CN103437317B - 高含沙洪水“揭河底”冲刷临界条件综合判别方法 - Google Patents

高含沙洪水“揭河底”冲刷临界条件综合判别方法 Download PDF

Info

Publication number
CN103437317B
CN103437317B CN201310358910.2A CN201310358910A CN103437317B CN 103437317 B CN103437317 B CN 103437317B CN 201310358910 A CN201310358910 A CN 201310358910A CN 103437317 B CN103437317 B CN 103437317B
Authority
CN
China
Prior art keywords
clay block
formula
river bed
taking
clay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310358910.2A
Other languages
English (en)
Other versions
CN103437317A (zh
Inventor
傅酉
付玉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinghai water resources and Hydropower Survey, planning, design and Research Institute Co.,Ltd.
Original Assignee
TIANJIN HONGYAN TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TIANJIN HONGYAN TECHNOLOGY Co Ltd filed Critical TIANJIN HONGYAN TECHNOLOGY Co Ltd
Priority to CN201310358910.2A priority Critical patent/CN103437317B/zh
Publication of CN103437317A publication Critical patent/CN103437317A/zh
Application granted granted Critical
Publication of CN103437317B publication Critical patent/CN103437317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明涉及一种水文预报方法,特别涉及一种高含沙洪水“揭河底”冲刷临界水流条件综合判别方法,IPC国际专利分类号为E02B 1/00。该方法利用胶泥块抗折强度试验及抗剪强度试验数据,构建了四种胶泥块可能揭掀的力学分析模型,并考虑胶泥块揭掀综合影响因素及最不利荷载组合条件,分别计算胶泥块揭掀时的临界水流流速,最后取计算结果的最小值作为“揭河底”现象发生时的临界水流条件。本发明的判别方法,计算更为准确,能够较准确预报某次洪水是否能导致“揭河底”现象发生,为防汛抢险的调度、准备工作提供了决策依据,同时,也为“揭河底”现象发时的实时数据采集提供了可能。

Description

高含沙洪水“揭河底”冲刷临界条件综合判别方法
技术领域
本发明涉及一种水文预报方法,特别涉及一种高含沙洪水“揭河底”冲刷临界水流条件综合判别方法,属于泥沙动力学技术领域,IPC国际专利分类号为E02B 1/00。
背景技术
“揭河底”冲刷是高含沙水流与特殊河床边界相互作用产生的一种现象。“揭河底”冲刷往往导致河床强烈下切,有时一次洪峰可将河床冲深数米,导致河床及水位大幅下降,同时冲刷作用往往引起河道主槽的迁徙,对河道沿岸工程造成严重破坏,给黄河防洪带来巨大压力。
上世纪七十年代,“揭河底”现象就引起了国内外水利工作者的高度关注,并对此问题开展了研究。目前”揭河底”冲刷问题的研究方法分三类:第一类是利用原型水文站的实测资料,分析黄河小北干流及渭河河段发生“揭河底”冲刷的水沙条件,但由于高含沙河流水沙条件沿程变化较大,因此用“揭河底”河段上下游水文站的实测资料作为“揭河底”冲刷水沙条件的计算数据不准确,且由于“揭河底”现象形成的条件比较特殊,其发生的随机性较大,很难在实际中捕捉到跟随性较强的“揭河底”实测资料,也因此导致了分析数据长度受限,因此该方法提出的“揭河底”现象发生的水沙条件不具有说服力。第二类方法是利用水流挟沙能力的概念研究胶泥块起动时的水沙条件,但挟沙能力反映的是泥沙向下游输送过程中的运移情况,并不能反映胶泥块瞬时掀起时的动态力学关系,且胶泥块揭掀与单个泥沙颗粒的起动也有很大区别。因此,能否用挟沙能力的概念来反映“揭河底”问题,值得商榷。第三类研究方法是试验研究,该方法利用水槽试验模拟“揭河底”冲刷现象,并构建了两种胶泥块揭掀力学模型:一种是胶泥块底部被水流冲蚀,当胶泥块沿着与河床的连续部(固定端处)发生向上转动时,胶泥块前端处于悬臂状态,并利用作用在胶泥块水深方向的力平衡方程对水沙条件进行求解。另一种是不考虑侵蚀冲刷情况,只考虑胶泥块边界与河床的粘着力构建力学分析模型。
关于“揭河底”现象发生的河床边界条件,目前的研究基本一致,即认为“揭河底”冲刷现象常常发生在复式断面的滩地或河道改道后的河槽中或是“晾河底”的河床上,并且河床具有可供揭起的有一定强度、结构密实的淤积物板块,在淤积物周围有较离散的沉积物或软弱夹层,河床具有相对宽浅的横断面形态。“揭河底”冲刷之所以常常发生在上述河床条件下,分析原因是因为上述河床淤积物存在裂隙,当洪水通过时,由于裂隙间中的振荡水体和脉动压力作用,导致裂隙发展,使胶泥块与周边淤积物粘着力减小,从而为具有一定结构强度的胶泥块揭掀创造了条件。对于抗冲性较强的胶泥块,由于裂隙中下潜水流作用,其周边淤积物被淘刷,随着淘刷历时,胶泥块的悬空面积越来越大,当满足揭掀条件时,胶泥层将 被掀起。胶泥块的这种揭掀模式已通过实验得到验证。关于发生“揭河底”冲刷的机理目前研究认为:发生“揭河底”现象的首要条件是河床淤积物具有层理分布结构,且层中具有一定结构强度的“胶泥层”;特殊的水沙条件提供了“揭河底”冲刷的动力;胶泥块上下表面脉动压力波传播速度不同引起的瞬时上举力是“揭河底”现象发生的真正机理。
河床淤积物块体能否被掀起,或者说能否产生“揭河底”现象,主要取决于各种条件的综合结果,其中包括前期河床淤积形态与调整情况、淤积物密度与相对糙度、淤积物块体形成情况及分层厚度、淤积物块体边界条件、淤积块本身的力学强度、洪峰流量与含沙量大小、洪水过程持续时间长短、河槽形态参数、层垂向脉动压力强弱、脉动压力在淤积物块体上下表面的相位分布与相位叠加概率等。分析目前“揭河底”冲刷问题的研究文献可以看出:由于研究手段、方法、对象以及研究的侧重点等不同,“揭河底”的判别条件、判别指标尚缺乏统一的认识,且由于“揭河底”现象形成的条件比较特殊,其发生的随机性较大,很难在实际中捕捉到跟随性较强的“揭河底”实测资料,也导致了目前“揭河底”现象的研究受到制约。
发明人通过大量的试验和理论研究发现,根据“揭河底”现象发生的机理及胶泥块的揭掀模式,满足胶泥块可能揭掀的条件有四种,即(1)因力矩作用胶泥折断揭掀条件;(2)作用在胶泥块水深方向的作用力与胶块折断断面剪力平衡揭掀条件;(3)因力矩作用胶泥整片揭掀条件;(4)作用在胶泥块水深方向上作用力与胶泥块边界粘着力平衡揭掀条件。
本发明利用“揭河底”冲刷胶泥块力学强度试验数据,并考虑“揭河底”冲刷综合影响因素,分别推导上述四种揭掀模式的临界水流流速,研究成果为预测某次洪水(水沙条件由“揭河底”河段上、下游水文观测站测定)通过“揭河底”冲刷易发河段时是否导致“揭河底”现象发生提供理论支撑。
发明内容
本发明是在考虑“揭河底”冲刷综合影响因素条件下,根据“揭河底”冲刷机理及胶泥块可能的揭掀模式构建力学分析模型,并利用胶泥块抗折强度及抗剪强度试验数据,分别计算各种可能揭掀模式发生时的临界水沙条件。本发明采取的技术方案是:
一种高含沙洪水“揭河底”冲刷临界条件综合判别方法,包括以下步骤:
(一)、“揭河底”冲刷易发河段胶泥块抗折强度试验:
试验土样为黄河“揭河底”冲刷易发河段的胶泥块。首先根据“揭河底”冲刷易发河段胶泥块絮凝沉积的形成机理,对从“揭河底”冲刷易发河段取回的土样进行重塑,具体方法是:将从原型河床取回的胶泥块碾碎,放入容器中加水搅拌,使泥沙絮凝沉积,通过风干形成胶泥块作为试样,并利用风干时间不同控制胶泥块试样的含水率。对不同组次的胶泥块试样,利用抗折试验机测定抗折强度。
试验方法如下:
将胶泥块试样横放在抗折试验机的两根支撑圆柱上,试件长轴垂直于抗折试验机支撑圆柱,以大约50N/s±l0N/s的速率通过抗折试验机的加荷圆柱将垂直荷载均匀地加在棱柱体的水平面上,直至胶泥块试样折断。抗折强度M的计算公式如式(1),单位为牛顿/平方毫米(MPa)。
M = 1.5 F f L B 3 - - - ( 1 )
式中,Ff—试件折断时垂直加在其顶部平面中部的荷载,单位为N;
L—支撑圆柱之间的距离,单位为mm;
B—棱柱体正方形截面的边长,单位为mm。
以一组三个胶泥块试样抗折强度的平均值作为试验结果。利用实验结果建立胶泥块抗折强度与含水率的关系方程,由该关系方程计算出“揭河底”冲刷易发河段的胶泥块饱和含水率下的抗折强度Ms
(二)、“揭河底”冲刷易发河段胶泥块抗剪强度试验
采用步骤(一)相同的胶泥块试样,对试样进行密封浸泡,使胶泥块试样达到饱和含水率,利用ZJ型等应变控制式直剪仪进行饱和快剪试验,得到胶泥块的抗剪强度τ'。
试验方法:试样分别在100kPa、200kPa、300kPa和400kPa 4级垂直压力下,以0.8mm/min的剪切速率快速施加水平剪力使试样剪切破坏,试样加载时间为3~5min。当测力计读数不再增加或开始倒退时,认为试样已破坏,记下破坏值。
(三)、构建“揭河底”冲刷时胶泥块因力矩作用折断揭掀的受力数学模型:
FD水流正面推力: F D = γ m C D 2 V bi 2 bcg - - - ( 3 )
式中,Vbi为胶泥块底部水流流速,i=1,2,3,4,CD为阻力系数,γm为浑水容重,b为胶泥块宽度,c为胶泥块厚度,
FD'为折断面上FD的反作用力: F D ′ = - γ m C D 2 V bi 2 bcg - - - ( 4 )
τ为胶泥块上表面的水流拖曳力: τ = γ m C D 2 V b 1 2 lbg - - - ( 5 )
Gs胶泥块重量为:Gs=γslbcg    (6)
式中,γs为胶泥块的容重,l为冲蚀悬臂长度,g为重力加速度,
P1为胶泥块所受水压力:P1=γmlbhg    (7)
式中,h为胶泥块表面处水深,
P2为胶泥块的浮力:P2=γmlb(h+c)g    (8)
最大水流脉动上举力: F d max = K γ m J V b 1 2 lb - - - ( 9 )
式中,K为线性系数,单位kg·m·s,取值范围:3~4.2,J为水面坡降,构建力矩平衡平衡方程:
F d max l + P 2 l 2 + τc - G s l 2 - P 1 l 2 = M s bc - - - ( 10 )
将式(3)—(10)联立求解,得到式(11):
V b 1 2 = 2 M s c + l 2 cg ( γ s - γ m ) 2 KJ l 2 γ m + lcg γ m - - - ( 11 )
胶泥块在Δt时间段内被淘刷的冲蚀悬臂长度l采用经验公式(17)计算:
式中,C1为河床冲刷系数,γc为河床淤积物的容重,D为胶泥块周围可动淤积物的平均粒径,ρm为高含沙洪水的密度,A为综合影响系数,其取值为0.044,系数ξ的取值为1.35,
将式(11)和(17)联立求解,即可求出Vb1
(四)、构建“揭河底”冲刷时作用在胶泥块水深方向的受力数学模型:
作用在胶泥块水深方向的力平衡方程:
Fdmax+P2-P1-Gs=τ'bc    (21) 
式中,τ'为胶泥块的抗剪强度,由步骤(二)的抗剪强度试验给出,式(6)—(9)代入式(21),得到式(23):
V b 2 2 = τ ′ c + l cg ( γ s - γ m ) KJl γ m - - - ( 23 )
联立式(23)和式(17),并将式(17)的水流流速用式(23)替换,即可求出Vb2
(五)、构建“揭河底”冲刷时因力矩作用胶泥整片揭掀受力数学模型胶泥块瞬时揭掀力矩方程如式(36)所示:
K J V b 3 2 gc = g a 2 l 2 ( γ s γ m - 1 ) + π q 0 γ m - 1 δ 0 3 δ 1 2 ( a l - 1 ) 2 D 1 ( D 1 + 2 t ) 2 [ δ 1 2 t 2 - 1 ] ( b + 2 fc 2 bc ) - - - ( 36 )
由胶泥块的干容重确定,即
γ s ′ = [ 0.698 - 0.175 ( t δ 1 ) 1 3 ( 1 - t δ 1 ) ] ( D 1 D 1 + 2 t ) 3 γ s - - - ( 37 )
式中,a为胶泥块长度,γ's为胶泥块干容重,δ0=3×10-10m,为一个水分子厚;q0=1.3×109kg/m2,δ1为薄膜水的厚度(取4×10-7m),D1为胶泥块平均粒径,t为相邻两泥沙颗粒之间距离的一半。由式(37)可确定t值,f为摩擦系数,取值为0.4,
联立式(36)、(37)和式(17)求解,将式(17)中的替换,即可求得Vb3
(六)、构建“揭河底”冲刷时作用在胶泥块水深方向上作用力与胶泥块边界粘着力平衡方程:
V b 4 2 = acg KJl ( γ s γ m - 1 ) + π q 0 D 1 δ 0 3 KJl γ m ( D 1 + 2 t ) 2 δ 1 2 [ ( a - l ) b 2 + f ( a - l ) c + fbc 2 ] - - - ( 41 )
联立式(17)和式(41)求解,将式(17)中替换,即可以求出Vb4
(七)根据步骤(二)—(六)得出的胶泥块底部水流流速Vbi(i=1,2,3,4),取其中的最小值作为发生“揭河底”冲刷时的临界流速Vb,即
Vb=min{Vbi},i=1,2,3,4    (32)
(八)判断某次洪水是否产生“揭河底”冲刷现象
当“揭河底”冲刷易发河段上游发生高含沙洪水时,根据该河段上游水文观测站对洪水水流流速和含沙量观测数据,根据该河段多年来的水文观测数据,可以很容易地计算出本次洪水到达该河段时的实际河床流速、含沙量及冲刷时长,然后利用步骤(四)方法计算出产生“揭河底”冲刷的临界流速Vb。当该实际河床流速大于该临界流速Vb时,则会发生“揭河底”冲刷现象,否则,则不会发生“揭河底”冲刷现象。
本发明的判别方法,能够较准确预报某次洪水是否能导致“揭河底”现象发生,为防汛抢险的调度、准备工作提供了决策依据,同时,也为“揭河底”现象发时的实时数据采集提供了可能。
具体实施方式
本发明的关键步骤是对“揭河底”河段胶泥块进行力学强度试验;然后根据“揭河底”冲刷机理并考虑“揭河底”冲刷综合影响因素,构建胶泥块可能的揭掀分析模型,分别对每个模型进行求解,比较计算结果取最小值。其具体实施步骤如下:
(一)、“揭河底”冲刷易发河段胶泥块抗折强度试验:
试验土样为黄河“揭河底”冲刷易发河段的胶泥块。首先根据“揭河底”冲刷易发河段胶泥块絮凝沉积的形成机理,对从“揭河底”冲刷易发河段取回的土样进行重塑,具体方法是:将从原型河床取回的胶泥块碾碎,放入容器中加水搅拌,使泥沙絮凝沉积,通过风干形成胶泥块作为试样,并利用风干时间不同控制胶泥块试样的含水率。对不同组次的胶泥块试样,利用抗折试验机测定抗折强度。
试验方法如下:
将胶泥块试样横放在抗折试验机的两根支撑圆柱上,试件长轴垂直于抗折试验机支撑圆柱,以大约50N/s±l0N/s的速率通过抗折试验机的加荷圆柱将垂直荷载均匀地加在棱柱体的水平面上,直至胶泥块试样折断。抗折强度M的计算公式如式(1),单位为牛顿/平方毫米(MPa)。
M = 1.5 F f L B 3 - - - ( 1 )
式中,Ff—试件折断时垂直加在其顶部平面中部的荷载,单位为N;
L—支撑圆柱之间的距离,单位为mm;
B—棱柱体正方形截面的边长,单位为mm。
以一组三个胶泥块试样抗折强度的平均值作为试验结果。利用实验结果建立胶泥块抗折强度与含水率的关系方程,由该关系方程计算出“揭河底”冲刷易发河段的胶泥块饱和含水率下的抗折强度Ms
(二)、“揭河底”冲刷易发河段胶泥块抗剪强度试验
采用步骤(一)相同的胶泥块试样,对试样进行密封浸泡,使胶泥块试样达到饱和含水率,利用ZJ型等应变控制式直剪仪进行饱和快剪试验,得到胶泥块的抗剪强度τ'。
试验方法:试样分别在100kPa、200kPa、300kPa和400kPa 4级垂直压力下,以0.8mm/min的剪切速率快速施加水平剪力使试样剪切破坏,试样加载时间为3~5min。当测力计读数不再增加或开始倒退时,认为试样已破坏,记下破坏值。
(三)、构建“揭河底”冲刷时胶泥块因力矩作用折断揭掀的受力数学模型:
FD水流正面推力: F D = γ m C D 2 V bi 2 bcg - - - ( 3 )
式中,Vbi为胶泥块底部水流流速,i=1,2,3,4,CD为阻力系数,γm为浑水容重,b为胶泥块宽度,c为胶泥块厚度。
FD'为折断面上FD的反作用力: F D ′ = - γ m C D 2 V bi 2 bcg - - - ( 4 )
τ为胶泥块上表面的水流拖曳力: τ = γ m C D 2 V b 1 2 lbg - - - ( 5 )
Gs胶泥块重量为:Gs=γslbcg    (6)
式中,γs为胶泥块的容重,l为冲蚀悬臂长度,g为重力加速度,其它符号同前。
P1为胶泥块所受水压力:P1=γmlbhg    (7)
式中,h为胶泥块表面处水深,其它符号同前。
P2为胶泥块的浮力:P2=γmlb(h+c)g    (8)
最大水流脉动上举力: F d max = K γ m J V b 1 2 lb - - - ( 9 )
式中,K为线性系数,单位kg·m·s,取值范围:3~4.2,J为水面坡降。
力矩平衡平衡方程:
F d max l + P 2 l 2 + τc - G s l 2 - P 1 l 2 = M s bc - - - ( 10 )
方程求解:
将式(3)、(4)、(5)、(6)、(7)、(8)(9)代入式(10)中,整理得:
V b 1 2 = 2 M s c + l 2 cg ( γ s - γ m ) 2 KJ l 2 γ m + lcg γ m - - - ( 11 )
胶泥块在Δt时间段内被淘刷的冲蚀悬臂长度l采用经验公式:
l = C 1 Δt ( τ s - τ c ) e - 0.013 τ c / γ c - - - ( 12 )
式中,C1为河床冲刷系数,τs为胶泥块周围泥沙颗粒所受的拖曳力,τc河床淤积物发生冲刷时的临界起动切应力,γc为河床淤积物的容重。
τ s = C D ′ α D d i 2 ρ m V b 2 2 - - - ( 13 )
式中,C'D为拖曳力系数,取值为0.4,αD为泥沙颗粒的面积系数,取值为ρm为水的密度,di为被冲蚀的泥沙颗粒粒径,其它符号同前。用胶泥块周围可动淤积物的平均粒径D代替di,整理式(13)得:
τ s = 0.16 D 2 ρ m V b 2 - - - ( 14 )
河床淤积物临界起动切应力τc τ c ( γ c - γ m ) d i = A ( 1 + ξ d m d i ) - - - ( 15 )
式中,A为综合影响系数,经过大量的试验验证,其精确取值为0.044,ξ为与泥沙颗粒暴露度有关的系数,经过大量的试验验证,其取值范围为1.25~1.65,精确取值为1.35,di为被冲蚀的泥沙颗粒粒径,dm为冲蚀淤积物的平均粒径。
将式(14)、(15)代入式(12)中,可得淘刷悬臂长度l的计算公式:
l = C 1 Δt [ 0.16 ρ m V b 1 2 D 2 - A d i ( γ c - γ m ) ( 1 + ξ d m di ) ] e - 0.013 A d i ( γ c - γ m ) ( 1 + ξ d m d i ) / γ c - - - ( 16 )
考虑胶泥块周围可冲蚀泥沙颗粒的粒径在10-5(m)量级左右,A的取值范围在10-2量级,且 &gamma; c - &gamma; m &gamma; c < 1 , 故,式(16)中 e - 0.013 A d i ( &gamma; c - &gamma; m ) ( 1 + &xi; d m d i ) / &gamma; c &ap; 1 , 用胶泥块周围可动淤积物的平均粒径D代替di,则式(16)可表示为:
l作为变量,联立式(11)、式(17)进行求解:将式(11)代入式(17)并整理得:
l 3 - C 1 &Delta;tAD 2 ( 2 &gamma; c + 2 &xi; &gamma; c - &gamma; m - &xi; &gamma; m ) l 2 - C 1 &Delta;tADcg 2 KJ ( &gamma; c + &xi; &gamma; c - &gamma; m - &xi; &gamma; m ) 1 - C 1 &Delta;t D 2 &rho; m c [ 0.32 M s + 0.16 g ( &gamma; s - &gamma; m ) ] = 0 - - - ( 18 )
a , = - C 1 &Delta;tAD 2 ( 2 &gamma; c + 2 &xi; &gamma; c - &gamma; m - &xi; &gamma; m ) , a , = - C 1 &Delta;tAD cg 2 KJ ( &gamma; c + &xi; &gamma; c - &gamma; m - &xi; &gamma; m ) ,
c'=-C1ΔtD2ρmc[0.32Ms+0.16(γsm)],则式(17)转化为:
(l')3+pl'+q=0    (19)
式中, p = ( ( a , ) 2 3 + b , ) , q = 2 ( a , ) 3 - 9 a , b , + 27 c , 27
根据一元三次方程的求根公式得:
l = { - q 2 + [ ( q 2 ) 2 + ( p 3 ) 3 ] 1 2 } 1 3 + { - q 2 - [ ( q 2 ) 2 + ( p 3 ) 3 ] 1 2 } 1 3 + a , 3 - - - ( 20 )
将l代入式(11)中,即可求出Vb1。Vb1=F1(C1,Δt,γcsm,c,J,K,Ms,D)。
(四)、构建“揭河底”冲刷时作用在胶泥块水深方向的受力数学模型:
作用在胶泥块水深方向的力平衡方程:
Fdmax+P2-P1-Gs=τ'bc    (21) 
式中,τ'为胶泥块的抗剪强度,由步骤(二)的抗剪强度试验给出。
K &gamma; m J V b 2 2 lb + &gamma; m lb ( h + c ) g - &gamma; m lbhg - &gamma; s lbcg = &tau; &prime; bc - - - ( 22 )
整理式(22)得:
V b 2 2 = &tau; &prime; c + l cg ( &gamma; s - &gamma; m ) KJl &gamma; m - - - ( 23 )
联立式(23)、式(17),并将式(17)的水流流速用式(23)替换,可求出胶泥层悬臂长度l:
KJγml2-C1Δt[0.16D2ρmcg(γsm)+KJγmAD(γcm)(1+ξ)]l=0.16C1ΔtD2ρmτ'c  (24)
令a”=KJγm,b”=-C1Δt[0.16D2ρmcg(γsm)+KJγmAD(γcm)(1+ξ)]
c”=-0.16C1ΔtD2ρmτ'c
则,胶泥层悬臂长度l为:
l = - b &prime; &prime; &PlusMinus; ( b &prime; &prime; ) 2 - 4 a &prime; &prime; c &prime; &prime; 2 a &prime; &prime; - - - ( 25 )
将l代入式(23)中,即可求出Vb2。即:
Vb2=F2(C1,Δt,γcsm,c,J,K,τ',D)    (26) 
(五)、构建“揭河底”冲刷时因力矩作用胶泥整片揭掀受力数学模型
FD为胶泥块所受的水流正面推力,Gs整片胶泥块的重量,P1为胶泥块所受的水压力,P2为胶泥块所受的浮力,Fdmax为胶泥块所受的水流脉动上举力,Fμ1为胶泥块与底部床面之间的粘结力,Fμ2为胶泥块两个侧面的粘着力,Fμ3为胶泥块下游侧面的粘着力,其转化为向下 的摩擦力分别为fFμ2,fFμ3,f为摩擦系数,取值为0.4,a为胶泥块长度,其它符号意义同前。
Gs=γsabcg   (27)
P1=γmhabg   (28)
P2=γm(h+c)abg   (29)
Fdmax由式(9)计算,
Fμ1、Fμ2、Fμ3的计算公式如下:
F &mu; 1 = &pi; 2 q 0 ( a - l ) b ( D + 2 t ) 2 &delta; 0 3 &delta; 1 2 D [ &delta; 1 2 t 2 - 1 ] - - - ( 30 )
式中,δ0=3×10-10m,为一个水分子厚;q0为h1=δ0时单位面积上的粘着力;h1为两个泥沙颗粒之间的距离;δ1为薄膜水的厚度(取4×10-7m),D1为泥沙单颗粒颗径(考虑粘着力是胶泥层与其周围河床淤积物过渡层之间的粘着力,因此,D1取胶泥块平均粒径,可由胶泥块的粒分试验确定),t为相邻两泥沙颗粒之间距离的一半,q0=1.3×109kg/m2
F &mu; 2 = &pi; 2 q 0 ( a - l ) c ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] - - - ( 31 )
F &mu; 3 = &pi; 2 q 0 bc ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] - - - ( 32 )
胶泥块瞬时揭掀力矩方程如式(33)所示:
- F D C 2 + F d max a + P 2 a 2 - G s a 2 - p 1 a 2 - F &mu; 1 a - l 2 - f F &mu; 2 ( a - l ) = 0 - - - ( 33 )
将各力表达式代入式(33)中得:
- &gamma; m V b 3 2 bcl 4 + K &gamma; m J V b 3 2 b l 2 2 g + a 2 2 &gamma; m b ( h + c ) g - a 2 2 &gamma; s bcg - a 2 2 &gamma; m bhg - &pi; 2 q 0 ( a - l ) b ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] a - l 2 - &pi; 2 f q 0 ( a - l ) c ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] ( a - l ) = 0 - - - ( 34 )
忽略FD,整理式(34):
K &gamma; m Jb l 2 g V b 3 2 = a 2 bcg ( &gamma; s - &gamma; m ) + &pi; q 0 D 1 &delta; 0 3 ( a - l ) 2 &delta; 1 2 ( D 1 + 2 t ) 2 [ &delta; 1 2 t 2 - 1 ] ( b 2 + fc ) - - - ( 35 )
K J V b 3 2 gc = g a 2 l 2 ( &gamma; s &gamma; m - 1 ) + &pi; q 0 &gamma; m - 1 &delta; 0 3 &delta; 1 2 ( a l - 1 ) 2 D 1 ( D 1 + 2 t ) 2 [ &delta; 1 2 t 2 - 1 ] ( b + 2 fc 2 bc ) - - - ( 36 )
由胶泥块的干容重确定,即
&gamma; s &prime; = [ 0.698 - 0.175 ( t &delta; 1 ) 1 3 ( 1 - t &delta; 1 ) ] ( D 1 D 1 + 2 t ) 3 &gamma; s - - - ( 37 )
式中,γ's为胶泥块干容重,由步骤(一)的试验确定,由式(37)可确定t值,其它符号同前。
联立式(36)、式(17)求解,将式(17)中的替换,即可求得Vb3,即:
Vb3=F3(C1,Δt,γcs',γsm,c,J,K,D)    (38) 
(六)、构建“揭河底”冲刷时作用在胶泥块水深方向上作用力与胶泥块边界粘着力平衡方程:
作用在胶泥块水深方向上作用力与胶泥块边界粘着力平衡方程:
Fdmax+P2-Gs-P1-Fμ1-2fFμ2-fFμ3=0    (39) 
K &gamma; m J V b 4 2 lb + &gamma; m ( h + c ) abg - &gamma; m abhg - &gamma; s abcg - &pi; 2 q 0 ( a - l ) b ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] - f&pi; q 0 ( a - l ) c ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] - &pi; 2 f q 0 bc ( D 1 + 2 t ) 2 &delta; 0 3 &delta; 1 2 D 1 [ &delta; 1 2 t 2 - 1 ] = 0 - - - ( 40 )
整理得:
V b 4 2 = acg KJl ( &gamma; s &gamma; m - 1 ) + &pi; q 0 D 1 &delta; 0 3 KJl &gamma; m ( D 1 + 2 t ) 2 &delta; 1 2 [ ( a - l ) b 2 + f ( a - l ) c + fbc 2 ] - - - ( 41 )
联立式(17),式(41)求解,将式(17)中替换,即可以求出Vb4,即:
Vb4=F4(C1,Δt,γcs',γsm,c,J,K,M,D)
(七)根据步骤(二)—(六)得出的胶泥块底部水流流速Vbi(i=1,2,3,4),取其中的最小值作为发生“揭河底”冲刷时的临界流速Vb,即
Vb=min{Vbi},i=1,2,3,4    (32) 
(八)判断某次洪水是否产生“揭河底”冲刷现象。
当“揭河底”冲刷易发河段上游发生高含沙洪水时,根据该河段上游水文观测站对洪水水流流速和含沙量观测数据,根据该河段多年来的水文观测数据,可以很容易地计算出本次洪水到达该河段时的实际河床流速、含沙量及冲刷时长,然后利用步骤(三)——(七)方法计算出产生“揭河底”冲刷的临界流速Vb。当该实际河床流速大于该临界流速Vb时,则会发生“揭河底”冲刷现象,否则,则不会发生“揭河底”冲刷现象。

Claims (1)

1.一种高含沙洪水“揭河底”冲刷临界条件综合判别方法,包括以下步骤:
(一)、“揭河底”冲刷易发河段胶泥块抗折强度试验:
试验土样为取自“揭河底”冲刷易发河段的胶泥块,首先对试验土样进行重塑,具体方法是:将从“揭河底”冲刷易发河段原型河床取回的胶泥块碾碎,放入容器中加水搅拌,使泥沙絮凝沉积,通过风干形成胶泥块试样,并利用风干时间不同控制胶泥块试样的含水率;对不同组次的胶泥块试样,利用抗折试验机测定抗折强度;
试验方法如下:
将胶泥块试样横放在抗折试验机的两根支撑圆柱上,试样长轴垂直于抗折试验机支撑圆柱,以50N/s±l0N/s的速率通过抗折试验机的加荷圆柱将垂直荷载均匀地加在棱柱体的水平面上,直至胶泥块试样折断;利用式(1)计算出胶泥块的抗折强度M,
式中,Ff—试件折断时垂直加在其顶部平面中部的荷载,单位为N;
L—支撑圆柱之间的距离,单位为mm;
B—棱柱体正方形截面的边长,单位为mm;
以一组三个胶泥块试样抗折强度的平均值作为试验结果,利用实验结果建立胶泥块抗折强度与含水率的关系方程,由该关系方程计算出“揭河底”冲刷易发河段的胶泥块饱和含水率下的抗折强度Ms
(二)、“揭河底”冲刷易发河段胶泥块抗剪强度试验:
采用与步骤(一)相同的胶泥块试样,对试样进行密封浸泡,使胶泥块试样达到饱和含水率,利用应变控制式直剪仪进行饱和快剪试验,得到胶泥块的抗剪强度τ';
试验方法:胶泥块试样分别在100kPa、200kPa、300kPa和400kPa四级垂直压力下,以0.8mm/min的剪切速率快速施加水平剪力使试样剪切破坏,试样加载时间为3~5min,当测力计读数不再增加或开始倒退时,记下破坏值;
(三)、构建“揭河底”冲刷时胶泥块因力矩作用折断揭掀的受力数学模型:
FD水流正面推力:
式中,Vbi为胶泥块底部水流流速,i=1,2,3,4,CD为阻力系数,γm为浑水容重,b为胶泥块宽度,c为胶泥块厚度,
FD'为折断面上FD的反作用力:
τ为胶泥块上表面的水流拖曳力:
Gs胶泥块重量为:Gs=γslbcg   (6)
式中,γs为胶泥块的容重,l为冲蚀悬臂长度,g为重力加速度,
P1为胶泥块所受水压力:P1=γmlbhg   (7)
式中,h为胶泥块表面处水深,
P2为胶泥块的浮力:P2=γmlb(h+c)g   (8) 
最大水流脉动上举力:
式中,K为线性系数,单位kg·m·s,取值范围:3~4.2,J为水面坡降,
构建力矩平衡平衡方程:
将式(3)—(10)联立求解,得到式(11):
胶泥块在Δt时间段内被淘刷的冲蚀悬臂长度l采用公式(17)计算:
式中,C1为河床冲刷系数,γc为河床淤积物的容重,D为胶泥块周围可动淤积物的平均粒径,ρm为高含沙洪水的密度,A为综合影响系数,其取值为0.044,系数ξ的取值为1.35,
将式(11)和(17)联立求解,即可求出Vb1
(四)、构建“揭河底”冲刷时作用在胶泥块水深方向的受力数学模型:
作用在胶泥块水深方向的力平衡方程:
Fdmax+P2-P1-Gs=τ'bc   (21)
式中,τ'为胶泥块的抗剪强度,由步骤(二)的抗剪强度试验给出,将式(6)—(9) 代入式(21),得到式(23):
联立式(23)和式(17),并将式(17)的水流流速用式(23)替换,即可求出Vb2
(五)、构建“揭河底”冲刷时因力矩作用胶泥整片揭掀受力数学模型:
胶泥块瞬时揭掀力矩方程:
式中,a为胶泥块长度,γ's为胶泥块干容重,δ0=3×10-10m,为一个水分子厚;q0=1.3×109kg/m2,δ1为薄膜水的厚度,取4×10-7m,D1为胶泥块平均粒径,t为相邻两泥沙颗粒之间距离的一半,f为摩擦系数,取值为0.4,
联立式(36)、(37)和式(17)求解,将式(17)中的替换,即可求得Vb3
(六)、构建“揭河底”冲刷时作用在胶泥块水深方向上作用力与胶泥块边界粘着力平衡方程:
联立式(17)和式(41)求解,将式(17)中替换,即可以求出Vb4
(七)根据步骤(二)—(六)得出的胶泥块底部水流流速Vbi(i=1,2,3,4),取其中的最小值作为发生“揭河底”冲刷时的临界流速Vb,即
Vb=min{Vbi},i=1,2,3,4
(八)判断某次洪水是否产生“揭河底”冲刷现象:
当“揭河底”冲刷易发河段上游发生高含沙洪水时,根据该河段上游水文观测站对洪水水流流速和含沙量观测数据,计算出本次洪水到达该河段时的实际河床流速、含沙量及冲刷时长,然后利用步骤(三)—(七)的方法计算出产生“揭河底”冲刷的临界流速Vb,当该实际河床流速大于该临界流速Vb时,则会发生“揭河底”冲刷现象,否则,则不会发 生“揭河底”冲刷现象。
CN201310358910.2A 2013-08-16 2013-08-16 高含沙洪水“揭河底”冲刷临界条件综合判别方法 Active CN103437317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310358910.2A CN103437317B (zh) 2013-08-16 2013-08-16 高含沙洪水“揭河底”冲刷临界条件综合判别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310358910.2A CN103437317B (zh) 2013-08-16 2013-08-16 高含沙洪水“揭河底”冲刷临界条件综合判别方法

Publications (2)

Publication Number Publication Date
CN103437317A CN103437317A (zh) 2013-12-11
CN103437317B true CN103437317B (zh) 2015-09-02

Family

ID=49691026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310358910.2A Active CN103437317B (zh) 2013-08-16 2013-08-16 高含沙洪水“揭河底”冲刷临界条件综合判别方法

Country Status (1)

Country Link
CN (1) CN103437317B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040627B (zh) * 2015-05-20 2016-11-30 于文堂 一种预测黄河河道冲刷的方法
CN108827871B (zh) * 2018-08-17 2020-11-10 河海大学 一种管式泥沙侵蚀试验装置中泥沙表面切应力确定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326032A (ja) * 1995-06-02 1996-12-10 Zokei:Kk ブロック
JP2006194768A (ja) * 2005-01-14 2006-07-27 Pasuko:Kk 漂砂流動解析システム及び漂砂流動解析方法
CN101713175A (zh) * 2009-09-29 2010-05-26 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底模拟试验方法
CN102605738A (zh) * 2012-01-13 2012-07-25 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底期间胶泥块内力变化过程监测方法
CN102619187A (zh) * 2012-01-13 2012-08-01 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底胶泥块底部水流紊动结构监测方法
CN202595695U (zh) * 2012-01-13 2012-12-12 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底模拟试验用胶泥块的制作装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08326032A (ja) * 1995-06-02 1996-12-10 Zokei:Kk ブロック
JP2006194768A (ja) * 2005-01-14 2006-07-27 Pasuko:Kk 漂砂流動解析システム及び漂砂流動解析方法
CN101713175A (zh) * 2009-09-29 2010-05-26 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底模拟试验方法
CN102605738A (zh) * 2012-01-13 2012-07-25 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底期间胶泥块内力变化过程监测方法
CN102619187A (zh) * 2012-01-13 2012-08-01 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底胶泥块底部水流紊动结构监测方法
CN202595695U (zh) * 2012-01-13 2012-12-12 黄河水利委员会黄河水利科学研究院 高含沙洪水揭河底模拟试验用胶泥块的制作装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄河"揭河底"判别指标理论研究及验证;江恩惠等;《水利学报》;20100630;第41卷(第06期);第727-731页 *

Also Published As

Publication number Publication date
CN103437317A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
Liao et al. Numerical study for wave-induced oscillatory pore pressures and liquefaction around impermeable slope breakwater heads
CN103792593B (zh) 一种基于库水位和位移监测的库岸边坡稳定性测定方法
Yu et al. Experimental investigation of current-induced local scour around composite bucket foundation in silty sand
Herterich et al. How does wave impact generate large boulders? Modelling hydraulic fracture of cliffs and shore platforms
Araki et al. Stability of girder bridge against tsunami fluid force
Li et al. Mechanisms, assessments, countermeasures, and prospects for offshore wind turbine foundation scour research
Lin et al. Scour around a mono-pile foundation of a horizontal axis tidal stream turbine under steady current
Cai et al. Experimental and numerical study of the tidal bore impact on a newly-developed sheet-pile groin in Qiantang river
CN104846772B (zh) 高含沙水流作用下河道沉积块起动流速的测算方法
CN103437317B (zh) 高含沙洪水“揭河底”冲刷临界条件综合判别方法
Lantz et al. Evolution of local scour downstream of Type A PK weir in non-cohesive sediments
Cataño-Lopera et al. Scour and burial mechanics of conical frustums on a sandy bed under combined flow conditions
CN103388320B (zh) 一种高含沙洪水“揭河底”冲刷判别方法
CN103422460B (zh) 高含沙洪水“揭河底”冲刷临界条件综合判别方法
Zhang et al. The model test and SPH simulations for slope and levee failure under heavy rainfall considering the coupling of soil, water and air
CN105040627B (zh) 一种预测黄河河道冲刷的方法
CN110579333B (zh) 超重力场船行波模拟试验装置及方法
Wang et al. Tidal bore dynamics around the similar right-angle shoreline in the Qiantang Estuary, China
Chenxi et al. Experimental study on silty seabed scour around the single pile induced by the current
CN103422461B (zh) 一种高含沙洪水“揭河底”冲刷判别方法
Umeda Scour process around monopiles during various phases of sea storms
Shestov et al. Scale-model ridges and interaction with narrow structures, Part 1 Overview and scaling
Araki et al. Characteristics of wave pressure and fluid force acting on bridge beam by tsunami
Daghighi et al. Experimental assessment of sediment transport and bed formation of sandy beaches by tsunami waves
Zhu et al. Experimental study of structure dimensions effects on local scour of submerged compound suction anchor foundation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhu Xihong

Inventor before: Fu You

Inventor before: Fu Yusheng

TR01 Transfer of patent right

Effective date of registration: 20171218

Address after: No. 116, Wang Zhen, Wang Zhen, Binzhou, Wudi County, Binzhou City, Shandong

Patentee after: Zhu Xihong

Address before: 300112 Tianjin City, North Industrial Park Xiqing District Jin Xia Lu No. 18 C District No. 6

Patentee before: Tianjin Hongyan Technology Co., Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20181114

Address after: 810000 No. 5 Yuanshu Lane, Xining City, Qinghai Province

Patentee after: Qinghai water conservancy and Hydropower Investigation Design and Research Institute

Address before: 256600 No. 116, Xiaozhang Xingwang Village, Chewang Town, Wudi County, Binzhou City, Shandong Province

Patentee before: Zhu Xihong

TR01 Transfer of patent right
CP01 Change in the name or title of a patent holder

Address after: 810000 No. 5 Yuanshu Lane, Xining City, Qinghai Province

Patentee after: Qinghai water resources and Hydropower Survey, planning, design and Research Institute Co.,Ltd.

Address before: 810000 No. 5 Yuanshu Lane, Xining City, Qinghai Province

Patentee before: QINGHAI Research Institute OF INVESTIGATION & DESIGN OF WATER CONSERVANCY & HYDROPOWER

CP01 Change in the name or title of a patent holder