CN103471890B - Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry - Google Patents

Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry Download PDF

Info

Publication number
CN103471890B
CN103471890B CN 201310422724 CN201310422724A CN103471890B CN 103471890 B CN103471890 B CN 103471890B CN 201310422724 CN201310422724 CN 201310422724 CN 201310422724 A CN201310422724 A CN 201310422724A CN 103471890 B CN103471890 B CN 103471890B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
silicon carbide
carbide powder
pretreatment method
cooling
mass spectrometry
Prior art date
Application number
CN 201310422724
Other languages
Chinese (zh)
Other versions
CN103471890A (en )
Inventor
汪正
周慧
朱燕
李青
Original Assignee
中国科学院上海硅酸盐研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种激光剥蚀电感耦合等离子体质谱法待测碳化硅粉体样品的前处理方法,通过所述前处理方法将所述碳化硅粉体样品制成适合通过激光剥蚀电感耦合等离子体质谱法测定的块状样品,所述前处理方法包括:(1)将碳化硅粉末研磨后过筛;(2)直接使用手动压片机将过筛后的碳化硅粉末压成圆片,其中压力为8~12Mpa,保压时间为30~50秒;(3)将所述圆片程序升温至1000℃保温烧结2小时;以及(4)程序降温至室温。 The present invention relates to a silicon carbide powder test sample to a laser ablation inductively coupled plasma mass spectrometry method of pretreatment by the pretreatment method of the silicon carbide powder samples prepared for erosion by laser ICP-MS Determination of bulk samples of the method, the pretreatment method comprises: (1) a silicon carbide powder was sieved after grinding; (2) used as the silicon carbide powder is sieved manually to tableting machine pressed into disks, wherein the pressure of 8 ~ 12Mpa, dwell time of 30 to 50 seconds; (3) heating the wafer to 1000 ℃ incubated program burnt for two hours; and (4) cooling to room temperature program.

Description

激光剥蚀电感耦合等离子体质谱法待测碳化硅粉体样品的前处理方法 Laser ablation pretreatment carbide powder sample measured by Inductively Coupled Plasma Mass Spectrometry

技术领域 FIELD

[0001] 本发明属于分析化学领域,涉及一种适合通过激光剥蚀电感耦合等离子体质谱法分析测定的碳化硅粉末样品的前处理方法。 [0001] The present invention belongs to the field of analytical chemistry, relates to a method for pre-analysis treatment of the silicon carbide powder sample was measured by laser ablation inductively coupled plasma mass spectrometry.

背景技术 Background technique

[0002] 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)是利用高能量的激光将样品表面熔融、溅射和蒸发后,产生的蒸气和细微颗粒被载气直接带入等离子体吸收、解离并电离, 再经质谱系统过滤并检测待测元素。 After the [0002] laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) uses high-energy laser will melt the sample surface, sputtering and evaporation, vapor and fine particles generated were directly absorbed into the carrier gas plasma, dissociated and ionized, and then filtered through a mass spectrometry system to be tested and detecting elements. LA-ICP-MS为固体进样分析技术,要求样品为具有一定强度的块状固体。 LA-ICP-MS analysis technique is a solid sample, the sample requires a certain strength of a solid mass. 对于肩状、颗粒状和粉末状的样品,为避免载气将粉末吹入ICP-MS,产生非剥蚀信号,需要将其加工成块状固体。 For the shoulder, granular and powdered samples, in order to avoid the powder carrier gas is blown into ICP-MS, produce non-ablation signals need to be processed into a solid block.

[0003] 然而,有些样品(如碳化硅)的粘度较差,将其制备成块状样品时,往往需要向其中加入一定的粘合剂,如硼酸、聚乙烯醇(PVA)、甲基纤维素等。 [0003] However, the viscosity of some samples (e.g., silicon carbide) is poor, which is prepared as a bulk samples, often require a certain binder is added thereto, such as boric acid, polyvinyl alcohol (PVA), methyl cellulose other elements. 加入粘合剂有助于样品的成形,但容易引入杂质,同时粘合剂与样品混合的均匀性影响样品中元素的含量和分布的检测。 Adding a binder helps shaped sample, but easy introduction of impurities, and the content of the simultaneous detection of uniformity of the distribution of the binder and the mixed sample elements in the sample.

发明内容 SUMMARY

[0004] 面对现有技术存在的上述问题,提供一种碳化硅粉体样品的前处理方法,以保证在低制备成本、尽量不污染样品的前提下,快速、经济地将粉末样品制备成适用于激光剥蚀电感耦合等离子体质谱法分析的块状固体。 [0004] The face of these problems of the prior art, there is provided a silicon carbide powder sample pretreatment method, to ensure that the premise of low production cost, possible contamination of the sample does not, quickly and economically prepared as a powder sample analysis of bulk solids suitable for laser ablation inductively coupled plasma mass spectrometry.

[0005] 在此,本发明提供一种碳化硅粉体样品的前处理方法,通过该前处理方法将所述碳化硅粉体样品制成适合通过激光剥蚀电感耦合等离子体质谱法测定的块状样品,所述前处理方法包括: [0005] Here, the present invention provides a silicon carbide powder sample pretreatment method, by which the pretreatment method for bulk silicon carbide powder sample prepared by a laser ablation inductively coupled plasma mass spectrometry sample, said pretreatment process comprising:

[0006] (1)将碳化硅粉末研磨后过筛; [0006] (1) After the silicon carbide powder is milled and sieved;

[0007] (2)直接使用手动压片机将过筛后的碳化硅粉末压成圆片,其中压力为8〜 12Mpa,保压时间为30〜50秒; [0007] (2) directly using a manual tableting machine sieved silicon carbide powder was pressed into disks, wherein the pressure is 8~ 12Mpa, dwell time of 30 ~ 50 seconds;

[0008] (3)将所述圆片程序升温至1000°C保温烧结2小时;以及 [0008] (3) heating the wafer to 1000 ° C incubation procedure burnt for two hours; and

[0009] (4)程序降温至室温。 [0009] (4) cooling to room temperature program.

[0010] 较佳地,在步骤(2)中,压力为lOMpa,保压时间为30秒。 [0010] Preferably, in step (2), the pressure is Lompa, dwell time of 30 seconds.

[0011] 较佳地,在步骤(3)中,所述程序升温包括: [0011] Preferably, in step (3), the temperature program comprises:

[0012] 以4〜6 °C /分钟的升温速率从室温升温至500 °C,再以5〜6 °C /分钟的升温速率从500 °C升温至1000°C。 [0012] ramp rate of 4~6 ° C / min from room temperature to 500 ° C, and then at a heating rate of 5~6 ° C / min temperature rise from 500 ° C to 1000 ° C.

[0013] 较佳地,在步骤(4)中,所述程序降温包括: [0013] Preferably, in step (4), the cooling procedure comprises:

[0014] 以5〜6 °C /分钟的降温速率从1000 °C降温至500 °C,再以4〜6 °C /分钟的降温速率从500 °C降温至室温。 [0014] The cooling rate of 5~6 ° C / min cooling from 1000 ° C to 500 ° C, and then cooling at a rate of 4~6 ° C / min cooling from 500 ° C to room temperature.

[0015] 较佳地,在步骤(1)中,所述筛为200目以上的筛。 [0015] Preferably, in step (1), the mesh 200 mesh or more.

[0016] 本发明的方法可以高效、快速地将碳化硅粉末制备成适合激光剥蚀电感耦合等离子体质谱法分析的块状固体。 [0016] The method of the present invention can efficiently, quickly prepared to a silicon carbide powder suitable for laser ablation inductively coupled plasma mass spectrometry analysis of the solid mass. 该方法制备成的碳化硅具有一定的强度,能够承受激光的连续剥蚀,使用激光剥蚀电感耦合等离子体质谱检测时,各元素能产生持续、稳定的信号,将在激光剥蚀电感耦合等离子体质谱法分析粉末样品的前处理方面有较好的应用前景。 Silicon carbide prepared by the method has a certain strength to withstand the continuous laser ablation, using laser ablation inductively coupled plasma mass spectrometry detection elements produce sustained, stable signal, the ablation inductively coupled plasma mass spectrometry laser pre-processing analysis of powder samples have a good prospect.

附图说明 BRIEF DESCRIPTION

[0017] 图1示出本发明的碳化硅粉体样品的前处理方法的示意流程图; [0017] Fig 1 a schematic flowchart illustrating a method of pre-processing the silicon carbide powder sample of the present invention;

[0018] 图2是微米级碳化硅粉末在不同温度下烧结后的实物图; [0018] FIG. 2 is a physical view of the micron-sized silicon carbide powder sintered at different temperatures;

[0019] 图3是纳米级碳化硅粉末在不同温度下烧结后的实物图; [0019] FIG. 3 is a view of the physical nanoscale silicon carbide powder sintered at different temperatures;

[0020] 图4是微米级碳化硅的烧结温度与通过激光剥蚀电感耦合等离子体质谱测定得到的质谱信号的相对标准偏差关系图; [0020] FIG. 4 is a relative standard deviation of the signals in the spectrum diagram micron silicon carbide the sintering temperature and by laser ablation inductively coupled plasma mass spectrometry obtained;

[0021] 图5是纳米级碳化硅的烧结温度与通过激光剥蚀电感耦合等离子体质谱测定得到的质谱信号的相对标准偏差关系图。 [0021] FIG. 5 is a relative standard deviation of the signals in the spectrum diagram of nanoscale silicon carbide the sintering temperature and by laser ablation inductively coupled plasma mass spectrometry obtained.

具体实施方式 detailed description

[0022] 以下结合附图及下述具体实施方式进一步说明本发明,应理解,下述实施方式和/ 或附图仅用于说明本发明,而非限制本发明。 [0022] The present invention is further described below, it should be understood in conjunction with the accompanying drawings and the following detailed description, the following embodiments and / or drawings only illustrate the present invention, not to limit the present invention.

[0023] 本发明通过研磨、过筛使样品粒径分布均匀,再通过收到压片将粉末样品制备成块状固体,然后经过马弗炉1000°c烧结,制成适合通过激光剥蚀电感耦合等离子体质谱法分析的碳化硅块状固体。 [0023] The present invention, by grinding, sieving the sample particle size distribution, and then received by a tableting powder sample prepared as bulk solids, then passed through a muffle furnace sintering 1000 ° c, is made for a laser ablation inductively coupled plasma mass Spectrometry analysis of the silicon carbide bulk solids.

[0024] 参见图1,其示出本发明的碳化硅粉体样品的前处理方法的示意流程图,本发明的方法包括以下步骤。 [0024] Referring to Figure 1, which shows a schematic flowchart of a method of pretreatment of silicon carbide powder sample of the present invention, the method of the present invention comprises the following steps.

[0025] (1)样品的预处理:称量碳化娃粉末(粗粉)10. Og于研钵中,研磨,过筛(例如200 目),待用。 [0025] Pretreatment (1) samples: Weigh baby carbide powder (coarse powder) 10 Og a mortar, ground and screened (e.g. 200 mesh) stand.

[0026] (2)手动压片:过筛后的碳化硅粉末无需使用粘结剂等而直接使用手动压片机进行压片: [0026] (2) manual press: the sieved silicon carbide powder without the use of adhesive or the like directly using a manual tablet press tabletting:

[0027] 样品量对样品制备的影响:分别称取研磨后的样品0. 2g、0. 5g、l. 0g、l. 5g、2. 0g, 使用手动压片机,将其制备成φΐο mm的小圆片,实验表明,样品量为I. Og的碳化硅粉末在制备成圆片的过程中,易成形,厚度和强度适中; Effects [0027] Preparation of samples Sample amount: weigh the sample taken after polishing 0. 2g, 0 5g, l 0g, l 5g, 2 0g, manual tableting machine, which is prepared as φΐο mm.... a small disk, experiments show that the amount of sample I. Og silicon carbide powder prepared as in the wafer process, formable, moderate thickness and strength;

[0028] 保压时间对样品制备的影响:称取I. Og粉末样品,在保压时间分别为10s、20s、 30S、40s、50s时,使用手动压片机,将其制备成φ1〇mm的小圆片,实验表明,保压时间超过30s时,样品成形; [0028] Effects of the dwell time of sample preparation: I. Og weighed powder samples, the dwell time was 10s, 20s, 30S, 40s, 50s when, using a manual tableting machine, which is prepared as φ1〇mm a small disk, experiments show that, when the holding time exceeds 30s, forming the sample;

[0029] 压力对样品制备的影响:称取粉末样品I. 0g,在保压时间为30s时,调节压力分别为5Mpa、lOMpa、15Mpa,使用手动压片机,将其制备成φ1〇mm的小圆片,实验表明,压力为IOMpa时,制成的片不易断层,且不易碎裂。 [0029] Effect of pressure on the sample preparation: Weigh powder sample I. 0g, pressure holding time is 30s, the pressure regulator respectively 5Mpa, lOMpa, 15Mpa, manual tableting machine, which was prepared into φ1〇mm small round, experiments show that, when the pressure is IOMpa, fault sheet made easy, and less brittle.

[0030] (3)烧结:将所述圆片程序升温至1000°C保温烧结2小时,在程序降温至室温; [0030] (3) Sintering: The temperature rise of the wafer to 1000 ° C incubation procedure burnt for two hours, cooled to room temperature program;

[0031] 烧结温度对样品制备的影响:将压制的碳化硅片放置在马弗炉中烧结,烧结温度分别为400°C、800°C、1000°C、1200°C,烧结时间均为2小时,实验表明,马弗炉烧结后的碳化硅强度增大(参见图2和图3,其分别示出微米级和纳米级碳化硅粉末在不同温度下烧结后的实物图); [0031] Influence of sintering temperature on the sample preparation: The pressed sheet was placed in a muffle furnace a silicon carbide sintering, the sintering temperatures of 400 ° C, 800 ° C, 1000 ° C, 1200 ° C, sintering time was 2 hours, experiments show that the strength of the silicon carbide after sintering muffle furnace increases (see FIGS. 2 and 3, which illustrate sintered at different temperatures micron and nanoscale silicon carbide powder physical map);

[0032] 程序升温可设定为从室温升至500°C 1. 5小时左右(即、以4〜6°C /分钟的升温速率升温),再从500°C升温至1000°C 1. 5小时(S卩、以5〜6°C /分钟的升温速率升温); [0032] The temperature program can be set to be raised to 500 ° C from about 1.5 hours at room temperature (i.e., at a heating rate of 4~6 ° C / min heating up), and then heated from 500 ° C to 1000 ° C 1 After 5 hours (S Jie, heating at a heating rate of 5~6 ° C / min);

[0033] 程序降温可设定为从1000°C降温至500°C 1. 5小时(S卩、以5〜6°C /分钟的降温速率降温),最后从500°C降至室温1. 5小时(S卩、以4〜6°C /分钟的降温速率降温)。 [0033] The cooling procedure may be set to cool from 1000 ° C to 500 ° C 1. 5 hours (S Jie, at a cooling rate of 5~6 ° C / min cooling), and finally down to room temperature from 1 500 ° C. 5 hours (S Jie, at a cooling rate of 4~6 ° C / min cooling).

[0034] 最后采用激光剥蚀电感耦合等离子体质谱法测定烧结后的碳化硅样品,仪器的参数:激光剥蚀采用的是Cetac 213nm的Nd :YAG激光进样系统,激光波长213nm,激光能量40 %,激光频率20Hz,剥蚀孔径150 μ m,扫描速率30 μ m/s,氦气流量0. 7L/min ;ICP-MS为Thermo X series II CCT型四级杆,氩气为载气,氩气流量0.7L/min。 [0034] Finally, laser ablation inductively coupled plasma mass spectrometry sample of silicon carbide after sintering, the instrument parameters: laser ablation is used in the Cetac 213nm Nd: YAG laser injection system, the laser wavelength 213nm, laser energy 40% laser frequency 20Hz, erosion aperture 150 μ m, a scan rate of 30 μ m / s, the helium gas flow rate 0. 7L / min; ICP-MS for the Thermo X series II CCT quadrupole type, argon as a carrier gas, an argon gas flow rate 0.7L / min. 参见图4和图5,其分别示出微米级碳化娃和纳米级碳化娃的烧结温度与通过激光剥蚀电感親合等离子体质谱测定得到的质谱信号的相对标准偏差关系图,实验表明,1000°C烧结2小时后的碳化硅样品,在激光连续剥蚀下,产生稳定的信号。 Referring to FIGS. 4 and 5, which respectively show a sintering temperature carbonization micron and nanoscale carbide baby doll with a relative standard deviation of the inductance affinity diagram Plasma Mass Spectrometry Mass spectrum signals obtained by the laser ablation, experiments show, 1000 ° C sintered silicon carbide sample after 2 hours, under continuous laser ablation, produce a stable signal.

[0035] 下面进一步举例实施例以详细说明本发明。 [0035] The following Examples further illustrate embodiments of the present invention to be described in detail. 同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。 It should also be understood that the following examples are only for the present invention is further illustrated, some of the non-essential modifications and adaptations not be construed as limiting the scope of the present invention, those skilled in the art made in accordance with the foregoing the present invention belong to the present invention the scope of protection. 下述示例具体的温度、时间等也仅是合适范围中的一个示例,即、本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。 The following examples of specific temperature, time and the like is only one example of a suitable range, i.e., those skilled in the art can be selected within a suitable range from the description herein, and are not to be limited to specific numerical values ​​exemplified below.

[0036] 实施例1 [0036] Example 1

[0037] 称取碳化硅(粒径微米级)1.0g,研磨,过筛(200目)。 [0037] g of silicon carbide (particle size micron) 1.0 g of, milled, sieved (200 mesh). 使用手动压片机,保压时间30s,压力为lOMpa,将其制备成φ1〇mm的小圆片。 Manual tableting machine, dwell time 30s, Lompa pressure, which is prepared as φ1〇mm small discs. 将制备的碳化硅圆片,在马弗炉中烧结, 烧结温度为l〇〇〇°C,采用程序升温,程序设定为经1. 5小时,从室温升至500°C;再经1. 5小时,从500°C升温至1000°C ;KKKTC保温2小时;然后经1. 5小时,从KKKTC降温至500°C ; 最后经1. 5小时,从500°C降温至室温。 The silicon carbide wafer is prepared, in a muffle furnace sintering, the sintering temperature is l〇〇〇 ° C, temperature programmed, programmed for over 1.5 hours, from room temperature to 500 ° C; then by 1.5 hours, heated from 500 ° C to 1000 ° C; KKKTC incubated for 2 hours; then dried over 1.5 hours, cooled to 500 ° C from KKKTC; over the last 1.5 hours, cooled to room temperature from 500 ° C. 烧结后,采用激光剥蚀电感耦合等离子体质谱法测定。 After sintering, laser ablation inductively coupled plasma mass spectrometry.

[0038] 实施例2 [0038] Example 2

[0039] 称取碳化硅(粒径纳米级)1.0g,研磨,过筛(200目)。 [0039] g of silicon carbide (particle size nanometer) 1.0 g of, milled, sieved (200 mesh). 使用手动压片机,保压时间30s,压力为lOMpa,将其制备成φ1〇mtn的小圆片。 Manual tableting machine, dwell time 30s, Lompa pressure, which is prepared into small discs of φ1〇mtn. 将制备的碳化硅圆片,在马弗炉中烧结, 烧结温度为l〇〇〇°C,采用程序升温,程序设定为经1. 5小时,从室温升至500°C;再经1. 5小时,从500°C升温至1000°C ;KKKTC保温2小时;然后经1. 5小时,从KKKTC降温至500°C ; 最后经1. 5小时,从500°C降温至室温。 The silicon carbide wafer is prepared, in a muffle furnace sintering, the sintering temperature is l〇〇〇 ° C, temperature programmed, programmed for over 1.5 hours, from room temperature to 500 ° C; then by 1.5 hours, heated from 500 ° C to 1000 ° C; KKKTC incubated for 2 hours; then dried over 1.5 hours, cooled to 500 ° C from KKKTC; over the last 1.5 hours, cooled to room temperature from 500 ° C. 烧结后,采用激光剥蚀电感耦合等离子体质谱法测定。 After sintering, laser ablation inductively coupled plasma mass spectrometry.

[0040] 产业应用性:本发明的方法低制备成本、快速、经济,制备的碳化硅样品具有一定的强度,能够承受激光的连续剥蚀,将在激光剥蚀电感耦合等离子体质谱法分析粉末样品的前处理方面有较好的应用前景。 [0040] Industrial Applicability: The method of preparation of the present invention is a low cost, fast, economical, silicon carbide samples prepared with a certain strength to withstand the continuous erosion of the laser, the powder sample analysis ablation inductively coupled plasma mass spectrometry in the laser pre-processing has a good prospect.

Claims (5)

  1. 1. 一种碳化硅粉体样品的前处理方法,其特征在于,通过所述前处理方法将所述碳化硅粉体样品制成适合通过激光剥蚀电感耦合等离子体质谱法测定的块状样品,所述前处理方法包括: (1) 将碳化硅粉末研磨后过筛; (2) 直接使用手动压片机将过筛后的碳化硅粉末压成圆片,其中压力为8〜12Mpa,保压时间为30〜50秒; (3) 将所述圆片程序升温至1000°C保温烧结2小时;以及(4) 程序降温至室温。 A pretreatment method of a silicon carbide powder sample, characterized by the pretreatment method of the silicon carbide powder samples prepared for measurement of bulk samples ablation inductively coupled plasma mass spectrometry by laser, the pretreatment method includes: (1) a silicon carbide powder was sieved after grinding; (2) used as the silicon carbide powder is sieved manually to tableting machine pressed into disks, wherein the pressure is 8~12Mpa, packing time is 30 ~ 50 seconds; (3) heating the wafer to 1000 ° C incubation procedure burnt for two hours; and (4) cooling to room temperature program.
  2. 2. 根据权利要求1所述的前处理方法,其特征在于,在步骤(2)中,压力为lOMpa,保压时间为30秒。 The pretreatment method according to claim 1, wherein, in step (2), the pressure is Lompa, dwell time of 30 seconds.
  3. 3. 根据权利要求1或2所述的前处理方法,其特征在于,在步骤(3)中,所述程序升温包括: 以4〜6 °C /分钟的升温速率从室温升温至500 °C,再以5〜6 °C /分钟的升温速率从500 °C 升温至1000 °C。 The pretreatment method according to claim 1, wherein, in step (3), the temperature program comprises: a ramp rate of 4~6 ° C / min from room temperature to 500 ° C , and then at a heating rate of 5~6 ° C / min temperature rise from 500 ° C to 1000 ° C.
  4. 4. 根据权利要求1或2所述的前处理方法,其特征在于,在步骤(4)中,所述程序降温包括: 以5〜6 °C /分钟的降温速率从1000 °C降温至500 °C,再以4〜6 °C /分钟的降温速率从500 °C降温至室温。 The pretreatment method according to claim 1, wherein, in step (4), the cooling procedure comprises: cooling at a rate of 5~6 ° C / min cooling from 500 to 1000 ° C ° C, and then cooling at a rate of 4~6 ° C / min cooling from 500 ° C to room temperature.
  5. 5. 根据权利要求1或2所述的前处理方法,其特征在于,在步骤(1)中,所述筛为200 目以上的筛。 The pretreatment method according to claim 1, wherein, in step (1), the mesh 200 mesh or more.
CN 201310422724 2013-09-16 2013-09-16 Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry CN103471890B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310422724 CN103471890B (en) 2013-09-16 2013-09-16 Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310422724 CN103471890B (en) 2013-09-16 2013-09-16 Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry

Publications (2)

Publication Number Publication Date
CN103471890A true CN103471890A (en) 2013-12-25
CN103471890B true CN103471890B (en) 2015-05-13

Family

ID=49796831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310422724 CN103471890B (en) 2013-09-16 2013-09-16 Pretreatment method for silicon carbide powder sample to be tested by using laser ablation inductively coupled plasma mass spectrometry

Country Status (1)

Country Link
CN (1) CN103471890B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105004711A (en) * 2015-07-14 2015-10-28 中国科学院上海硅酸盐研究所 Quantitative analysis method of impurities in beta-SiC
CN105572215B (en) * 2015-12-15 2018-06-22 中国科学院上海硅酸盐研究所 Determination of the Content and Distribution of seed crystals of lead fluoride
CN105548333A (en) * 2016-01-25 2016-05-04 中国科学院上海硅酸盐研究所 Method for analyzing content and distribution of Cr in Cr-doped zinc sulfide crystalline material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL289047A (en) * 1963-02-15
DE10136594C2 (en) * 2001-07-29 2003-08-14 Martin Paplewski Thermal transfer means for evaporation and pyrolysis of samples for analytical measuring technology
JP2005105116A (en) * 2003-09-30 2005-04-21 Seiko Epson Corp Method for producing sintered body of luminous fluorescent substance and method for producing raw material pellet for injection molding
US20100034686A1 (en) * 2005-01-28 2010-02-11 Caldera Engineering, Llc Method for making a non-toxic dense material
CN101003092A (en) * 2006-11-27 2007-07-25 北京矿冶研究总院 Hot spray powder of cobalt - tungsten carbide with high cobalt content, and preparation method
CN102030534B (en) * 2010-11-09 2013-01-02 浙江大学 Method for preparing silicon carbide ceramic
CN102173789B (en) * 2011-02-25 2013-03-20 武汉理工大学 Preparation method of barium strontium titanate-based energy storage dielectric ceramic
KR101341330B1 (en) * 2011-12-28 2013-12-13 호남석회공업(주) Manufacturing method for FINEX-sludge sintered pellet using rotary kiln

Also Published As

Publication number Publication date Type
CN103471890A (en) 2013-12-25 application

Similar Documents

Publication Publication Date Title
Bodišová et al. Two‐stage sintering of alumina with submicrometer grain size
Ando et al. A preliminary study on crack healing behaviour of Si3 N4/SiC composite ceramics
Hulbert et al. A discussion on the absence of plasma in spark plasma sintering
JP2013028497A (en) Polycrystalline diamond and method for producing the same
CN102303116A (en) Manufacturing method of mu40 ferrum silicon aluminum magnetic powder core
Kodash et al. Field-assisted sintering of Ni nanopowders
Götz et al. Characterization of large supported metal clusters by optical spectroscopy
CN104451265A (en) Ni-based alloy magnetic microwave absorbing material and preparation method thereof
CN101648807A (en) Calcium barium zirconate titanate base piezoceramics and preparation method thereof
Buzi et al. Influence of particle flux density and temperature on surface modifications of tungsten and deuterium retention
Meng et al. Rapid Densification of Nano‐Grained Alumina by High Temperature and Pressure with a Very High Heating Rate
CN101718720A (en) Method for detecting content of carborundum impurities by applying X-ray fluorescent spectrometry
CN101200367A (en) Method for preparing yttrium iron garnet ferrite material
CN101478026A (en) Thermoelectric compounds and preparation thereof
CN103132141A (en) Coating composition of graphite equipment used for polycrystalline silicon ingot furnace
CN104310978A (en) High-temperature-resistant ceramic powder coating material and preparation method thereof
CN101591168A (en) Small-line-width low-loss microwave ferrite material and manufacturing method thereof
CN102363289A (en) Preparation technology of metal ceramic bonding agent diamond/ cubic boron nitride (CBN) grinding wheel
JP2008133528A (en) Thermal spray powder, method for forming thermal spray coating and plasma resistant member
CN101929968A (en) Device for measuring thermal diffusivity
Zhu et al. Preparation and Sintering Behavior of the Tin‐Doped Indium Oxide Nanopowders
CN101847481A (en) Novel process for preparing C-Fe shell-core magnetic active carbon by utilizing waste biomasses
CN102436890A (en) Method for improving performance of nano-crystalline neodymium-iron-boron permanent magnet material
CN102610349A (en) Method for manufacturing mu-90 sendust magnetic powder cores
CN103539465A (en) High-performance magnesia-carbon brick and production method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted