CN103472842A - Probe controller based on ARM9 two-wheeled microcomputer mouse - Google Patents

Probe controller based on ARM9 two-wheeled microcomputer mouse Download PDF

Info

Publication number
CN103472842A
CN103472842A CN2013104202169A CN201310420216A CN103472842A CN 103472842 A CN103472842 A CN 103472842A CN 2013104202169 A CN2013104202169 A CN 2013104202169A CN 201310420216 A CN201310420216 A CN 201310420216A CN 103472842 A CN103472842 A CN 103472842A
Authority
CN
China
Prior art keywords
arm9
microcomputer
motor
controller
l298n
Prior art date
Application number
CN2013104202169A
Other languages
Chinese (zh)
Inventor
张好明
王应海
Original Assignee
苏州工业园区职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州工业园区职业技术学院 filed Critical 苏州工业园区职业技术学院
Priority to CN2013104202169A priority Critical patent/CN103472842A/en
Publication of CN103472842A publication Critical patent/CN103472842A/en

Links

Abstract

The invention discloses a probe controller based on an ARM9 two-wheeled microcomputer mouse. The probe controller comprises a sensor, a gyroscope, an ARM9 controller, an L298N chip, a first motor, a second motor, a left wheel and a right wheel, wherein the sensor is located on the upper portion of the two-wheeled microcomputer mouse, the gyroscope is connected with the ARM9 controller, the ARM9 controller and the L298N chip are welded together, the L298N chip is connected with the two motors, the first motor is connected with the left wheel, and the second motor is connected with right wheel. Through the mode, according to the probe controller based on the ARM9 two-wheeled microcomputer mouse, the ARM9 controller achieves a two-shaft servo system with largest workload in a control system, an human-computer interface, labyrinth probing, on-line output, data storage, I/O control and other functions and communicates with the L298N chip to perform data exchanging and calling in real time.

Description

基于ARM9两轮微电脑鼠探索控制器 Based on two ARM9 micro controller mouse to explore

技术领域 FIELD

[0001] 本发明涉及微型机器人领域,特别是涉及一种基于ARM9两轮微电脑鼠探索控制器。 [0001] The present invention relates to a micro robot, and more particularly, to a microcomputer based on two murine Exploration ARM9 controller.

背景技术 Background technique

[0002] 微电脑鼠是由嵌入式微控制器、传感器和机电运动部件构成的一种智能行走机器人,其原理可以转化为多种实际的工业机器人,也逐渐成为一个新兴的竞赛项目。 [0002] Rat microcomputer is embedded microcontroller, an intelligent motion sensors and electromechanical components constituting the walking robot, which can be converted into a variety of actual principle of industrial robots, it is becoming an emerging Contest. 微电脑鼠可以在不同迷宫中自动记忆和选择路径,采用相应的算法,快速地到达所设定的目的地。 The microcomputer may be in different rat maze memory and automatically select a path, using the appropriate algorithm, to quickly reach the set destination. 一只优秀的微电脑鼠必须具备良好的感知能力,有良好的行走能力和优秀的智能算法。 A good mouse microcomputer must have good perception, good walking ability and excellent intelligent algorithm.

[0003]目前国内研发的微电脑鼠结构如图1所示,长时间运行发现存在着的安全问题有: [0003] At present, research and development of micro-computer mouse structure shown in Figure 1, there are long-running safety problems found are:

(I)作为微电脑鼠的执行机构采用的是步进电机,经常会遇到丢失脉冲等问题,导致对位置的记忆出现错误,步进电机的使用使得机体发热比较严重,不利于在大型复杂迷宫中探索和冲刺。 (I) as a stepper motor micro-computer mouse actuator used, often encounter problems such as missing pulse, resulting in memory of position error, using a stepper motor makes the body heat more serious, is not conducive to large, complex maze in exploration and sprint.

[0004] (2)由于微电脑鼠采用比较低级的算法,在迷宫当中的探索一般都要花费4飞分钟的时间,这使得其在真正的大赛中无法取胜。 [0004] (2) Since the microcomputer mouse using relatively low-level algorithms, explore the maze which generally takes time to fly 4 minutes, making it unable to win in real competition.

[0005] (3)由于微电脑鼠要频繁的刹车和启动,加重了单片机的工作量,单一的单片机无法满足微电脑鼠快速启动和停止的要求。 [0005] (3) Since the microcomputer mouse to frequent braking and start-up, adding to the workload of single-chip, single-chip computer mouse microcomputer can not meet the rapid start and stop demands.

[0006] (4)微电脑鼠相对采用的都是一些体积比较大的插件元器件,使得其体积比较庞大,无法满足快速探索的要求。 Are some of the volume of [0006] (4) microcomputer used in murine relatively large plug-in component, so that its relatively large size, can not meet the requirements of rapid exploration.

[0007] (5)由于受周围环境不稳定因素干扰,单片机控制器经常会出现异常,引起微电脑鼠失控,抗干扰能力较差。 [0007] (5) due to the uncertainties surrounding the interference, of MCU often abnormal, causing loss of control rats microcomputer poor anti-interference capability.

[0008] ( 6 )对于差速控制的微电脑鼠来说,一般要求其两个电机的控制信号要同步,但是对于单一单片机来说又很难办到,使得微电脑鼠在直道上行驶的时候要来回的补偿,而且有的时候在迷宫当中摇摆幅度较大,在快速探索时表现的尤其明显。 [0008] (6) for the differential control of the murine microcomputer, the control signal which typically requires two motors to be synchronized, but for a single microcontroller and difficult to do, so that the microcomputer in rats with time to a straight line back and forth compensation, and sometimes swinging a big margin among the maze, the performance in the fast exploration in particular.

[0009] (7)由于受单片机容量和算法影响,微电脑鼠对迷宫的信息没有存储,当遇到掉电情况时所有的信息将消失,这使得整个探索过程要重新开始。 [0009] (7) due to the impact of single-chip capacity and algorithms, no microcomputer mouse maze of information storage, power-down situations when faced with all the information will disappear, which makes the whole process to start exploring again.

发明内容 SUMMARY

[0010] 本发明主要解决的技术问题是提供一种基于ARM9两轮微电脑鼠探索控制器,该两轮微电脑鼠探索控制器处理速度快,运行顺畅。 [0010] The present invention solves the technical problem of providing a two ARM9 microcomputer based controller exploring mice, rat exploring the two microcomputer fast-speed processing, running smoothly.

[0011] 为解决上述技术问题,本发明米用的一个技术方案是:提供一种基于ARM9两轮微电脑鼠探索控制器,包括传感器、陀螺仪、ARM9控制器、L298N芯片、第一电机、第二电机、左轮和右轮,所述传感器位于所述两轮微电脑鼠的上部,所述陀螺仪与所述ARM9控制器相连接,所述ARM9控制器和所述L298N芯片焊接在一起,所述L298N芯片与所述第一电机和所述第二电机相连接,所述第一电机和所述左轮相连,所述第二电机和所述右轮相连。 [0011] To solve the above problems, an aspect of the present invention is used Mingmi: providing two ARM9 microcomputer based controller murine exploration, including a sensor, a gyroscope, ARM9 controller, L298N chip, a first motor, a first two motors, right and left wheels, the sensor is located in an upper portion of the two murine microcomputer, the gyroscope and the ARM9 controller connected to said controller and said L298N chip ARM9 welded together, the L298N chip and the first motor and the second motor is connected, is connected to the first motor and the left wheel, is connected to the second motor and the right wheel. [0012] 在本发明一个较佳实施例中,所述ARM9控制器为S3C2440A处理器。 [0012] In a preferred embodiment of the present invention, the controller S3C2440A ARM9 processor.

[0013] 在本发明一个较佳实施例中,所述传感器为6个,所述6个传感器位于所述两轮微电脑鼠上部的上下左右前后的位置。 [0013] In a preferred embodiment of the present invention, the sensor 6, the sensor 6 is positioned approximately vertical front and rear upper portion of the two murine microcomputer.

[0014] 在本发明一个较佳实施例中,所述两轮微电脑鼠采用贴片元器件材料。 [0014] In a preferred embodiment of the present invention, the two components using SMD microcomputer murine material.

[0015] 在本发明一个较佳实施例中,所述ARM9控制器生成PWM波,所述PWM波通过所述L298N芯片传输给所述第一电机和所述第二电机。 [0015] In a preferred embodiment of the present invention, the ARM9 controller generates a PWM wave, the PWM wave transmitted through the chip L298N to the first motor and the second motor.

[0016] 本发明的有益效果是:本发明的基于ARM9两轮微电脑鼠探索控制器,把控制系统中工作量最大的两轴伺服系统、人机界面、迷宫探知、在线输出、数据存储、I/o控制等功能交给ARM9完成,并与L298N通讯,实时进行数据交换和调用。 [0016] Advantageous effects of the present invention are: the present invention is based on two ARM9 rat exploring microcomputer controller, the control system workload largest two-axis servo system, the man-machine interface, a labyrinth Discovery, line outputs, data storage, I / o control functions to complete ARM9, and with L298N communications, real-time data exchange and calls.

附图说明 BRIEF DESCRIPTION

[0017] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中: [0017] In order to more clearly illustrate the technical solutions in the embodiments of the present invention, as briefly described in the introduction to the accompanying drawings required for use in describing the embodiments. Apparently, the drawings in the following description are only some of the present invention. embodiments, those of ordinary skill in the art is concerned, without creative efforts, you can derive other drawings from such accompanying drawings, wherein:

图1是本发明的背景技术中单片机控制的微电脑鼠的原理图; FIG 1 is a schematic diagram of a background art of the present invention, microcomputer MCU control mice;

图2是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的原理图; FIG 2 is a schematic diagram of the present invention is based on two ARM9 micro controller murine Exploration of one case of the preferred embodiment;

图3是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的系统框图; FIG. 3 is a system block diagram of the present invention is based on two ARM9 micro controller murine Exploration of one case of the preferred embodiment;

图4是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的程序框图; FIG 4 is a block diagram of the present invention is based on two ARM9 micro controller murine Exploration of one case of the preferred embodiment;

图5是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的16*16迷宫不意 FIG 5 is a 16 * 16 based on the present invention is not intended to labyrinth ARM9 two murine microcomputer controller Exploration of one case of the preferred embodiment

图; Figure;

图6是本发明中所述微电脑鼠一较佳实施例的结构示意图; FIG 6 is a schematic structural diagram of a preferred embodiment of the murine microcomputer embodiment of the present invention;

图7是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的前进示意图; FIG 7 is a schematic view of the present invention proceeds in two ARM9 microcomputer based controller murine Exploration preferred embodiment of one case;

图8是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的后退示意图; FIG 8 is a schematic view of the present invention is based on reverse ARM9 two murine microcomputer controller Exploration of one case of the preferred embodiment;

图9是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的右进示意图; FIG 9 the present invention is a microcomputer based on two murine ARM9 explore a preferred embodiment of the controller into the right schematic;

图10是本发明中基于ARM9两轮微电脑鼠探索控制器一较佳实施例的左退示意图; 附图中各部件的标记如下:1、外壳,2、车轮,3、传感器。 FIG 10 is the present invention is based on two ARM9 micro controller murine explore a preferred embodiment of a schematic left back; reference numerals in the various components are as follows: 1, a housing 2, wheel 3, a sensor.

具体实施方式 Detailed ways

[0018] 下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。 [0018] Hereinafter, the present invention will be apparent technical solutions in the embodiments, fully described, obviously, the described embodiments are merely part of embodiments of the present invention rather than all embodiments. 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。 Based on the embodiments of the present invention, all other embodiments of ordinary skill in the art without any creative effort shall fall within the scope of the present invention.

[0019] 请参阅图2、3、4、6,本发明提供一种基于ARM9两轮微电脑鼠探索控制器,包括传感器、陀螺仪、ARM9控制器、L298N芯片、电机X、电机Y、车轮I和车轮2。 [0019] Referring to FIG 2,3,4,6, the present invention provides a microcomputer based on two murine exploration ARM9 controller, comprising a sensor, a gyroscope, ARM9 controller, L298N chip, motor X, motor Y, the wheel I and the wheel 2. 所述传感器位于所述两轮微电脑鼠的上部,所述陀螺仪与所述ARM9控制器相连接,所述ARM9控制器和所述L298N芯片焊接在一起,所述L298N芯片与所述电机X和所述电机Y相连接,所述电机X和所述车轮I相连,所述电机Y和所述车轮2相连,所述传感器为6个,所述6个传感器位于所述两轮微电脑鼠上部的上下左右前后的位置。 The sensor is located in an upper portion of the two murine microcomputer, the gyroscope and the ARM9 controller connected to said controller and said L298N chip ARM9 welded together, the chip and the motor L298N and X Y is connected to said motor, said motor and said wheel is connected to X I, Y and the wheel of the motor 2 is connected to the sensor 6, the sensor 6 in the upper part of the two murine microcomputer before and after the up and down position. [0020] ARM9 芯片米用RISC (Reduce Instruction Computer,精简指令集计算机)结构,具有寄存器多、寻址方式简单、批量传输数据、使用地址自动增减等特点。 [0020] ARM9 chip meter with RISC (Reduce Instruction Computer, reduced instruction set computer) architecture, multiple register having a simple addressing modes, bulk transfer of data, using the address and so automatically increase or decrease. 新一代的ARM9处理器,通过全新的设计,采用了更多的晶体管,能够达到两倍以上于ARM7处理器的处理能力。 A new generation of ARM9 processor, through new design, using more transistors, more than twice the processing power can be achieved in the ARM7 processor. 这种处理能力的提高是通过增加时钟频率和减少指令执行周期实现的。 This increase in processing load is performed by increasing and decreasing the clock frequency instruction cycle achieved.

[0021] S3C2440A 采用ARM920T 内核,其主要特点有:(I )1.2V 内核,1.8V/2.5V/3.3V 储存器,3.3V 扩展I/O, 16KB 指令Cache (I_Cache)/16KB 数据Cache (D-Cache); (2)3 路URAT ; [0021] S3C2440A employed ARM920T core, its main features are: (I) 1.2V core, 1.8V / 2.5V / 3.3V reservoir, 3.3V expansion I / O, 16KB Instruction Cache (I_Cache) / 16KB Data Cache (D -Cache); (2) 3-way a URAT;

(3) 4路PWM定时器/I路内部定时器/看门狗定时器;(4) 8路10位ADC和触摸屏接口;(5) 130个通用1/0,24个外部中断源;(6) 32 bit定点RISC处理器,改进型ARM / Thumb代码交织,增强性乘法器设计,支持实时(real-time)调试;(7)片内指令和数据SRAM,而且指令和数据的存储器容量可调;(8)片内指令和数据高速缓冲器(cache)容量从4K字节到IM字节;(9)设置保护单元(protection unit),非常适合嵌入式应用中对存储器进行分段和保护;(10)采用AMBA AHB总线接口,为外设提供统一的地址和数据总线;(11)支持外部协处理器,指令和数据总线有简单的握手信令支持;(12)支持标准基本逻辑单元扫描测试方法学,而且支持BIST (built-1n-self-test) ;(13)支持嵌入式跟踪宏单元,支持实时跟踪指令和数据。 (3) 4-way PWM timer / I path internal timer / watchdog timer; (4) 8-channel 10-bit ADC and touch screen interface; (5) 130 General 1 / 0,24 external interrupt sources; ( 6) 32 bit fixed point RISC processor, improved ARM / Thumb code is interleaved, reinforcing multiplier designed to support real-time (real-time) debug; (7) on-chip instruction and data SRAM, and the memory capacity data and instructions can be modulation; (8) on-chip instruction and data cache (Cache) to the capacity of 4K bytes from byte IM; protective unit (protection unit) (9), is very suitable for embedded applications and protected memory segment ; (10) using the AMBA AHB bus interface to provide a unified address and data bus for the peripherals; (11) supports external coprocessor instruction and data buses with a simple handshake signaling support; (12) supports standard basic logic unit scan test methodology, and support BIST (built-1n-self-test); (13) support embedded trace macrocell, real-time tracking instructions and data.

[0022] L298N是SGS公司的产品,比较常见的是20管脚PowerS020封装,内部包含4通道逻辑驱动电路,可以方便的驱动两个直流电机,输出电压最高可达50V,可以直接通过电源来调节输出电压。 [0022] L298N SGS company's product is, the more common 20-pin package PowerS020 internal driving circuit comprises a 4-channel logic, can easily drive two DC motors, the output voltage of up to 50V, the power may be adjusted by directly The output voltage. L298N的6脚VS接电源电压,VS电压范围为+2.5〜46 V,输出电流可达2.5 A,可驱动电感性负载。 L298N pin 6 connected to supply voltage VS, the voltage range VS + 2.5~46 V, output current up to 2.5 A, can drive inductive loads. 2脚和19脚下管的发射极分别单独引出以便接入电流采样电阻,形成电流传感信号。 2 feet and 19 feet emitter transistor is drawn separately in order to access current sampling resistor, a current sense signal. L298N的8脚和14脚EnA、EnB是使能控制端,分别控制电机X和电机Y 的停转。 L298N 8 feet and 14 feet EnA, EnB is enable control terminal, control the motors X and Y motor stall. L298N 的7、9、13、15 脚接ARM9 (S3C2440A)的输出脚,由ARM9 (S3C2440A)控制OUTl、0UT2和0UT3、0UT4的电平,来控制电机X和电机Y的正反转。 L298N 7,9,13,15 feet to the ARM9 (S3C2440A) output pin, controlled by a OUTl ARM9 (S3C2440A), 0UT2 and 0UT3,0UT4 level to control the motor reversing X and Y of the motor. 此特点使得L298N特别适合驱动两轴伺服电机。 This feature is particularly suitable for driving two such L298N servo motor shaft.

[0023] 请参阅图5、7_10,所述基于ARM9两轮微电脑鼠探索控制器的具体功能步骤为: [0023] Referring to FIG 5,7_10, the step function based on the particular microcomputer ARM9 two mice to explore the controller is:

I)在微电脑鼠未接到探索命令之前,它一般会在起点坐标(0,0)等待控制器发出的探 I) Before microcomputer mice did not receive explore command, it normally waits for exploration issued by the controller at the starting point coordinate (0,0)

索命令,一旦接到任务后,会沿着起点开始向终点(7,7)、(7,8)、(8,7)、(8,8)探索。 Cable command, once received a mandate to the end (7,7), (7,8), (8,7), (8,8) will begin to explore along the starting point.

[0024] 2)微电脑鼠放在起点坐标(0,0),接到任务后其前方的传感器S1、S6会对前方的环境进行判断,确定有没有挡墙进入运动范围,如存在挡墙将向ARM9发出中断请求,ARM9会对中断做第一时间响应,然后禁止控制左右轮的L298N使能端ENA、ENB工作,封锁微电脑鼠的电机X和电机Y的PWM驱动信号,使其静止在原地,然后二次判断迷宫确定前方信息,防止信息误判。 [0024] 2) in the microcomputer murine origin coordinates (0,0), which is in front of the sensor S1, S6 will be in front of the environment is determined after receiving the task, there is no retaining wall into the determined range of motion, such as the presence of the wall an interrupt request is issued to ARM9, ARM9 will do a first time in response to the interrupt, and then disables the control wheel about L298N enable terminal ENA, ENB work and PWM motor drive signals X and Y motor microcomputer mice, let it rest in situ and the second determining determines labyrinth forward information, information to prevent false positives.

[0025] 3)在微电脑鼠沿着Y轴向前运动,在任何一个方格的中心如果确定没有挡墙进入前方的运动范围,则微电脑鼠将存储其坐标(X,Y),并把向前运动一格的位置参数送给ARM9,然后由ARM9根据探索速度和加速度要求以及光电编码器的反馈生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠电机X和电机Y要运行的一格距离。 [0025] 3) along the Y-axis movement of the front microcomputer rats, at the center of a square if any is determined that no front wall to enter the range of motion, the microcomputer stores mouse coordinates (X-, Y), and to the position parameter before moving to the ARM9 a grid, and then according to a feedback from the ARM9 production rate of exploration and to velocity and acceleration of the photoelectric encoder - temporal motion ladder, the ladder is a microcomputer comprising a murine motor area X and Y motor to run a grid distance. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为低电平,由L298N驱动两个独立直流电机X和电机Y向前运动,当到达设定目标时,将更新其坐标为(X,Y+1),在Y+l〈15的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为I,微电脑鼠准备返程探索。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 low, driven by the two independent L298N DC motors X and Y forward movement, when reaching the set goals, the update of the coordinates (X, Y + 1), under the premise of Y + l <15, it is determined that the coordinates are not (7,7), (7,8) , (8,7), (8,8) one of them, if not will continue to update its coordinates, and if so inform the controller has to search for the target, then return home to explore the signs for I, microcomputer mouse ready to return to explore.

[0026] 4)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断左右都有挡墙时,微电脑鼠将存储此时坐标(X,Y),根据传感器SI和S6的反馈计算出向前运动停车的位置参数,由ARM9根据探索速度和加速度要求生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠两个马达要停车的距离。 [0026] 4) along the Y-axis in the microcomputer mice during exercise if the front wall into the front of the range of motion, and the left and right case sensor S2, S3, S4, S5 are determined around wall, the microcomputer murine At this time, the coordinates stored in the (X, Y), SI is calculated according to the sensor position and S6 stop forward movement parameter, in accordance with the ARM9 exploration to velocity and acceleration velocity generated - time moving the ladder, the ladder is a microcomputer comprising the area to stop the rats from the two motors. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为高电平,由L298N驱动两个独立电机依靠摩擦力向前减速运动并实现中心点停车,ARM9使能L298N使得两个电机运动方向相反,微电脑鼠原地由陀螺仪控制调转180度,然后沿着Y轴反向运动,在其Y轴反向运动过程中,把向前运动一格的位置参数送给ARM9,由ARM9根据探索速度和加速度要求以及光电编码器的反馈生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠电机X和电机Y要运行的一格距离。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 is H, the two separate drive motors L298N frictionally forward a center point and to achieve deceleration stop, ARM9 enable L298N motor such that two opposite direction of movement, controlled by the microcomputer in situ rat gyro turned 180 degrees, and then reverse movement along the Y axis, the Y axis during reverse movement , a forward movement of the grid to the position parameter ARM9, ARM9 by the velocity and acceleration according to requirements and to explore photoelectric encoder generates a feedback speed - temporal motion area ladder, the ladder is a microcomputer comprising murine motors X and Y to the motor a grid running distance. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为低电平,由L298N驱动两个独立直流电机X和电机Y向前运动,当到达设定目标时,将更新其坐标为(X,Y-1 ),在确定Y-DO的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 low, driven by the two independent L298N DC motors X and Y forward movement, when reaching the set goals, the update of the coordinates (X, Y-1), under the premise of determining the Y-DO, which is determined coordinates are not (7,7), (7,8), (8,7), (8,8) one of them, if not will continue to update its coordinates, and if so inform the controller has to search for the target, then return home to explore the flag is 1, micro-computer mouse ready to return to explore.

[0027] 5)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断左方有挡墙时,微电脑鼠将存储此时坐标(X,Y),根据传感器SI和S6的反馈计算出向前运动停车的位置参数,由ARM9根据探索速度和加速度要求生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠两个马达要停车的距离 [0027] 5) along the Y-axis in the microcomputer murine front wall if there is movement into the front range of motion, and the left and right case sensor S2, S3, S4, S5 have the left wall is determined, the microcomputer murine At this time, the coordinates stored in the (X, Y), SI is calculated according to the sensor position and S6 stop forward movement parameter, in accordance with the ARM9 exploration to velocity and acceleration velocity generated - time moving the ladder, the ladder is a microcomputer comprising the area to stop the rats from the two motors

S。 S. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为高电平,由L298N驱动两个独立电机依靠摩擦力向前减速运动并实现中心点停车,ARM9使能L298N使得两个电机运动方向相反,微电脑鼠原地由陀螺仪控制向右调转90度,然后沿着X轴正向运动,在其X轴正向运动过程中,把向前运动一格的位置参数送给ARM9,然后由ARM9根据探索速度和加速度要求以及光电编码器的反馈生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠电机X和电机Y要运行的一格距离。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 is H, the two separate drive motors L298N frictionally forward a center point and to achieve deceleration stop, ARM9 enable L298N motor such that two opposite direction of movement, a microcomputer control by the gyro situ rat turned 90 degrees to the right, and forward motion along the X axis, the X axis in forward motion during the forward movement to the position parameter ARM9 a grid, and then generates a speed feedback from the ARM9 according to velocity and acceleration, and to explore the photoelectric encoder of - the temporal motion ladder, the ladder is a microcomputer comprising a murine motor area and X Y grid from a motor to run. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为低电平,由L298N驱动两个独立直流电机X和电机Y向前运动,当到达设定目标时,将更新其坐标为(X+1,Y),在确定X+l〈15的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 low, driven by the two independent L298N DC motors X and Y forward movement, when reaching the set goals, which will be updated coordinates (X + 1, Y), under the precondition determining X + l <15, it is determined that the coordinates are not (7,7), (7,8 ), (8,7), (8,8) one of them, if not will continue to update its coordinates, and if so inform the controller has to search for the target, then return home to explore the flag is 1, micro-computer mouse ready to return to explore.

[0028] 6)在微电脑鼠沿着Y轴向前运动过程中如果有挡墙进入前方的运动范围,并且此时左右的传感器S2、S3、S4、S5判断右方有挡墙时,微电脑鼠将存储此时坐标(X,Y),根据传感器SI和S6的反馈计算出向前运动停车的位置参数,由ARM9根据探索速度和加速度要求生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠两个马达要停车的距离。 When [0028] 6) along the Y-axis in the microcomputer mice during exercise if the front wall into the front of the range of motion, and the left and right case sensor S2, S3, S4, S5 have the right wall is determined, the microcomputer murine At this time, the coordinates stored in the (X, Y), SI is calculated according to the sensor position and S6 stop forward movement parameter, in accordance with the ARM9 exploration to velocity and acceleration velocity generated - time moving the ladder, the ladder is a microcomputer comprising the area to stop the rats from the two motors. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为高电平,由L298N驱动两个独立电机依靠摩擦力向前减速运动并实现中心点停车,ARM9使能L298N使得两个电机运动方向相反,微电脑鼠原地由陀螺仪控制向左调转90度,然后沿着X轴反向运动,在其X轴反向运动过程中,把向前运动一格的位置参数送给ARM9,然后由ARM9根据探索速度和加速度要求以及光电编码器的反馈生成速度-时间运动梯形图,这个梯形包含的面积就是微电脑鼠电机X和电机Y要运行的一格距离。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 is H, the two separate drive motors L298N frictionally forward a center point and to achieve deceleration stop, ARM9 enable L298N motor such that two opposite direction of movement, a microcomputer control by the gyro situ rat turned 90 degrees to the left and then reverse movement along the X axis, the X axis in reverse motion during the forward movement to the position parameter ARM9 a grid, and then generates a speed feedback from the ARM9 according to velocity and acceleration, and to explore the photoelectric encoder of - the temporal motion ladder, the ladder is a microcomputer comprising a murine motor area and X Y grid from a motor to run. ARM9根据这个梯形图生成驱动两轴直流电机的PWM波,ARM9使能L298N,并控制OUTl和0UT3为高电平,0UT2和0UT4为低电平,由L298N驱动两个独立直流电机X和电机Y向前运动,当到达设定目标时,将更新其坐标为(X-1,Y),在确定X-DO的前提下,判断其坐标是不是(7,7)、(7,8)、(8,7)、(8,8)其中的一个,如果不是将继续更新其坐标,如果是的话通知控制器已经搜索到目标,然后置返航探索标志为1,微电脑鼠准备返程探索。 According to this ladder ARM9 PWM wave generating two-axis driving DC motor, enabling ARM9 L298N, and a high level control OUTl and 0UT3, 0UT2 and 0UT4 low, driven by the two independent L298N DC motors X and Y forward movement, when reaching the set goals, the update of the coordinates (X-1, Y), under the premise of determining the X-DO, which is determined coordinates are not (7,7), (7,8), (8,7), (8,8) one of them, if not will continue to update its coordinates, and if so inform the controller has to search for the target, then return home to explore the flag is 1, micro-computer mouse ready to return to explore.

[0029] 7)当微电脑鼠到达(7,7)、(7,8)、(8,7)、(8,8)准备返程探索时,控制器会调出其已经存储的迷宫,然后根据快速迷宫算法计算出可能存在的最佳路径,返程开始进入其中认为最优的一条。 [0029] 7) when the arrival murine microcomputer (7,7), (7,8), (8,7), (8,8) ready to return to explore, the controller will adjust its labyrinth already stored, then in accordance with fast maze algorithm calculates the best route possible, which began to enter the return of a considered optimal.

[0030] 8)在微电脑鼠进入迷宫正常返航运行时,其导航的传感器S1、S2、S3、S4、S5、S6将工作,并把反射回来的光电信号送给ARM9,经ARM9判断后使能L298N,导航电机X和电机Y:如果进入已经搜索的区域将更改探索速度进行快速前进,如果是未知返回区域则采用正常速度搜索,并时刻更新其坐标(X,Y),并判断其坐标是不是(0,0),如果是的话置返航探索标志为O,微电脑鼠进入冲刺阶段,并置冲刺标志为I。 [0030] 8) into the maze return to normal operation, its navigation sensors S1, S2, S3, S4, S5, S6 will work, and the reflected signal to the photoelectric ARM9, after enabling the microcomputer determines ARM9 murine L298N, navigation motors X and motor Y: If you enter the area has been searched for change explore speed fast forward, if it is unknown to return the region adopts normal speed search and time update its coordinates (X, Y), and determine its coordinates not (0,0), if it is, then return home to explore the flag is O, microcomputer rat entered the final stage, and the flag is set to sprint I.

[0031] 9)为了能够实现微电脑鼠准确的坐标计算功能,微电脑鼠左右的传感器S2、S3和S4、S5会时刻对周围的迷宫挡墙和柱子进行探测,如果S2、S3或者S4、S5发现传感器信号发生了跃变,则说明微电脑鼠进入了迷宫挡墙和柱子的交接点,此时侧面传感器S2或者是S5会精确探测这一时刻,当再次出现跃变时,说明微电脑鼠已经开始当前的迷宫格子,ARM9会根据微电脑鼠当前运行的距离进行计算并根据对传感器反馈信息进行补偿,本发明在高速直流电机X轴和Y轴上加入了512线的光电编码器,由于精度较高,使得微电脑鼠的坐标计算不会出现错误,为微电脑鼠的快速冲刺奠定了基础。 [0031] 9) In order to enable the microcomputer murine accurate coordinate calculation function, left and right mouse microcomputer sensor S2, S3 and S4, S5 will always labyrinth wall surrounding the column and detection, if S2, S3 or S4, S5 found a sensor signal transition occurs, then the microcomputer rat maze wall into the intersection of the column and, when the side S2 or S5 sensors will accurately detect the time when the transition occurs again, indicating that the current has begun microcomputer murine maze grid, ARM9 microcomputer will be based on the distance calculated murine currently running and compensation based on sensor feedback information, the present invention is a high speed DC motors X and Y axes added photoelectric encoder 512 lines, since the high precision, so that the coordinates of the mouse microcomputer computing without error, laid the foundation for rapid sprint microcomputer mice.

[0032] 10 )在微电脑鼠运行过程中,控制器会对高速直流电机X和电机Y的转矩进行在线辨识,如果转矩出现脉动,控制器会利用直流电机力矩与电流的关系进行线性补偿,减少了电机转矩抖动对微电脑鼠快速探索时导航的影响。 [0032] 10) during the operation of the microcomputer in rats, have high-speed DC motor torque controller X and Y of the motor-line identification, if the torque ripple occurs, the controller using a linear relationship between the compensation current and the DC motor torque to reduce the influence of the torque motor jitter on the fast exploration of microcomputer mouse navigation.

[0033] 11)当微电脑完成整个探索过程回到起始点(O,O ),ARM9将控制L298N使得微电脑中心点停车,重新调整L298N的0UT1、0UT2、0UT3和0UT4的电平,使得电机X和电机Y以相反的方向运动,并在陀螺仪的控制下,原地旋转180度,然后停车I秒,调取迷宫信息,根据算法算出最优冲刺路径,然后置冲刺标志为1,系统进入快速冲刺阶段。 [0033] 11) When the microcomputer to complete the discovery process back to the starting point (O, O), ARM9 control microcomputer so that the center point of the parking L298N, L298N readjust the 0UT1,0UT2,0UT3 0UT4 and level, so that the motor and X Y motor in the opposite direction, and under the control of a gyroscope, place is rotated 180 degrees, and I second stop, the maze of information retrieval, according to the algorithm calculates the optimal path sprint, then a flag is set to sprint, the system enters the fast sprint stage.

[0034] 本发明具有的有益效果是: [0034] The present invention has the advantages that:

1、在运动过程中,充分考虑了电池在这个系统中的作用,基于ARM9+L298N控制器时刻都在对微电脑鼠的运行状态进行监测和运算,由于L298N内部集成了电流采集电路,时刻对电机的电流进行采集,从根本上避免了大电流的产生,解决了大电流对锂离子电池的冲击,避免了由于大电流放电而引起的锂离子电池过度老化现象。 1, during exercise, full account of the role of this system in the cell, L298N + timing controller operating state of the microcomputer in the monitor and mouse operation based on ARM9, due to internal current pickup L298N integrated circuit, the motor moment current collection, to avoid a large current is fundamentally solve the large current shock to the lithium-ion battery, to avoid the large current discharging the lithium ion battery due to excessive aging.

[0035] 2、由ARM9处理微电脑鼠探索未知迷宫期间两只电机的独立伺服控制,使得控制比较简单,大大提高了运算速度,解决了单片机软件运行较慢的瓶颈,缩短了开发周期,并且程序可移植能力强。 [0035] 2, ARM9 independent servo control microcomputer treated rats during exploration two unknown motor by the labyrinth, so that control is simple, greatly improving the operation speed, the microcontroller software running slower solve the bottleneck, shorten the development cycle, and the program portable ability.

[0036] 3、本发明基本实现全贴片元器件材料,实现了单板控制,节省了控制板占用空间。 [0036] 3, the present invention is basically material SMD components, to achieve the control board, saving board space.

[0037] 4、在此微电脑鼠系统中引入了陀螺仪,可以精确的测量出微电脑鼠探索期间旋转的角度,实现了微电脑鼠速度大小和方向的独立控制,有利于提高微电脑鼠的稳定性和动态性能。 [0037] 4, this murine system microcomputer introduced gyroscope, can accurately measure the angle of rotation during the exploration microcomputer mouse, to achieve independent control microcomputer murine speed and direction, and increases the stability of the microcomputer and murine dynamic performance.

[0038] 5、为了提高运算速度和精度,本微电脑鼠采用了国际上使用最多的红外传感器0PE5594A,使得运算精度大大提高,防止了微电脑鼠在迷宫当中的摇摆。 [0038] 5, in order to improve processing speed and accuracy, the present uses of microcomputer murine most used internationally infrared sensor 0PE5594A, so that the calculation accuracy is improved greatly, the microcomputer prevents the rocking among mouse in a maze.

[0039] 6、由于本控制器采用ARM9处理迷宫存储和探索算法,有效地防止了程序的“跑飞”,抗干扰能力大大增强。 [0039] 6, the controller uses stored and explore the maze ARM9 processing algorithm, the program effectively prevented from "running out", greatly enhanced anti-jamming capability.

[0040] 7、由于本控制器采用L298N来驱动两轴直流电机,极大地减少了驱动电路所占用的空间,并提高了系统的效率。 [0040] 7, the controller uses to drive the two-axis L298N DC motor, greatly reducing the space occupied by the driving circuit and improve the efficiency of the system.

[0041] 8、由ARM9输出探索时PWM调制信号和方向信号,然后通过L298N的使能端直接驱动直流电机X和电机Y,而且还可以接受L298N的电流传感器信号做闭环控制,不仅减轻了ARM9的负担,简化了接口电路,使得系统的调试简单。 [0041] 8 by the PWM modulation signal and a direction signal ARM9 output exploration, then L298N enable terminal of a direct drive DC motor X and the motor Y, but can also accept L298N current sensor signal to make the closed loop control, not only to reduce the ARM9 burden simplifies the interface circuit, so that a simple system debugging.

[0042] 9、为了更好的保护电池,当系统在探索过程中遇到低压时,微电脑鼠上的低压报警传感器S7会自动开启,并通过L298N限制放电电流,保证微电脑鼠可以完成整个探索,在探索完成回到起点时,会自动锁死在当前位置,并记录下迷宫信息,提示更换电池。 [0042] 9, in order to better protect the battery, when the system encounters a low pressure in the exploration process, low pressure alarm microcomputer murine sensor S7 will automatically open, and by limiting the discharge current L298N, murine microcomputer can ensure that complete the exploration, in exploring the completion back to the beginning, it will automatically lock in the current location, and record the information maze, suggesting to replace the battery.

[0043] 10、在微电脑鼠运行过程中,控制器会对高速直流电机X和电机Y的转矩进行在线辨识并利用电机力矩与电流的关系进行补偿,减少了电机转矩抖动对微电脑鼠快速探索的影响。 [0043] 10, the microcomputer rats during operation, the controller will have high-speed DC torque motor X and the Y line identification is performed using the relationship between the motor torque and current by compensating the reduced motor torque murine fast jitter microcomputer explore the impact.

[0044] 11、由于微电脑鼠的速度和方向独立控制,使得微电脑鼠更容易实现前进、倒退、左转和右转各个方向的运动。 [0044] 11, since the speed and direction independent control microcomputer mouse, rat microcomputer so easier forward, backward, left turn and the direction of movement of the respective right turn.

[0045] 12、由于具有存储功能,这使得微电脑鼠掉电后可以轻易的调取已经探索好的迷宫信息,使二次探索的时间和路径大大降低。 [0045] 12, since having a memory function, which makes the mouse the microcomputer after power-down can be easily retrieved information has been explored labyrinth good, and the time that the secondary path exploration is greatly reduced.

[0046] 以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。 [0046] Other related art described above are only embodiments of the present invention, not intended to limit the scope of the present invention, the present invention is usually made by using a description equivalent structures or equivalent process, or applied directly or indirectly art shall fall within the scope of protection of the present invention.

Claims (5)

1.一种基于ARM9两轮微电脑鼠探索控制器,其特征在于,包括传感器、陀螺仪、ARM9控制器、L298N芯片、第一电机、第二电机、左轮和右轮,所述传感器位于所述两轮微电脑鼠的上部,所述陀螺仪与所述ARM9控制器相连接,所述ARM9控制器和所述L298N芯片焊接在一起,所述L298N芯片与所述第一电机和所述第二电机相连接,所述第一电机和所述左轮相连,所述第二电机和所述右轮相连。 A microcomputer ARM9 two rats exploring controller comprising a sensor, a gyroscope, ARM9 controller, L298N chip, a first motor, a second motor, left and right wheels, the sensor is based on the microcomputer upper two mice, the gyroscope and the ARM9 controller connected to said controller and said L298N chip ARM9 welded together, the chip L298N the first motor and the second motor is connected, is connected to the first motor and the left wheel, is connected to the second motor and the right wheel.
2.根据权利要求1所述的基于ARM9两轮微电脑鼠探索控制器,其特征在于,所述ARM9控制器为S3C2440A处理器。 According to claim 1, said microcomputer based on two murine explore ARM9 controller, wherein said controller S3C2440A ARM9 processor.
3.根据权利要求1所述的基于ARM9两轮微电脑鼠探索控制器,其特征在于,所述传感器为6个,所述6个传感器位于所述两轮微电脑鼠上部的上下左右前后的位置。 According to claim 1, said microcomputer based on two murine explore ARM9 controller, wherein the sensor is 6, the sensor 6 is positioned approximately vertical upper portion of the rat before and after the two microcomputer.
4.根据权利要求1所述的基于ARM9两轮微电脑鼠探索控制器,其特征在于,所述两轮微电脑鼠采用贴片元器件材料。 According to claim 1, said microcomputer based on two murine explore ARM9 controller, wherein the two microcomputer chip components using murine material.
5.根据权利要求1所述的基于ARM9两轮微电脑鼠探索控制器,其特征在于,所述ARM9控制器生成PWM波,所述PWM波通过所述L298N芯片传输给所述第一电机和所述第二电机。 According to claim microcomputer based ARM9 two rats exploring controller of claim 1 wherein the controller generates a PWM wave ARM9, the PWM wave transmitted through the chip L298N to the first motor and the said second motor.
CN2013104202169A 2013-09-16 2013-09-16 Probe controller based on ARM9 two-wheeled microcomputer mouse CN103472842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013104202169A CN103472842A (en) 2013-09-16 2013-09-16 Probe controller based on ARM9 two-wheeled microcomputer mouse

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013104202169A CN103472842A (en) 2013-09-16 2013-09-16 Probe controller based on ARM9 two-wheeled microcomputer mouse

Publications (1)

Publication Number Publication Date
CN103472842A true CN103472842A (en) 2013-12-25

Family

ID=49797732

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013104202169A CN103472842A (en) 2013-09-16 2013-09-16 Probe controller based on ARM9 two-wheeled microcomputer mouse

Country Status (1)

Country Link
CN (1) CN103472842A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100087998A (en) * 2009-01-29 2010-08-06 정호원 Tracing robot for game and toy
CN102841618A (en) * 2012-09-21 2012-12-26 苏州工业园区职业技术学院 Novel quick-exploration automatic control system for microcomputer rat
US20130030750A1 (en) * 2011-07-25 2013-01-31 Siyong Kim Robot cleaner and self testing method of the same
CN203535485U (en) * 2013-09-16 2014-04-09 苏州工业园区职业技术学院 Exploring controller of two-wheel micro-mouse based on ARM9 controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100087998A (en) * 2009-01-29 2010-08-06 정호원 Tracing robot for game and toy
US20130030750A1 (en) * 2011-07-25 2013-01-31 Siyong Kim Robot cleaner and self testing method of the same
CN102841618A (en) * 2012-09-21 2012-12-26 苏州工业园区职业技术学院 Novel quick-exploration automatic control system for microcomputer rat
CN203535485U (en) * 2013-09-16 2014-04-09 苏州工业园区职业技术学院 Exploring controller of two-wheel micro-mouse based on ARM9 controller

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
伯恩等: "基于STM32的IEEE标准电脑鼠设计与实现", 《价值工程》 *
张辉辉等: "基于ARM的电脑鼠控制系统研究", 《电子元器件应用》 *

Similar Documents

Publication Publication Date Title
CN103647351A (en) Multi-agent and heterogeneous communication technology based micro-grid intelligent measuring and controlling terminal and method
CN102637036A (en) Combined type bionic quadruped robot controller
CN101114174A (en) Built-in type 4 axis sport controller
CN100549752C (en) Heavy caliber astronomical telescope azimuth axis arc movement control system
CN101554979B (en) Tower crane anti-collision on-line monitoring and early warning system based on ultrasonic sensing network and method thereof
CN102426391B (en) Method for determining whether there is collision during robot operation
CN102841618B (en) Novel quick-exploration automatic control system for microcomputer rat
CN102508302B (en) Underwater main control and data collection system of marine double-frequency induced polarization instrument
TWI317468B (en) Method for controlling power consumption and multi-processor system using the same
CN100487611C (en) High-precision low-power consumption magnetic suspension control-moment gyro frame servo system digital control apparatus
CN101751038B (en) Navigation control device of mobile robot
CN102854879A (en) Wireless intelligent inspection method of warehouse and special robot
CN202838024U (en) Novel automatic control system for quick sprint of a microcomputer mouse
CN101053955A (en) Control device for moving robot based on blue-tooth technology
CN103529832A (en) Dual-core four-wheeled top-speed microcomputer mouse-based diagonal sprint system
CN1584852A (en) Program processing apparatus
CN102156416B (en) Current transformer control device
CN101109961A (en) Control system for satellite antenna motion
CN101266482B (en) Four-axis movement control card based on singlechip
CN202372834U (en) Embedded numerical control system with dual-core central processing unit (CPU)
CN103311932A (en) Double-DSP (digital signal processor) control system based on chained SVG (scalable vector graphics)
CN100442204C (en) System-on-chip chip and its power consumption control method
CN101413799B (en) Combined navigation system for outdoor movable target
CN1936745A (en) Inlaid numerical control system based on ARM and DSP
CN101350519B (en) Optical fiber differential protection apparatus and method for real-time synchronization

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication