2由外界加入)、EF—铁氧化—H2O2(Fe2+由Fe在阳极氧化产生,H2O2由O2在阴极还原产生)、EF—铁还原—H2O2(Fe2+和H2O2分别由Fe3+和O2在阴极还原产生)、Fenton污泥循环法(Fenton反应器和一个将Fe(OH)3转化成Fe2+的电池)等。
光电Fenton氧化法是在电Fenton反应器中加入紫外灯,在紫外灯发出的紫外光的作用下电Fenton反应由于铁离子的光还原和H2O2光辐射分解的协同作用而使有机物高效降解。与电Fenton相比,光电Fenton的突出优点是紫外光的引入可诱导H2O2产生大量的·OH,紫外光和Fe2+对H2O2的催化分解具有协同作用,使H2O2的分解速率远大于单纯Fe2+或紫外光催化分解速率的简单加和,保持了H2O2较高的利用率,并提高了电流利用效率,因此处理效果优于电Fenton氧化法,但只采用光电Fenton氧化法对硝基苯进行降解,降解效率仍较低。
发明内容
针对上述问题,本发明的目的是提供一种采用光电Fenton和纳米零价铁联合技术能够高效、充分地处理地下水硝基苯污染的装置及方法。
为实现上述目的,本发明采取以下技术方案:一种处理地下水硝基苯污染的装置,其特征在于:它包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵;所述主体反应室的顶部且在所述电极阳极附近设置一加料口,所述主体反应室的底部设置一回流口,所述主体反应室的侧壁上端设置一进水口,所述主体反应室的侧壁下端设置一出水口,所述主体反应室内部中央插设有所述搅拌器,所述主体反应室内平行插设有所述电极阳极和电极阴极,所述电极阴极附近插设有所述曝气充氧装置,所述主体反应室外部上方设置所述电源和汞灯,所述电极阳极连接所述电源正极,所述电极阴极连接所述电源负极,所述汞灯的一端连接所述电源正极,所述汞灯的另一端连接所述电源负极;所述储液槽位于所述主体反应室的外部,所述储液槽的一端连接所述主体反应室的出水口,所述储液槽的另一端通过所述回流泵连接所述主体反应室的回流口。
所述进水口处和出水口处分别设置一阀门。
所述主体反应室和所述储液槽均采用石英玻璃制作而成。
所述电源采用直流稳压稳流式电源,其量程为0~120V。
所述汞灯采用功率为10W~20W、汞蒸汽压力为10~100Pa、中心波长为254nm以及发射的紫外光呈线状的低压汞灯。
所述电极阳极采用碳棒、钛-钌和掺硼金刚石膜电极中的一种,所述电极阴极采用活性炭纤维、石墨和碳纤维毡电极中的一种。
所述搅拌器采用三叶旋桨式搅拌器,搅拌速度为100~300rpm。
一种采用所述处理地下水装置的方法,包括以下步骤:1)根据需要处理的含硝基苯的地下水量,设置一包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵的处理地下水硝基苯污染的装置;所述主体反应室设置有加料口、进水口、回流口和出水口,所述进水口处和出水口处分别设置有阀门;2)通过控制阀门,将待处理的含硝基苯的地下水通过进水口注入到主体反应室中;3)将硫酸或盐酸溶液通过加料口持续加入到主体反应室中,调节主体反应室中溶液的pH值,使主体反应室中溶液的pH值保持在2~3.5;4)通过曝气充氧装置向主体反应室中间歇式通入O2;5)打开电源,O2在电极阴极表面发生还原反应,生成H2O2;6)将纳米零价铁通过加料口加入到主体反应室中,并开启搅拌器,对含纳米零价铁、硝基苯地下水、硫酸钠电解质和反应生成的H2O2的混合液进行充分搅拌,纳米零价铁在电极阴极表面与H2O2发生Fenton反应,产生具有强氧化性的羟基自由基,羟基自由基降解氧化硝基苯,生成不含硝基苯污染物的溶液;7)汞灯发出的紫外光诱导H2O2产生羟基自由基,羟基自由基进一步降解氧化硝基苯,生成不含硝基苯污染物的溶液;8)当通过测量得知氧化还原电位基本保持不变时,打开出水口处的阀门,反应完成后不含硝基苯的溶液通过出水口流入储液槽中,溶液中部分未反应的纳米零价铁经回流泵通过回流口流入主体反应室中,继续与含硝基苯的地下水混合反应,直到投入的纳米零价铁反应完为止。
所述步骤7)中,纳米零价铁采用KBH4和NaBH4中的一种还原铁盐溶液,并用硅微粉和活性炭中的一种在还原生成的纳米大小零价铁粒子表面进行负载的方法获得。
所述步骤7)中,汞灯位于主体反应室外部的上方,距主体反应室中混合液的液面10cm处。
本发明由于采取以上技术方案,其具有以下优点:1、本发明由于包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵,在主体反应室中,搅拌器对含纳米零价铁、硝基苯地下水、硫酸钠电解质和反应生成的H2O2的混合液进行充分搅拌,因此本发明能够保证硝基苯被充分降解。2、本发明由于主体反应室的底部设置有一回流口,回流口通过回流管与回流泵连接,因此主体反应室中部分未反应的纳米零价铁通过回流泵能够回流到主体反应室中继续循环利用。3、本发明由于在主体反应室中纳米零价铁在电极阴极表面与H2O2发生Fenton反应,产生大量具有强氧化性的·OH,·OH能够降解硝基苯,生成无污染的物质,因此本发明能够长时间、有效地处理含硝基苯的地下水。4、本发明由于电极阴极表面生成的H2O2在汞灯发出的紫外光的诱导下能够产生·OH,·OH能够降解硝基苯,生成无污染的物质,因此本发明能够提高对硝基苯的降解效率。
附图说明
图1是本发明的处理地下水硝基苯污染的装置结构示意图
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
如图1所示,本发明的处理地下水硝基苯污染的装置包括主体反应室1、电源2、汞灯3、电极阳极4、电极阴极5、搅拌器6、曝气充氧装置7、储液槽8和回流泵9。主体反应室1的顶部且在电极阳极4附近设置一加料口11,主体反应室1的底部设置一回流口14,主体反应室1的侧壁上端设置一进水口12,主体反应室1的侧壁下端设置一出水口15,主体反应室1内部中央插设有搅拌器6,主体反应室1内平行插设有电极阳极4和电极阴极5,电极阴极4附近插设曝气充氧装置7,主体反应室1外部上方设置电源2和汞灯3,电极阳极4连接电源2正极,电极阴极5连接电源2负极,汞灯3的一端连接电源2正极,汞灯3的另一端连接电源2负极;储液槽8位于主体反应室1的外部,储液槽8的一端连接主体反应室1的出水口15,储液槽8的另一端通过回流泵9连接主体反应室1的回流口14。
上述实施例中,进水口12和出水口15处分别设置一阀门13。
上述实施例中,主体反应室1和储液槽8可以为圆柱体或长方体等结构,主体反应室1和储液槽8的体积根据所需要处理的地下水量确定,主体反应室1和储液槽8均采用石英玻璃制作而成。
上述实施例中,电源2采用直流稳压稳流式电源,其量程为0~120V。
上述实施例中,汞灯3采用功率为10W~20W、汞蒸汽压力为10~100Pa、中心波长为254nm以及发射的紫外光呈线状的低压汞灯。
上述实施例中,电极阳极4可以采用碳棒、钛-钌或掺硼金刚石膜电极等。
上述实施例中,电极阴极5可以采用活性炭纤维、石墨或碳纤维毡电极等。
上述实施例中,搅拌器6采用三叶旋桨式搅拌器,其搅拌速度为100~300rpm。
上述实施例中,曝气充氧装置7采用型号为QR-Ⅱ-22的实验装置,其功率为520W、排气量为450L/min、风压为0.05Mpa。
基于本发明的硝基苯污染地下水的处理装置,本发明提出了一种硝基苯污染地下水的处理方法,其包括以下步骤:
1)根据需要处理的含硝基苯的地下水量,设置一包括主体反应室1、电源2、汞灯3、电极阳极4、电极阴极5、搅拌器6、曝气充氧装置7、储液槽8和回流泵9的处理地下水硝基苯污染的装置;主体反应室1设置有加料口11、进水口12、回流口14和出水口15,进水口12处和出水口15处分别设置有阀门13。
2)通过控制阀门13,将待处理的含硝基苯的地下水通过进水口12以一定流速注入主体反应室1中。
3)将硫酸或盐酸溶液通过加料口11持续加入到主体反应室1中,调节主体反应室1中溶液的pH值,使主体反应室1中溶液的pH值保持在2~3.5;当主体反应室1中溶液的pH值满足2~3.5时,停止向主体反应室1中加入硫酸或盐酸溶液,当主体反应室1中溶液的pH值不满足2~3.5时,继续向主体反应室1中加入硫酸或盐酸溶液,调节主体反应室1中溶液的pH值,使主体反应室1中溶液的pH值满足2~3.5。
4)通过曝气充氧装置7向主体反应室1的混合液中间歇式通入O2
5)打开电源1,O2在电极阴极5表面发生还原反应,生成H2O2
6)将纳米零价铁通过加料口11加入到主体反应室1中,并开启搅拌器6,对含纳米零价铁、硝基苯地下水、硫酸钠电解质和反应生成的H2O2的混合液进行充分搅拌,纳米零价铁在电极阴极5表面与H2O2发生Fenton反应,产生具有强氧化性的羟基自由基,羟基自由基降解氧化硝基苯,生成不含硝基苯污染物的溶液。
7)汞灯2发出的紫外光诱导H2O2产生·OH,·OH进一步降解硝基苯,反应生成不含硝基苯污染物的溶液。
8)当通过测量得知氧化还原电位基本保持不变时,认为主体反应室1的溶液中的硝基苯已完全被降解;打开出水口15处的阀门13,反应完成后不含硝基苯的溶液通过出水口15流入储液槽8中,溶液中部分未反应的纳米零价铁由于沉降作用经回流泵9通过回流口14流入主体反应室1中,继续与含硝基苯的地下水溶液混合反应,直到投入的纳米零价铁反应完为止。
上述实施例中,纳米零价铁因易被氧化,采用现场制备的方式获得。其制备方法为:用KBH4或NaBH4还原铁盐溶液,得到纳米大小零价铁粒子,并用硅微粉或者活性炭在铁粒子表面进行负载,以防止纳米零价铁被腐蚀。
下面通过具体实施例对本发明的硝基苯污染地下水的处理装置及方法进行说明。
实施例1:根据需要处理的硝基苯地下水量自制尺寸为25cm×20cm×20cm的主体反应室1;选用一根10W的汞灯并将其固定于直径为3cm的石英管内;选用石墨电极作为电极阳极4,选用活性炭纤维电极作为电极阴极5,电极阳极4与电极阴极5的表面积均为32.97cm2,电极阳极4与电极阴极5之间的距离为15cm。
采用该硝基苯污染地下水的处理装置对含硝基苯的地下水进行处理的方法包括以下步骤:
1)将浓度为120mg/L的8L硝基苯地下水水样通过进水口12注入主体反应室1中。
2)将硫酸或盐酸溶液通过加料口11持续加入到主体反应室1中,调节主体反应室1中溶液的pH值,使主体反应室1中溶液的pH值保持为3。
3)通过曝气充氧装置7向主体反应室1的混合液中间歇式通入O2,曝气间隔为1小时,曝气量为0.03m3/h~0.5m3/h。
4)打开电源1,O2在电极阴极5表面发生还原反应,生成H2O2
5)将纳米零价铁通过加料口11加入到主体反应室1中,并开启搅拌器6,对含纳米零价铁、硝基苯地下水、硫酸钠电解质和反应生成的H2O2的混合液进行充分搅拌,纳米零价铁在电极阴极5表面与H2O2发生Fenton反应,产生具有强氧化性的羟基自由基,羟基自由基降解氧化硝基苯,生成不含硝基苯污染物的溶液。
6)将汞灯2置于主体反应室1中混合液的液面上10cm左右处,汞灯2发出的紫外光诱导H2O2产生大量的·OH,进一步降解硝基苯,反应生成不含硝基苯污染物的溶液。
7)用ORP计(氧化还原电位分析仪,图中未示出)测试主体反应室1中溶液的氧化还原反应程度,当ORP计显示的氧化还原电位基本保持不变时,认为主体反应室1的溶液中的硝基苯已完全被降解;打开出水口15处的阀门13,反应完成后不含硝基苯的溶液通过出水口15流入储液槽8中,溶液中部分未反应的纳米零价铁由于沉降作用经回流泵9通过回流口14流入主体反应室1中,继续与含硝基苯的地下水溶液混合反应,直到投入的纳米零价铁反应完为止。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式和各实施步骤等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

1.一种处理地下水硝基苯污染的装置,其特征在于:它包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵;所述主体反应室的顶部且在所述电极阳极附近设置一加料口,所述主体反应室的底部设置一回流口,所述主体反应室的侧壁上端设置一进水口,所述主体反应室的侧壁下端设置一出水口,所述主体反应室内部中央插设有所述搅拌器,所述主体反应室内平行插设有所述电极阳极和电极阴极,所述电极阴极附近插设有所述曝气充氧装置,所述主体反应室外部上方设置所述电源和汞灯,所述电极阳极连接所述电源正极,所述电极阴极连接所述电源负极,所述汞灯的一端连接所述电源正极,所述汞灯的另一端连接所述电源负极;所述储液槽位于所述主体反应室的外部,所述储液槽的一端连接所述主体反应室的出水口,所述储液槽的另一端通过所述回流泵连接所述主体反应室的回流口。
2.如权利要求1所述的一种处理地下水硝基苯污染的装置,其特征在于:所述进水口处和出水口处分别设置一阀门。
3.如权利要求1~2任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述主体反应室和所述储液槽均采用石英玻璃制作而成。
4.如权利要求1~3任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述电源采用直流稳压稳流式电源,其量程为0~120V。
5.如权利要求1~4任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述汞灯采用功率为10W~20W、汞蒸汽压力为10~100Pa、中心波长为254nm以及发射的紫外光呈线状的低压汞灯。
6.如权利要求1~5任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述电极阳极采用碳棒、钛-钌和掺硼金刚石膜电极中的一种,所述电极阴极采用活性炭纤维、石墨和碳纤维毡电极中的一种。
7.如权利要求1~6任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述搅拌器采用三叶旋桨式搅拌器,搅拌速度为100~300rpm。
8.一种采用如权利要求1~7任一项所述处理地下水装置的方法,包括以下步骤:
1)根据需要处理的含硝基苯的地下水量,设置一包括主体反应室、电源、汞灯、电极阳极、电极阴极、搅拌器、曝气充氧装置、储液槽和回流泵的处理地下水硝基苯污染的装置;所述主体反应室设置有加料口、进水口、回流口和出水口,所述进水口处和出水口处分别设置有阀门;
2)通过控制阀门,将待处理的含硝基苯的地下水通过进水口注入到主体反应室中;
3)将硫酸或盐酸溶液通过加料口持续加入到主体反应室中,调节主体反应室中溶液的pH值,使主体反应室中溶液的pH值保持在2~3.5;
4)通过曝气充氧装置向主体反应室中间歇式通入O2
5)打开电源,O2在电极阴极表面发生还原反应,生成H2O2
6)将纳米零价铁通过加料口加入到主体反应室中,并开启搅拌器,对含纳米零价铁、硝基苯地下水、硫酸钠电解质和反应生成的H2O2的混合液进行充分搅拌,纳米零价铁在电极阴极表面与H2O2发生Fenton反应,产生具有强氧化性的羟基自由基,羟基自由基降解氧化硝基苯,生成不含硝基苯污染物的溶液;
7)汞灯发出的紫外光诱导H2O2产生羟基自由基,羟基自由基进一步降解氧化硝基苯,生成不含硝基苯污染物的溶液;
8)当通过测量得知氧化还原电位基本保持不变时,打开出水口处的阀门,反应完成后不含硝基苯的溶液通过出水口流入储液槽中,溶液中部分未反应的纳米零价铁经回流泵通过回流口流入主体反应室中,继续与含硝基苯的地下水混合反应,直到投入的纳米零价铁反应完为止。
9.如权利要求8所述的一种处理地下水硝基苯污染的方法,其特征在于:所述步骤7)中,纳米零价铁采用KBH4和NaBH4中的一种还原铁盐溶液,并用硅微粉和活性炭中的一种在还原生成的纳米大小零价铁粒子表面进行负载的方法获得。
10.如权利要求8或9任一项所述的一种处理地下水硝基苯污染的装置,其特征在于:所述步骤7)中,汞灯位于主体反应室外部的上方,距主体反应室中混合液的液面10cm处。
CN201310361757.9A 2013-08-19 2013-08-19 一种处理地下水硝基苯污染的装置及方法 Pending CN103482729A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310361757.9A CN103482729A (zh) 2013-08-19 2013-08-19 一种处理地下水硝基苯污染的装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310361757.9A CN103482729A (zh) 2013-08-19 2013-08-19 一种处理地下水硝基苯污染的装置及方法

Publications (1)

Publication Number Publication Date
CN103482729A true CN103482729A (zh) 2014-01-01

Family

ID=49823399

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310361757.9A Pending CN103482729A (zh) 2013-08-19 2013-08-19 一种处理地下水硝基苯污染的装置及方法

Country Status (1)

Country Link
CN (1) CN103482729A (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070061A (zh) * 2014-07-08 2014-10-01 北京师范大学 一种土壤中二硝基苯胺类除草剂的降解方法
CN105253959A (zh) * 2015-11-10 2016-01-20 合肥学院 一种用于实验室有机废水处理的设备和方法
CN105601039A (zh) * 2015-12-30 2016-05-25 江汉大学 一种处理硝基苯类废水的方法
CN105600880A (zh) * 2016-02-02 2016-05-25 南京理工大学 一种含氮杂环化合物化工尾水的深度处理装置及其组合工艺
CN107032479A (zh) * 2017-03-31 2017-08-11 山东大学 一种生物电化学厌氧/微电解共混耦合强化处理高浓度环丙沙星废水的方法
CN107091832A (zh) * 2017-05-09 2017-08-25 山东省城市供排水水质监测中心 Uv/h2o2降解水中典型有机物反应速率常数的测定方法
CN107662960A (zh) * 2016-07-28 2018-02-06 常州唯楚环保科技有限公司 一种处理土壤地下水有机污染物的新装置和方法
CN107848845A (zh) * 2015-07-20 2018-03-27 新加坡国立大学 用于使用碳电极的电芬顿方法的装置和方法及其用于去除有机污染物的应用
CN108249545A (zh) * 2018-03-09 2018-07-06 南京大学 一种光电-Fenton偶氮染料废水处理反应器及使用方法
CN108821378A (zh) * 2018-06-22 2018-11-16 太仓永固精密制件有限公司 一种用于化工废水的吸附氧化罐
CN110240334A (zh) * 2019-06-27 2019-09-17 杭州森井医疗科技有限公司 医疗废水消毒杀菌装置
CN112110522A (zh) * 2020-09-09 2020-12-22 清华大学 一种电化学芬顿装置及处理污染物的电化学芬顿方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838074A (zh) * 2010-05-18 2010-09-22 华南理工大学 多相电催化氧化-Fenton耦合法降解硝基苯类废水的方法及其反应器
CN102276023A (zh) * 2011-06-21 2011-12-14 舒振华 处理废水中有机染料的方法
CN102424465A (zh) * 2011-10-24 2012-04-25 哈尔滨工程大学 一种电催化氧化和电Fenton技术协同降解酚类废水的方法
CN102659223A (zh) * 2012-05-28 2012-09-12 南京工业大学 一种处理难降解有机废水的光/电Fenton装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101838074A (zh) * 2010-05-18 2010-09-22 华南理工大学 多相电催化氧化-Fenton耦合法降解硝基苯类废水的方法及其反应器
CN102276023A (zh) * 2011-06-21 2011-12-14 舒振华 处理废水中有机染料的方法
CN102424465A (zh) * 2011-10-24 2012-04-25 哈尔滨工程大学 一种电催化氧化和电Fenton技术协同降解酚类废水的方法
CN102659223A (zh) * 2012-05-28 2012-09-12 南京工业大学 一种处理难降解有机废水的光/电Fenton装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
班福忱等: "光催化电-Fenton协同作用处理硝基苯废水", 《沈阳建筑大学学报(自然科学版)》, vol. 24, no. 04, 15 July 2008 (2008-07-15), pages 0646 - 0649 *
班福忱等: "光助电-Fenton法催化降解硝基苯及影响因素", 《沈阳建筑大学学报(自然科学版)》, vol. 22, no. 05, 25 October 2006 (2006-10-25), pages 0809 - 0811 *
肖凯军等: "三维电极-电Fenton耦合法降解硝基苯废水", 《华南理工大学学报(自然科学版)》, vol. 38, no. 08, 31 August 2010 (2010-08-31), pages 0131 - 0136 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104070061A (zh) * 2014-07-08 2014-10-01 北京师范大学 一种土壤中二硝基苯胺类除草剂的降解方法
CN107848845A (zh) * 2015-07-20 2018-03-27 新加坡国立大学 用于使用碳电极的电芬顿方法的装置和方法及其用于去除有机污染物的应用
CN114620815A (zh) * 2015-07-20 2022-06-14 新加坡国立大学 用于使用碳电极的电芬顿方法的装置和方法及其用于去除有机污染物的应用
CN105253959A (zh) * 2015-11-10 2016-01-20 合肥学院 一种用于实验室有机废水处理的设备和方法
CN105601039A (zh) * 2015-12-30 2016-05-25 江汉大学 一种处理硝基苯类废水的方法
CN105601039B (zh) * 2015-12-30 2018-06-15 江汉大学 一种处理硝基苯类废水的方法
CN105600880A (zh) * 2016-02-02 2016-05-25 南京理工大学 一种含氮杂环化合物化工尾水的深度处理装置及其组合工艺
CN107662960A (zh) * 2016-07-28 2018-02-06 常州唯楚环保科技有限公司 一种处理土壤地下水有机污染物的新装置和方法
CN107032479A (zh) * 2017-03-31 2017-08-11 山东大学 一种生物电化学厌氧/微电解共混耦合强化处理高浓度环丙沙星废水的方法
CN107091832A (zh) * 2017-05-09 2017-08-25 山东省城市供排水水质监测中心 Uv/h2o2降解水中典型有机物反应速率常数的测定方法
CN108249545A (zh) * 2018-03-09 2018-07-06 南京大学 一种光电-Fenton偶氮染料废水处理反应器及使用方法
CN108249545B (zh) * 2018-03-09 2023-12-26 南京大学 一种光电-Fenton偶氮染料废水处理反应器及使用方法
CN108821378A (zh) * 2018-06-22 2018-11-16 太仓永固精密制件有限公司 一种用于化工废水的吸附氧化罐
CN110240334A (zh) * 2019-06-27 2019-09-17 杭州森井医疗科技有限公司 医疗废水消毒杀菌装置
CN112110522A (zh) * 2020-09-09 2020-12-22 清华大学 一种电化学芬顿装置及处理污染物的电化学芬顿方法

Similar Documents

Publication Publication Date Title
CN103482729A (zh) 一种处理地下水硝基苯污染的装置及方法
CN102701496B (zh) 一种用于处理高浓度难降解有机废水的工艺
CN102976451A (zh) 一种原位电产生h2o2协同o3氧化的废水处理装置及方法
CN102992453B (zh) 双相循环催化氧化装置
CN102092820A (zh) 一种双池双效可见光响应光电芬顿去除水中有机物的方法及装置
CN102701338A (zh) 一种焦化废水深度处理工艺
CN105198131A (zh) 双催化氧化工艺处理废水方法及其装置
CN201567249U (zh) 超声电化学废水处理装置
CN104609532B (zh) 一种饮用水处理过程中去除PPCPs的方法
CN103359805B (zh) 一种处理难降解有机废水的电助光催化反应器
CN105293639A (zh) 阴极阳极协同电解处理废水的方法与装置
CN105731604A (zh) 一种电镀废水的深度处理方法
Thiam et al. A first pre‐pilot system for the combined treatment of dye pollutants by electrocoagulation/EAOPs
CN108706693A (zh) 处理悬浮物和难降解有机污染物的可切换三电极反应器
CN107117748A (zh) 铝阳极表面染色废水脱色的处理方法及处理装置
CN107662960A (zh) 一种处理土壤地下水有机污染物的新装置和方法
CN103880123A (zh) 一种用于丙烯腈废水深度处理的序批式电芬顿装置和方法
CN212151717U (zh) 电芬顿反应废水处理设备
Huang et al. Removal of polyvinyl alcohol using photoelectrochemical oxidation processes based on hydrogen peroxide electrogeneration
CN205387492U (zh) 光电化学协同催化降解废水中有机污染物的装置
CN106145483B (zh) 一种废水多重氧化处理方法及装置
CN204550297U (zh) 电化学联合光催化法处理有机废水系统
CN102126778A (zh) 一种多相电催化氧化处理有机废水槽型装置及其方法
CN102701336A (zh) 一种节电的电解处理废水的方法
CN202912755U (zh) 一种电场臭氧复合催化氧化处理有机废水的装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140101