CN103398666B - One kind of interlayer misalignment test method for a double periodic microstructured - Google Patents

One kind of interlayer misalignment test method for a double periodic microstructured Download PDF

Info

Publication number
CN103398666B
CN103398666B CN201310201180.5A CN201310201180A CN103398666B CN 103398666 B CN103398666 B CN 103398666B CN 201310201180 A CN201310201180 A CN 201310201180A CN 103398666 B CN103398666 B CN 103398666B
Authority
CN
China
Prior art keywords
layer
interest
wavelength
misalignment
parameter
Prior art date
Application number
CN201310201180.5A
Other languages
Chinese (zh)
Other versions
CN103398666A (en
Inventor
陈树强
邓浩
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to CN201310201180.5A priority Critical patent/CN103398666B/en
Publication of CN103398666A publication Critical patent/CN103398666A/en
Application granted granted Critical
Publication of CN103398666B publication Critical patent/CN103398666B/en

Links

Abstract

一种用于双层周期性微结构的层间错位测试方法,用于测试双层光栅结构的层错位间距? One kind of double-periodic microstructured interlayer misalignment test method for testing for a double displacement layer the pitch of the grating structure? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ,包括层错位间距-衍射光方程F拟合过程,测量固定层错位间距下的光栅的零级衍射光关注参数并取得关注参数的波长曲线;进一步取得一组等差离散序列定义的层错位间距值(δ0,δ1,δ2…)所对应的关注参数的波长曲线组;在曲线组中选择随变化,关注参数变化最敏感的波长区间FQ,拟合出特定波长范围内的平均层错位间距-衍射光方程F2;在得到F2后,测量层错位间距时,使用处于FQ区间内的窄谱偏振光源测量零级衍射光的平均关注参数值,即可得出待测双层结构的层错位间距。 , Including dislocation spacing layer - equation F diffracted light fitting process, measured under the fixed grating pitch misalignment layer the zero-order diffracted light wavelength curve of a parameter of interest and obtain a parameter of interest; acquisition layer further displacement sequence defined a set of discrete arithmetic pitch value (δ0, δ1, δ2 ...) of the wavelength set of curves corresponding to parameters of interest; choice changes with, the most sensitive parameter of interest change in the wavelength interval FQ, fit average dislocation layer within a particular range of wavelengths in the pitch curve group - equation F2 of the diffracted light; obtained in the F2 of, misalignment layer spacing measured using the parameter of interest is the average value of a narrow spectrum source polarization measured zero-order diffracted light within the range FQ, misalignment can be derived layer spacing-layer structure to be tested .

Description

一种用于双层周期性微结构的层间错位测试方法 One kind of interlayer misalignment test method for a double periodic microstructured

技术领域 FIELD

[0001] 本发明属于光学工程领域,涉及一种用于双层周期性微结构的层间错位测试方法。 [0001] The present invention belongs to the field of optical engineering, relates to a method of testing a double periodic microstructured interlayer for misalignment.

背景技术 Background technique

[0002] 在半导体以及其他微电子产业中,多层结构已广泛被采用。 [0002] In the semiconductor and other microelectronic industry, the multilayer structure has been widely adopted. 在这种结构中,不论在制版、光刻,还是加工以后的芯片中,层间错位的测试都是十分主要的,层间错位的量级在微米、亚微米甚至纳米级别。 In this structure, both in the plate, lithography, or subsequent processing chip, the interlayer test is very important misalignment, the misalignment between layers on the order of micron, sub-micron or even nanometer level. 微米级别测试的方法有多种,包括图像和非图像的方法。 There are several micron test methods, including images and non-image. 其中图像法最为简单,从直接观测到的图像和放大的倍数判断出两层结构线条间的距离。 Wherein the method is most simple image, it is determined that the distance between the lines of two-layer structure directly from the observed image and the amplification factor. 但这样的方法有其自身的弱点:首先,需要复杂的设备和测试环一一电子显微镜以及真空环境;其次,测试平台的震动对测试的影响也比较大,尤其是现代半导体集成电路等微电子技术发展很快,线条尺寸越来越小,对层间错位的要求越来越高,采用图像观察实现测试的方法在精度上也难以满足需求。 But this approach has its own weaknesses: First, you need sophisticated equipment and test ring eleven electron microscope and a vacuum environment; secondly, the effect of vibration test platform to test is relatively large, especially in modern semiconductor integrated circuits and other microelectronic technology has developed rapidly, the line getting smaller, demand for increasingly higher misalignment between layers, image observation method is implemented in the testing accuracy is difficult to meet the demand.

[0003]目前非图像的测试是实现层间错位测试的主要方法,该方法也经过多年的发展,为方便测量,通常在被测的层间距错位涉及的两层板上构造相同周期长度的周期性光栅,周期性光栅如图1至2所示,由2种不同的透光材料周期性交错布置,通过将一平行的入射光以一定角度投射到具有两层周期性结构的被测样品表面,使之发生反射、衍射,其强度可由光电场的模拟计算得出,结合光谱的测试可实现某些结构参数的测试/分析。 [0003] It is the main non-image test-implemented method of testing a shift between layers, which also after years of development, for the convenience of the measurement, typically in the same two-layer plate structure period measured according to the displacement layer spacing cycle length of grating periodic grating shown in FIG. 1-2, by the two different periodic light-transmitting material are staggered, by a parallel incident light having an angle projecting the test specimen surface layers of the periodic structure , so that the occurrence of reflection, diffraction, simulation by optical field strength is derived, may be implemented in conjunction with certain test spectrum configuration parameter test / analysis. 而零级反射光谱强度与层间错位有关,因此可以用来实现层间错位的测试。 And between the zero-order reflection spectrum intensity dislocation layer, and therefore it can be used to achieve interlayer misalignment test. 基于此原理的多种测试方法已经实现,如在美国专利US Patent 4757207中,Chappelow等人用了一种非衍射的方法实现了非图像的测试,可实现对周期大小与波长相当或略小时候的测试。 Based on this principle, a variety of test methods have been implemented, as described in U.S. Patent No. US Patent 4757207, Chappelow et al used a method of testing a non-diffraction achieved non-image can be realized with a size comparable to the wavelength of the period or slightly childhood test. 随着微电子技术所能实现的尺寸越来越小,这种方法在精度等方面也越来越难以满足实际需求。 As the size of microelectronic technology can achieve smaller and smaller, this approach increasingly difficult to meet the actual needs in terms of precision. 充分考虑衍射效应,并与光波电场的严格模拟计算相结合的测试/分析方法成为主要的方法。 Testing / Analysis Method full account of diffraction effects, and combined with rigorous simulation of light wave electric field becomes a major way. 但直接检测的方法由于缺乏不同错位量S情况的反射率(归一化的反射强度)的比较和定标,因此美国专利US Patent 6699624中,Niu等采用入射光的入射面在一维光栅垂直面内的光谱强度测试系统,由于这种系统无法区分正、负的错位,他们先制作被测芯片(或掩膜板)的反版,然后制作与正反版对应的光栅,通过与被测光栅的比较测试,确定层间错位,该方法实现了较高精度的层间错位测试。 However, due to the lack of direct detection method different reflectivity displacement amount S of the case (normalized reflection intensity) of the comparison and calibration, and thus in U.S. Patent No. US Patent 6699624, such as the use Niu incident surface perpendicular to the incident one-dimensional grating spectral intensity in the plane of the test system, since such systems can not distinguish between positive and negative misalignment, they first make the chip under test (or mask) of trans version, then formed with the corresponding positive and negative version of the grating measured by grating comparison test, determining misalignment between layers, the method achieves high precision interlayer misalignment test. 在美国专利US Patent 7289214 BI中,Li等采用空间锥角入射光实现衍射的方法实现层间错位的测试,光学系统没什么变化,只是改变了入射光的角度,使光的入射面不在与光栅垂直的平面内,它使得电场的计算更复杂,但这样的光学系统就能实现对正、负层间错位的区分。 In U.S. Patent No. US Patent 7289214 BI in, Li other method to achieve spatial cone angle of the incident light diffracted implemented testing, no change in the optical system shift between layers, but change the angle of incident light, the light incident surface is not perpendicular to the grating in the plane, it is calculated that the field is more complex, but such an optical system can achieve the distinction between positive and negative of the displacement layer. 虽然在多数情况下测试精度与Niu等的专利中的方法相比稍低,但不需要制作反版,简化了测试过程。 Although the method for testing the accuracy and Niu et patents slightly lower than in most cases, but do not require a counter-plate, simplifying the testing procedure. BischofT等在美国专利US Patent 6772084中提出一个新方法,使得在层间错位在1/4周期左右,零级衍射对层间错位的敏感性增加,有利于提高测试的灵敏度。 BischofT put forward a new method in U.S. Patent US Patent 6772084 such that the shift between layers about 1/4 cycle, increased sensitivity of the zero diffraction interlayer misalignment, help to improve the sensitivity of the test. 类似的方法也在Yang等的“Anovel diffract1n based spectroscopic method for overlay metrology, Proc.SPIEv5038,pp.200-207” 一文中得到描述。 Similar methods are also Yang et al. "Anovel diffract1n based spectroscopic method for overlay metrology, Proc.SPIEv5038, pp.200-207" is described in an article.

[0004] 目前,这些方法都已经广泛地应用到工程实际的应用中,但随着半导体集成电路以及其他微电子技术的发展,对测试精度的要求越来越高。 [0004] At present, these methods have been widely applied to practical engineering applications, but with the development of semiconductor integrated circuits and other microelectronic technology, the requirements of test accuracy is higher and higher. 因此,寻求新的测试、分析方法,满足未来技术发展的需要是非常重要的。 Therefore, the search for new testing, analysis methods, to meet the needs of future technology development is very important.

发明内容 SUMMARY

[0005] 为克服传统技术存在的技术缺陷,本发明公开了一种用于双层周期性微结构的层间错位测试方法。 [0005] In order to overcome the defects of the conventional art techniques, the present invention discloses a method for testing a two-layer interlayer for periodic microstructured misalignment.

[0006] 本发明所述一种用于双层周期性微结构的层间错位测试方法,用于测试双层光栅结构的层错位间距S,包括层错位间距-衍射光方程F拟合过程,所述层错位间距-衍射光方程拟合过程包括如下步骤: [0006] The present invention provides a double-periodic microstructured interlayer misalignment test method for testing for a double displacement layer the pitch of the grating structure S, including dislocation spacing layer - Equation diffracted light fitting procedure F, the dislocation spacing layer - light diffracted equation fitting process comprising the steps of:

[0007] 步骤101.以单色偏振的平行光沿一定角度入射待测双层结构表面,测量零级衍射光的关注参数F ;单色偏振光扫频输出,得到在固定层错位间距δ下的关注参数的波长曲线; [0007] Step 101. In parallel monochromatic polarized light incident surface to be measured two-layer structure along a certain angle, the zero-order diffracted light measured parameter of interest F.; Sweep output monochromatic, polarized, resulting in a fixed distance δ under displacement layer wavelength curve parameter of interest;

[0008] 步骤102.仅等差的改变步骤101中的层错位间距δ,多次重复步骤101,取得一组由等差离散序列的层错位间距值S对应的关注参数F的波长曲线组F1U,δ);其中λ为波长; [0008] Step 102. The offset layer 101 only changes in pitch [delta] arithmetic step, step 101 is repeated a plurality of times to obtain a set of wavelengths F1U F group of curves of the parameter of interest from the sequence of discrete layers offset arithmetic pitch corresponding to the value S , δ); where λ is the wavelength;

[0009] 步骤103.在曲线组F1U,δ)中选择随δ变化,关注参数变化最敏感的波长区间FQ,对处于FQ内的任一固定波长,利用不同层错位间距对应的若干个关注参数F的值,拟合出该波长下的关注参数随层错位间距变化的函数;改变波长重复拟合,得到在FQ区间内的各个波长下的关注参数随层错位间距变化的函数F2 ( δ ); [0009] [delta] with step 103. The selected set of change curves F1U, δ), the parameters of interest most sensitive wavelength interval FQ, at a fixed wavelength of any of the FQ, with different layers dislocation spacing corresponding to several parameters of interest value of F, fitted with a function of a parameter of interest at the wavelength displacement layer spacing changes; change the wavelength of the fit is repeated, to obtain the parameter of interest at each displacement layer with a wavelength in the range of pitch change FQ function F2 (δ) ;

[0010] 所述用于双层周期性微结构的层间错位测试方法在得到F2( δ )后,测量层错位间距时,使用处于FQ区间内的任意单色偏振光沿与步骤101中同样的入射角度入射待测双层结构,测量零级衍射光的关注参数,按照对应的关注参数值和波长值,即可得出待测双层结构的层错位间距。 [0010] The interlayer for a double periodic microstructured misalignment test method after obtaining F2 (δ), measured dislocation spacing layer, using monochromatic, polarized in any direction in the step 101 in the same interval FQ the incident angle measured two-layer structure, a zero-level measuring parameters of interest diffracted light, according to the parameter of interest and the value corresponding to the wavelength value, to obtain a double layer structure is measured offset distance.

[0011] 优选的,所述关注参数为椭圆偏振测量中的椭偏参数,即入射平面切向与法向两个偏振方向的零级衍射光电场之比的幅度△和/或幅角Ψ。 [0011] Preferably, the parameter of interest is the ellipsometry ellipsometric parameters, i.e., the amplitude of the tangential plane of incidence and the normal ratio of △ two polarization directions of the optical field of the zero-order diffraction and / or web angle Ψ.

[0012] 优选的,所述单色偏振光的入射方向为:θ = φ =45度,或Θ =60度、Φ =90度;Θ为入射方向与入射表面的垂直方向之间的夹角,Φ为单色衍射光入射平面与光栅周期性排列延伸方向之间的夹角。 [0012] Preferably, the monochromatic incident polarization direction: θ = φ = 45 degrees, or Θ = 60 °, Φ = 90 °; [Theta] between the incident direction and a direction perpendicular to the incident surface angle , Φ monochromatic diffracted light incidence plane and the angle between the grating periodically arranged extending direction.

[0013] 优选的,所述步骤101至102中,对每一个层错位间距,分别取正负值测量,得到的两个值平均后作为该层错位间距的对应测量值。 [0013] Preferably, the steps 101 to 102, for each layer offset distance, positive or negative measurements were taken, the average of two values ​​corresponding to the measured value obtained as the pitch of the displacement layer.

[0014] 优选的,所述步骤103中以假设F2( δ )为一次线性或二次非线性方程进行拟合。 [0014] Preferably, the step 103 is assumed to F2 (δ) to fit a linear or quadratic nonlinear equations.

[0015] 优选的,步骤101中,测量零级衍射光的关注参数时,在以被测波长为波长中心的一个△ λ的波长宽度范围内,对零级衍射光的关注参数取平均值,其中△ λ为入射单色偏振光的带宽。 [0015] Preferably, in step 101, the measured zero-order diffracted light of the parameters of interest, in a wavelength width of the wavelength range of wavelengths measured in the center of a △ λ, the parameter of interest for the zero-order diffracted light is averaged, where △ λ polarized incident monochromatic bandwidth.

[0016] 优选的,测量装置由光谱椭偏仪以及与光谱椭偏仪连接的数据处理器组成。 [0016] Preferably, the measuring device consists of a spectroscopic ellipsometer and a data processor coupled to a spectroscopic ellipsometer composition.

[0017] —种用于双层周期性微结构的层间错位测试方法,用于测试二维周期光栅的层错位间距,在每层结构的相同位置上均制作相互垂直的两组一维光栅作为标线,采用如前任意一项所述的方法,通过测试出两个相互垂直方向的一维光栅标线的层错位间距,得到二维光栅结构在相互垂直的两个方向上的层间错位。 [0017] - bilayer seed layer for inter-periodic microstructured misalignment test method for testing a two-dimensional periodic grating spacing layer displacement at the same position on each structure are perpendicular to each other making a two-dimensional grating as the reticle, the method is as recited in any one, offset by testing the one-dimensional grating layer reticles pitch of two mutually perpendicular directions, two-dimensional grating structure layer is obtained in two mutually perpendicular directions between dislocation.

[0018] 采用本发明所述的用于双层周期性微结构的层间错位测试方法,通过测试不同偏振态的光衍射波电场的相关参数,取代传统的对光强度的测试,通过对不同角度、不同参数的波谱测试,选择对层间错位最敏感的空间角度和衍射光参数,结合对光衍射波电场的模拟计算分析,实现高精度的层间错位测试。 [0018] The interlayer of the double-periodic microstructured misalignment test methods were used according to the present invention, light diffraction by the relevant parameters of the wave electric field of different polarization states test, replace traditional testing light intensity through different angle, spectral test different parameters, the selection of the most sensitive displacement angle and spatial parameters interlayer diffracted light, diffracted light wave electric field simulation calculation and analysis of the binding, to achieve inter-layer misalignment test with high accuracy.

附图说明 BRIEF DESCRIPTION

[0019] 图1示出本发明所述层间错位结构及测量光束入射坐标系示意图; [0019] FIG 1 illustrates a misalignment between the layer structure of the present invention and a schematic view showing the coordinate measuring the incident beam;

[0020] 图2示出本发明所述层错位间距相关参数示意图; [0020] Figure 2 shows a schematic view of the present invention, the layer spacing offset parameters;

[0021] 图3示出本发明一种具体实施方式的各个部件在光路中的顺序示意图; [0021] Figure 3 illustrates various components of one inventive embodiment of particular embodiments schematic sequence in the optical path;

[0022] 图4示出本发明的实施例1中层错位间距不同的零级衍射光幅度随入射光波长变化的各条曲线波形图; [0022] FIG. 4 shows an embodiment of the present invention, a middle pitch offset of zero-order diffracted light of different amplitude with the waveform diagrams of the incident wavelength change curve;

[0023] 图5示出本发明的实施例1中层错位间距不同的零级衍射光幅角随入射光波长变化的各条曲线波形图; [0023] FIG. 5 shows an embodiment of the present invention, a middle layer of a different pitch offset of zero-order diffracted light with the incident angle amplitude waveform diagrams of wavelength variation curve;

[0024] 图6示出本发明的实施例1中层错位间距不同的零级衍射光幅度随入射光波长变化的各条曲线波形图; [0024] FIG. 6 shows an embodiment of the present invention, a middle pitch offset of zero-order diffracted light of different amplitude with the waveform diagrams of the incident wavelength change curve;

[0025] 各图中附图标记名称为:1.光源2.起偏器3.第一旋转相位补偿器4.第二旋转相位补偿器5.检偏器6.接收光谱仪7.光栅可调谐滤波器。 [0025] The reference numerals in the various figures name: 1. 2. The light source 3 a first polarizer 4. The second rotation phase rotation phase compensator 5. The compensator the analyzer 6 receives the spectrometer 7. The tunable grating filter.

具体实施方式 Detailed ways

[0026] 下面结合附图,对本发明的具体实施方式作进一步的详细说明。 [0026] below with reference to the accompanying drawings, specific embodiments of the present invention will be described in further detail.

[0027] 本发明所述一种用于双层周期性微结构的层间错位测试方法,用于测试双层周期结构的层错位间距S,包括层错位间距-衍射光方程F拟合过程,所述层错位间距-衍射光方程拟合过程包括如下步骤: [0027] The present invention provides a double-periodic microstructured interlayer misalignment test method for testing for a double displacement layer the pitch of the periodic structure S, including dislocation spacing layer - Equation diffracted light fitting procedure F, the dislocation spacing layer - light diffracted equation fitting process comprising the steps of:

[0028] 步骤101.以单色偏振的平行光沿一定角度入射待测双层结构表面,测量零级衍射光的关注参数F ;单色偏振光扫频输出,得到在固定层错位间距δ下的关注参数的波长曲线; [0028] Step 101. In parallel monochromatic polarized light incident surface to be measured two-layer structure along a certain angle, the zero-order diffracted light measured parameter of interest F.; Sweep output monochromatic, polarized, resulting in a fixed distance δ under displacement layer wavelength curve parameter of interest;

[0029] 步骤102.仅等差的改变步骤101中的层错位间距δ,多次重复步骤101,取得一组由等差离散序列的层错位间距值S对应的关注参数F的波长曲线组F1U,δ); [0029] Step 102. The offset layer 101 only changes in pitch [delta] arithmetic step, step 101 is repeated a plurality of times to obtain a set of wavelengths F1U F group of curves of the parameter of interest from the sequence of discrete layers offset arithmetic pitch corresponding to the value S ,δ);

[0030] 步骤103.在曲线组F1U,δ)中选择随δ变化,关注参数变化最敏感的波长区间FQ,对处于FQ内的任一固定波长,利用不同层错位间距对应的若干个关注参数F的值,拟合出该波长下的关注参数随层错位间距变化的函数;改变波长重复拟合,得到在FQ区间内的各个波长下的关注参数随层错位间距变化的函数F2 ( δ ); [0030] [delta] with step 103. The selected set of change curves F1U, δ), the parameters of interest most sensitive wavelength interval FQ, at a fixed wavelength of any of the FQ, with different layers dislocation spacing corresponding to several parameters of interest value of F, fitted with a function of a parameter of interest at the wavelength displacement layer spacing changes; change the wavelength of the fit is repeated, to obtain the parameter of interest at each displacement layer with a wavelength in the range of pitch change FQ function F2 (δ) ;

[0031] 所述用于双层周期性微结构的层间错位测试方法在得到F2( δ )后,测量层错位间距时,使用处于FQ区间内的任意单色偏振光沿与步骤101中同样的入射角度入射待测双层结构,测量零级衍射光的关注参数,按照对应的关注参数值和波长值,即可得出待测双层结构的层错位间距。 [0031] The interlayer for a double periodic microstructured misalignment test method after obtaining F2 (δ), measured dislocation spacing layer, using monochromatic, polarized in any direction in the step 101 in the same interval FQ the incident angle measured two-layer structure, a zero-level measuring parameters of interest diffracted light, according to the parameter of interest and the value corresponding to the wavelength value, to obtain a double layer structure is measured offset distance.

[0032] 对不同的层错位间距,其零级衍射光的相关参数随入射光波长的变化规律不同,本发明的基本实现思想是将单色偏振光斜射在双层表面,对不同的层错位间距,测量出零级衍射光相关参数随入射光波长的变化规律,随后对每一波长,拟合出该波长下的层错位间距-衍射光方程F2 ( δ ),随后对任意层错位间距,只需要入射完全相同,即光波长、频率、偏振态、入射角度等都相同的单色偏振光,测量其零级衍射光的相关参数,即可带入方程F2(S)得出层错位间距,所述方程F2(S)为使用测得的在固定波长下,不同层错位间距对应的不同衍射光参数的多个数据点进行数学方法拟合得出。 [0032] The different layers of the offset distance, the parameters of the zero order diffracted light with the wavelength of incident light different variation, the basic idea of ​​the invention is to achieve a monochromatic polarized light is obliquely bilayer surface, the dislocation of the different layers pitch, the zero order diffracted light measured parameters with variation of the wavelength of the incident light, and then for each wavelength, the fitted layer at a wavelength offset spacing - diffracted light equation F2 (δ), then for any misalignment spacing layer, incident only identical, i.e. light having a wavelength, frequency, polarization, incident angle and so the same monochromatic, polarized, measuring the relevant parameters of the zero order diffracted light, into the equation to F2 (S) derived dislocation spacing layer the equation F2 (S) using the measured at a fixed wavelength, the different layers dislocation spacing of data points corresponding to a plurality of different diffraction light parameter derived mathematically fitting method. 应该选择衍射光参数随层错位间距变化敏感的波长区间FQ,实现高测量精度。 Diffracted light with the parameters should be selected layer sensitive to changes in pitch misalignment wavelength interval FQ, to achieve high measurement accuracy.

[0033] 步骤101中得到固定层错位间距δ下的关注参数的波长曲线;步骤102中改变层错位间距,多次重复步骤101,由等差离散序列的层错位间距值δ对应的关注参数F的波长曲线组F1U,δ);步骤103中选择波长敏感区间并拟合出方程F2M)。 [0033] Step 101 wavelength curve obtained in a parameter of interest at a fixed offset distance [delta] layer; step 102 changing layer spacing offset, step 101 is repeated a plurality of times, a parameter of interest displacement layer spacing values ​​corresponding to [delta] F arithmetic discrete sequence wavelength curve group F1U, δ); in step 103 and selects a wavelength sensitive section fitting equation F2M).

[0034] 步骤101优选的可以采用软件模拟,以降低实验成本。 [0034] Step 101 is preferably a software simulation can be used to reduce the test cost. 在模拟之前,通常通过测试或其他方法得到构成光栅的各种材料的nk表,即复数折射率随波长λ变化的曲线,以各种材料的nk表为基础,利用模拟计算软件进行模拟。 Before the analog, generally obtained by a test or other methods of various materials constituting the table nk grating, i.e., the complex refractive index variation with wavelength λ curve, nk to a variety of materials based on the table, using the simulation software simulation.

[0035] 在步骤101至102中,对每一个层错位间距,分别取正负值测量,得到的两个值平均后作为该层错位间距的对应测量值。 [0035] In step 101 to 102, for each layer offset distance, positive or negative measurements were taken, the average of two values ​​corresponding to the measured value obtained as the pitch of the displacement layer. 以减小测量误差,为对层错位间距方便的改变方向,可以在测试时将放置被测样品的测试平台水平旋转一百八十度,即可实现。 To reduce measurement error, misalignment convenient for the layer spacing changes direction, the test platform may be placed in a sample one hundred eighty degrees of rotation measured at the time of testing, can be realized.

[0036] 拟合出各个波长对应的方程F后,在测量层错位间距时,再使用FQ区间内的任意单色偏振光与步骤101中同样的入射角度入射待测双层结构,测量零级衍射光的关注参数,即可得出待测双层结构的层错位间距。 [0036] After fitting the respective wavelengths corresponding to the equations F, a distance measuring misalignment layer, and then use any of step 101, monochromatic, polarized in the same interval FQ incident angle measured two-layer structure, the zero level measurements parameters of interest diffracted light, to obtain a double structure layer spacing measured displacement. 关注参数可以是零级衍射光的强度,也可以是椭圆偏振测量中的椭偏参数,例如两种不同偏振态入射光的反射率之比的幅度A或幅角Ψ。 Parameter of interest may be a zero-order diffracted light intensity, may be elliptical polarization measurement ellipsometric parameters, for example the amplitude A web or angle Ψ than two different polarization states of incident light reflectance.

[0037] 拟合过程中首先假定F2( δ )方程为具备一定形式的连续性或非连续性方程,本发明中优选假设F2(S)方程在FQ区间内为连续方程,在步骤102中对固定波长,取得包括多个对应的零级衍射光参数-层错位间距的点集后,通过调整F2 ( δ )方程中的待定系数,使得该F方程与点集的差别最小。 [0037] First, assume the fitting process F2 (δ) is provided with some form of equation of continuity or non-continuity equation, the present invention preferably assume F2 (S) in the equation of continuity equation FQ interval, in step 102 of fixed wavelength, to obtain the zero-order diffracted light corresponding to a plurality of parameters including - the set of points dislocation spacing layer, by adjusting the F2 (δ) undetermined coefficient equation, such that the difference between the set point equation F minimum. 一般情况下层错位间距δ很小(在几个到几十个纳米量级,远小于光波波长),可将F2 ( δ )方程表示为线性函数W = P δ +a或二次非线性函数W=Q δ 2+Ρ δ +a,以减小计算量。 Generally the lower the pitch offset [delta] is small (in the order of several to tens of nanometers, much smaller than the wavelength of light), may be F2 (δ) expressed as a linear function equation W = P δ + a linear or quadratic function W = Q δ 2 + Ρ δ + a, so as to reduce the amount of calculation. 其中W为零级衍射光参数,Q,P和a为待定的系数,在后续的拟合过程中,根据多个(W,δ)点,拟合出P、a或Q、P、a的具体值。 Wherein zero-order diffracted light parameters W, Q, P and the coefficient a is determined, the subsequent fitting process, a plurality (W, [delta]) points P fitted, or a Q, P, a is specific values.

[0038] 如图1中所示为本发明所述形成层间错位的双层结构,两层次之间有形状相同的一维周期结构光栅。 [0038] As shown in FIG. 1 is a two-layer structure formed in the interlayer misalignment invention, it has the same shape as one-dimensional periodic grating structure between two levels. 入射光以一定角度从光源处入射到光栅上,得到衍射光。 The incident angle is incident from the light source onto the grating, diffracted light is obtained. 衍射光内包括了镜面反射光(即零级反射光)、非镜面反射光(即+/_n级反射光,η>0)、镜面透射光(即零级透射光)、非镜面透射光(即+/-η级透射光,η>0)。 The diffracted light including specular reflection light (i.e., zero-order reflected light), non-specular reflection light (i.e., + / _ n level of the reflected light, η> 0), the specular transmitted light (i.e., zero-order transmitted light), a non-specular transmitted light ( i.e., the transmitted light level +/- η, η> 0). 为方便描述,在图1中建立三维直角坐标系,X轴作为周期性光栅延伸方向,垂直于光栅线,y轴平行于光栅线,z轴垂直于各层表面。 For convenience of description, three - dimensional rectangular coordinate system in FIG 1, X axis extending in a direction as a periodic grating, the grating lines perpendicular to, y-axis parallel to the grating lines, z-axis perpendicular to the surface of each layer. 周期性光栅平行于χ-y平面。 Periodic grating parallel to the χ-y plane.

[0039] 图2是双层一维周期光栅的截面图,该光栅层间错位尺寸为δ。 [0039] FIG. 2 is a cross-sectional view of a double grating one-dimensional period, the inter-grating layer offset size δ. 图2中上、下层光栅分别定义第一、二层,每层中第一种材料宽度与整个周期之比定义为占空比,第一、二层占空比分别为:匕,&。 In FIG. 2, the lower layer defining the first gratings, two, a first ratio is defined as the entire width of the material in each cycle of the duty cycle, the first and second floor duty cycle are: dagger, &. 两层光栅厚度分别为山,d2。 Two grating thicknesses of the mountain, d2. 两光栅周期均为Λ,基底材料的折射率为ns。 Are two grating period Λ, the refractive index of the substrate material is ns. 根据这些光栅特性对零级衍射光的参数进行分析计算。 Analysis calculated parameters for the zero-order diffracted light according to the characteristics of these gratings.

[0040] 为描述清楚,规定上层相对于下层沿着X轴正向错位,即图2中向右方向错位了δ,则δ为正值;若为负值,则沿X轴左方向错位。 [0040] The clarity of the description, with respect to a lower predetermined upper forward displacement along the X axis, i.e., rightward direction in FIG. 2 dislocation [delta], [delta] is a positive value; if it is negative, the left direction along the X-axis offset.

[0041] 在前述的步骤101至102中,对每一个层错位间距,分别取正负值测量,得到的两个值平均后作为该层错位间距的对应测量值。 [0041] In the foregoing steps 101 to 102, for each layer offset distance, positive or negative measurements were taken, the measurement value corresponding to a displacement of the spacing layer is an average of two values ​​obtained. 以减小测量误差,为对层错位间距方便的改变方向,可以在测试时将放置被测样品的测试平台水平旋转一百八十度,即可实现。 To reduce measurement error, misalignment convenient for the layer spacing changes direction, the test platform may be placed in a sample one hundred eighty degrees of rotation measured at the time of testing, can be realized.

[0042] 步骤101中,测量零级衍射光的关注参数时,在被测波长为中心的一个△ λ的波长范围内,对零级衍射光的关注参数取平均值,其中△ λ为入射单色偏振光的带宽。 The wavelength range of [0042] Step 101, when the zero-order diffracted light measured parameter of interest, measured at a wavelength centered △ λ, the parameter of interest for the zero-order diffracted light is averaged, where △ λ is incident on a single color polarized bandwidth.

[0043] 图3示出利用光谱椭偏仪进行测量的光路原理示意图,测量装置由光谱椭偏仪和与光谱椭偏仪连接的数据处理器组成,光谱椭偏仪内包括光源1、光栅可调谐滤波器7、起偏器2、第一旋转相位补偿器3、第二旋转相位补偿器4、检偏器5和接收光谱仪6组成。 [0043] Figure 3 shows a schematic view of the use of a spectroscopic ellipsometer for measuring the optical path principle, the data processor measuring means are connected by a spectroscopic ellipsometer and a spectral ellipsometer composition, the spectroscopic ellipsometer comprises a light source 1, a grating may be tuned filter 7, a polarizer 2, a first rotary phase compensator 3, a second rotation phase compensator 4, 5 and the analyzer 6 receives the spectrometer components.

[0044] 如图3所示,光源I发光经过光栅可调谐滤波器后成为单一频率的单色光,通过起偏器2变为偏振光,第一旋转相位补偿器3用于对偏振光进行相位补偿以得到需要的特定偏振光,补偿后的单色偏振光入射在双层结构表面,在零级衍射光的衍射路径上,第二旋转相位补偿器4对反射光相位进行调整,通过检偏器5、接收光谱仪6检测,通过对不同角度的光强度检测,间接测出参数△和Φ。 [0044] As shown, the light emitting source through I gratings tunable filter 3 becomes monochromatic single frequency, from 2 becomes polarized by the polarizer, a first phase rotation compensator for polarized 3 phase compensation required to obtain a specific polarized light, monochromatic polarized light is incident on the compensated double-surface structure, in the zero diffraction order diffracted light path, a second rotation phase compensator 4 reflected light phase is adjusted, by the subject polariser 5, 6 receives spectrometer detection, by detecting the intensity of light at different angles, and the indirect measure parameters △ Φ.

[0045] 以图2所示的双层周期结构(光栅)为例,该光栅层间错位尺寸为δ。 [0045] In the double periodic structure (grating) shown in FIG. 2 as an example, the inter-grating layer offset size δ. 图2中光栅下层介质为二氧化硅(Si02)光栅线和多晶硅(Poly-Si)间隔,它们占空比为6:4,即二氧化硅光栅线占周期性长度的比例为60%,厚度为d2= 300nm。 FIG 2 lower grating medium is silica (Si02) raster lines and a polysilicon (Poly-Si) interval, the duty ratio thereof is 6: 4, i.e., the proportion of silica, the periodic length of the grating lines of 60%, a thickness It is d2 = 300nm. 上层光栅为空气(Air)与多晶硅(Poly-Si),它们占空比为6:4,即空气部分占周期性长度的比例为60%,厚度为(I1=500nm。周期Λ为500nm。衬底层介质是娃(Si)。 Grating upper air (Air) and polysilicon (Poly-Si), which is the duty ratio 6: 4, i.e., the periodic length portion comprises an air ratio of 60%, a thickness (I1 = 500nm 500nm period Λ of the liner. Wa is the underlying medium (Si).

[0046] 针对上述结构,给出两个实施例: [0046] For the above-described structure, two embodiments are given:

[0047] 实施例1.测量时的入射角度为Θ =60°,Φ = 90°,如图1所示,Θ为入射方向与入射表面的垂直方向之间的夹角,Φ为单色衍射光入射平面与光栅周期性排列延伸方向之间的夹角。 [0047] When the incident angle is measured as in Example 1. Θ = 60 °, Φ = 90 °, as shown in FIG 1, Θ is the angle between the incident direction and a direction perpendicular to the incident surface, Φ monochromatic diffraction light incidence plane and the angle between the grating periodically arranged extending direction. 入射在双层结构表面的入射光为s极化。 In the two-layer structure of the incident light incident surface is s-polarized. 层错位间距δ分别取-50,-40,-30,-20,-10,Onm,计算幅度随着入射光波波长变化的波谱,得到图4 ;层错位间距δ分别取-50,-40,-30,-20,-10,10, 20, 30, 40, 50nm,计算幅角随着入射波长变化波谱得到图5。 Δ dislocation spacing layer are taken -50, -40, -30, -20, -10, Onm, calculates an amplitude spectrum with the incident light wave length change, to give 4; floor taken dislocation spacing δ -50, -40, respectively, -30, -20, -10,10, 20, 30, 40, 50nm, calculated with the incident wavelength change argument spectrum obtained in FIG 5.

[0048] 从图4可以看出,幅度在波长范围590-640纳米范围处对层间错位间距δ灵敏。 [0048] As can be seen from Figure 4, the range of the wavelength range of 590-640 nm of the interlayer spacing δ misalignment sensitivity. 在此波长区间内,相同波长对应不同曲线的幅度值变化较大且较有规律。 In this wavelength range, the same wavelength corresponding to a different amplitude value change curve larger and more regular. 因此,在关注参数为幅度时可以选择上述590-640纳米为波长区间FQ。 Accordingly, when the amplitude parameter of interest may be selected as the above-described wavelength interval 590-640 nanometers FQ. 从图5可以看出,幅角在波长范围940-970纳米范围处对层间错位间距δ变化灵敏且较有规律。 As it can be seen from FIG. 5, the argument in the wavelength range 940-970 nm at a distance δ of misalignment between layers and more sensitive to changes regularly. 因此,在关注参数为幅角时可以选择上述940-970纳米为波长区间FQ。 Thus, when the parameter of interest may be selected as an argument to the above-described wavelength interval 940-970 nanometers FQ.

[0049] 实施例1中,关注参数为幅度时,该实施例中层间错位间距-δ与+ δ对应的波长曲线重合(S = O时,幅度为零),无法表征层间错位方向。 When [0049] In Example 1, an amplitude parameter of interest, the displacement embodiment the spacing between -δ and + δ embodiment corresponding to the middle of the curve coincides with the wavelength (S when = O, zero amplitude), can not be characterized by an interlayer displacement direction. 关注参数为幅角时,层间错位间距δ — O处波长曲线变化缺乏规律,但-δ与+ δ对应的波长曲线相差相位31,可以表征层间错位方向。 When the argument is the parameter of interest, the interlayer spacing offset δ - O of the curve lack of regular wavelength, but -δ and + δ phase difference corresponding to a wavelength curve 31, the interlayer may be characterized displacement direction.

[0050] 选出波长区间后,从各个曲线中抽取对应同一波长区间的幅度或幅角平均值,拟合出波长区间内关注参数的F方程。 [0050] After the selected wavelength interval, extracting the average amplitude or angle of the web sections corresponding to the same wavelength from the respective curve, equation parameters of interest fitting F in the wavelength interval. 测量时根据测得的幅度或幅角,即可根据F方程得出层错位间距。 According to the measured amplitude or web angle can be derived according to the layer pitch misalignment measurement equation F.

[0051] 实施例2与实施例1的区别为测量时的入射角为Θ = 45°,Φ = 45°。 [0051] Example 2 differs from Example 1 was measured at an incident angle of Θ = 45 °, Φ = 45 °. 测量并计算幅度随着入射光波波长变化的波谱,得到图6。 Measured and calculated as an amplitude spectrum of the incident light wave length change, to give 6 FIG. 从图6可以看出,在560-580纳米范围内,相同波长对应不同曲线的幅度值变化较大,因此频率区间FQ可以选择为560-580纳米。 As can be seen in FIG. 6, in the 560-580 nanometer range, the same amplitude value corresponding to a wavelength different curves vary widely, so that the frequency interval may be selected to FQ 560-580 nm.

[0052] 从实施例1和2及图4至6可以看出,选取Θ =45°,Φ =45°入射角时,幅度值对角度θ,Φ的变化数值稳定,不是很敏感。 [0052] Examples 1 and 2 and FIGS. 4 to 6 can be seen from the embodiment, when selecting Θ = 45 °, Φ = 45 ° angle of incidence, the angle [theta] of the amplitude value, a change value [Phi] is stable, it is not very sensitive. 但从现实操作角度出发,选取Θ =45°,Φ= 45°实现难度较低,在具体测量操作过程中易于实现,而选取Θ =60°,Φ =90°时,由于零级衍射光的参数在此入射角度下,对层错位间距的变化更加敏感,因此可以测量的对称周期光栅结构的层间错位S值范围更广。 However, the actual operation point of view, select Θ = 45 °, Φ = 45 ° less difficult to achieve, particularly easy to implement during the measurement operation, while selecting Θ = 60 °, Φ = 90 °, since the zero-order diffracted light in this angle of incidence parameter is more sensitive to changes in the dislocation spacing layer, the interlayer may be measured and therefore a wider symmetric periodic grating structure of the S-value offset range.

[0053] 以上描述的是在一维方向对层错为间距进行测量,如果要进行二维方向的层错位间距,需要在形成层错位间距的两层都构造二维周期性光栅结构,具体实施方式为:在每层结构的相同位置上均制作相互垂直的两组一维光栅作为标线,采用如前所述的方法,通过测试出两个相互垂直方向的一维光栅标线的层错位间距,得到二维光栅结构在相互垂直的两个方向上的层间错位。 [0053] The above-described fault is in one dimension measurement pitch, the layer to be offset if the pitch of two-dimensional direction, are required in the configuration of two-dimensional periodic grating structure is formed of two layers dislocation spacing, specific embodiments way: at the same location on each layer of the structure are perpendicular to each other making a two-dimensional grating is used as the reticle, the method described above, by testing the layer two mutually perpendicular directions in the one-dimensional grating reticle misalignment spacing, to obtain two-dimensional grating structure in two directions perpendicular to each other interlayer misalignment.

[0054] 例如可以在层板的左上角印刷X方向的一维周期性光栅,而在右上角印刷与之垂直的Y方向一维周期性光栅。 [0054] for example, be a one-dimensional periodic grating in the top left corner of the printed lamina X direction, and printing in the upper right corner in the Y direction perpendicular thereto a one-dimensional periodic grating. 就能分别在X,y两方向实现对准的工艺,保证多层结构产品的加工实现。 Respectively, can be implemented in both directions of the alignment process X, y, to ensure processing to achieve the multilayer structure of the product. 测量时采用前述的测量一维层错位间距的方法分别对x,y方向的层间错位各测量一次,测试出两个一维层错位间距,即可得出二维两个方向的层错位间距。 Using the measured displacement distance with a layer-dimensional measuring method, respectively x, y-direction misalignment between layers was measured once each test a two-dimensional layers dislocation spacing, it can be derived two-dimensional direction layers dislocation spacing .

[0055] 采用本发明所述的用于双层周期性微结构的层间错位测试方法,通过测试不同偏振态的光衍射波电场的相关参数,取代传统的对光强度的测试,通过对不同角度、不同参数的频谱测试,选择对层间错位最敏感的空间角度和衍射光参数,结合对光衍射波电场的模拟计算分析,实现高精度的层间错位测试。 [0055] The interlayer of the double-periodic microstructured misalignment test methods were used according to the present invention, light diffraction by the relevant parameters of the wave electric field of different polarization states test, replace traditional testing light intensity through different angle, spectral test different parameters, the selection of the most sensitive displacement angle and spatial parameters interlayer diffracted light, diffracted light wave electric field simulation calculation and analysis of the binding, to achieve inter-layer misalignment test with high accuracy.

[0056] 上述测量方法中,对入射角度的选择可以更好的实现较大的敏感度,以达到更佳的测量效果;测量时采用层错位间距的正负值平均作为测量值可以减小测量误差,拟合时对层错位间距值较小的情况,可以对F2 ( δ )方程假设为一次方程或二次方程进行拟合以减小计算强度。 [0056] The above-described measuring method, the selection of the angle of incidence can better achieve greater sensitivity in order to achieve better measurement results; dislocation spacing layer using positive and negative when measured as a measure of the average measurement may be reduced error, when fitted to a smaller spacing layer offset value, may F2 (δ) assumptions equation fit to reduce the computational intensity or a quadratic equation.

[0057] 本发明中所公开的实施例描述的方法或算法的步骤可以直接用硬件、处理器执行的软件模块,或者二者的结合来实施。 [0057] The present invention is disclosed a method or algorithm steps described embodiments may be implemented in hardware, or a combination thereof, in a software module executed by a processor implemented directly. 软件模块可以置于随机存储器(RAM)、内存、只读存储器(ROM)、电可编程R0M、电可擦除可编程R0M、寄存器、硬盘、可移动磁盘、CD-ROM、或技术领域内所公知的任意其它形式的存储介质中。 A software module may be placed in a random access memory (RAM), a memory, a read only memory (ROM), electrically programmable R0M, electrically erasable programmable R0M, registers, a hard disk, a removable disk, CD-ROM, or within the technical field known any other form of storage medium.

[0058] 前文所述的为本发明的各个优选实施例,各个优选实施例中的优选实施方式如果不是明显自相矛盾或以某一优选实施方式为前提,各个优选实施方式都可以任意叠加组合使用,所述实施例以及实施例中的具体参数仅是为了清楚表述发明人的发明验证过程,并非用以限制本发明的专利保护范围,本发明的专利保护范围仍然以其权利要求书为准,凡是运用本发明的说明书及附图内容所作的等同结构变化,同理均应包含在本发明的保护范围内。 [0058] Preferably each of the foregoing embodiments of the present invention, various preferred embodiments of the preferred embodiment examples, if not apparently paradoxical or in some preferred embodiments as a precondition, the various preferred embodiments may be any combination of superimposed in use, the embodiments and specific parameters of the embodiments are merely to clearly illustrate the invention, the inventors verification process, are not intended to limit the patent scope of the present invention, the scope of the present invention patent is still in its claims and their equivalents , any use of the present invention, the specification and drawings identical structural changes made by the same token should be included within the scope of the present invention.

Claims (8)

1.一种用于双层周期性微结构的层间错位测试方法,用于测试双层光栅结构的层错位间距δ,包括层错位间距-衍射光方程F拟合过程,所述层错位间距-衍射光方程拟合过程包括如下步骤: 步骤101.以单色偏振的平行光沿一定角度入射待测双层结构表面,测量零级衍射光的关注参数F ;单色偏振光扫频输出,得到在固定层错位间距δ下的关注参数的波长曲线; 步骤102.仅等差的改变步骤101中的层错位间距δ,多次重复步骤101,取得一组由等差离散序列的层错位间距值S对应的关注参数F的波长曲线组F1(A,δ);其中λ为波长; 步骤103.在曲线组Fl (λ, δ)中选择随δ变化,关注参数变化最敏感的波长区间FQ,对处于FQ内的任一固定波长,利用不同层错位间距对应的若干个关注参数F的值,拟合出该波长下的关注参数随层错位间距变化的函数;改变波长重复拟合,得到在FQ An interlayer of the double-periodic microstructured misalignment test method for testing for a double displacement layer the pitch of the grating structure [delta], including dislocation spacing layer - equation F diffracted light fitting process, the dislocation spacing layer - diffracted light equation fitting procedure includes the following steps: step 101. monochromatic light polarized parallel to the incident surface of the two-layer structure along the measured angle, the measurement parameter of interest F zero-order diffracted light; sweep monochromatic polarized output, wavelength curve obtained at a fixed offset distance [delta] layer of a parameter of interest; dislocation layer 101 only changes in arithmetic step 102. the step distance [delta], step 101 is repeated a plurality of times to obtain a set of discrete pitch a layer offset arithmetic sequence the parameter of interest wavelength value F of curves F1 (a, δ) S corresponds; wherein [lambda] is the wavelength; [delta] with a step 103. the selected group variation curve Fl (λ, δ), the parameters of interest most sensitive wavelength region FQ , at a fixed wavelength of any of the FQ, using several different values ​​of parameters of interest of the F layer corresponding to the pitch misalignment, a function of the fitting parameters of interest over the wavelength separation layer changing displacement; change the wavelength of the fit is repeated to give in FQ 间内的各个波长下的关注参数随层错位间距变化的函数F2 ( δ ),作为层错位间距-衍射光方程F ; 所述用于双层周期性微结构的层间错位测试方法在得到F2( δ )后,测量层错位间距时,使用处于FQ区间内的任意单色偏振光沿与步骤101中同样的入射角度入射待测双层结构,测量零级衍射光的关注参数,按照对应的关注参数值和波长值,即可得出待测双层结构的层错位间距。 The parameter of interest at each wavelength in the inter-layer spacing with varying displacement function F2 (δ), as a layer spacing offset - equation F. Diffracted light; means for periodic microstructured bilayer interlayer misalignment test method to obtain F2 ([delta]), the measured displacement distance layer, is used in the FQ any monochromatic polarized along a section in step 101 the same incident angle measured two-layer structure, a zero-level measuring parameters of interest diffracted light, according to the corresponding Follow wavelength value and the parameter value can be derived dislocation layer spacing measured two-layer structure.
2.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于:所述关注参数为椭圆偏振测量中的椭偏参数,即入射平面切向与法向两个偏振方向的零级衍射光电场之比的幅度A和/或幅角Ψ。 2. The interlayer of claim 1 double periodic microstructured misalignment test method is used, wherein: the parameter of interest is the ellipsometry ellipsometric parameters, i.e., the plane of incidence and the normal two tangential than zero-order diffracted optical field amplitude a of the polarization directions and / or web angle Ψ.
3.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于:所述单色偏振光的入射方向为:θ = φ = 45度,或Θ = 60度、φ = 90度; θ为入射方向与入射表面的垂直方向之间的夹角,Φ为单色衍射光入射平面与光栅周期性排列延伸方向之间的夹角。 3. The displacement layer is a double-layer test method for periodic microstructured claim, wherein: said monochromatic polarized light is incident direction: θ = φ = 45 degrees, or Θ = 60 ° , φ = 90 degrees; [theta] is the angle between the incident direction and a direction perpendicular to the incident surface, Φ monochromatic diffracted light incidence plane and the angle between the grating periodically arranged extending direction.
4.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于:所述步骤101至102中,对每一个层错位间距,分别取正负值测量,得到的两个值平均后作为该层错位间距的对应测量值。 4. The interlayer of claim 1 double periodic microstructured misalignment test method is used, wherein: 101 to step 102, for each layer offset distance, positive or negative measurements were taken, to give after the two values ​​corresponding to the measured value as an average dislocation spacing of the layer.
5.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于:所述步骤103中以假设F2 ( δ )为一次线性或二次非线性方程进行拟合。 5. The displacement layer is a double-layer test method for periodic microstructured claim, wherein: in the step 103 is assumed to F2 (δ) is a linear or quadratic nonlinear fitting equation .
6.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于: 步骤101中,测量零级衍射光的关注参数时,在以被测波长为波长中心的一个Λ λ的波长宽度范围内,对零级衍射光的关注参数取平均值,其中Λ λ为入射单色偏振光的带宽。 6. The method of testing a displacement layer for a double periodic microstructured claim, wherein: when the step 101, the parameter of interest measured zero-order diffracted light, the wavelength of the central wavelength to be measured of Lambda width of a wavelength [lambda], the parameter of interest for the zero-order diffracted light is averaged, where Λ λ polarized incident monochromatic bandwidth.
7.如权利要求1所述用于双层周期性微结构的层间错位测试方法,其特征在于:测量装置由光谱椭偏仪以及与光谱椭偏仪连接的数据处理器组成。 7. The interlayer of claim 1 double periodic microstructured misalignment test method, characterized in that: a data processor connected to the measuring device by a spectroscopic ellipsometer and a spectral ellipsometer composition.
8.一种用于双层周期性微结构的层间错位测试方法,用于测试二维周期光栅的层错位间距,其特征在于:在每层结构的相同位置上均制作相互垂直的两组一维光栅作为标线,采用如权利要求1至6中任意一项所述的方法,通过测试出两个相互垂直方向的一维光栅标线的层错位间距,得到二维光栅结构在相互垂直的两个方向上的层间错位。 A double-periodic microstructured interlayer misalignment test methods were used to test the two-dimensional grating pitch period dislocation layer, wherein: each of two mutually orthogonal produced at the same position on each structure as a one-dimensional grating reticle using the method as claimed in any one of claims 1 to 6, the spacing layer by testing one-dimensional grating reticle misalignment of two mutually perpendicular directions, resulting in a two-dimensional grating structure perpendicular to each other interlayer misalignment in the two directions.
CN201310201180.5A 2013-05-27 2013-05-27 One kind of interlayer misalignment test method for a double periodic microstructured CN103398666B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310201180.5A CN103398666B (en) 2013-05-27 2013-05-27 One kind of interlayer misalignment test method for a double periodic microstructured

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310201180.5A CN103398666B (en) 2013-05-27 2013-05-27 One kind of interlayer misalignment test method for a double periodic microstructured

Publications (2)

Publication Number Publication Date
CN103398666A CN103398666A (en) 2013-11-20
CN103398666B true CN103398666B (en) 2015-12-23

Family

ID=49562339

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310201180.5A CN103398666B (en) 2013-05-27 2013-05-27 One kind of interlayer misalignment test method for a double periodic microstructured

Country Status (1)

Country Link
CN (1) CN103398666B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9490182B2 (en) * 2013-12-23 2016-11-08 Kla-Tencor Corporation Measurement of multiple patterning parameters
CN108120371A (en) * 2016-11-30 2018-06-05 中国科学院福建物质结构研究所 Subwavelength-scale microelectronic structure optical critical dimension test and analysis method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080990A (en) * 1997-03-21 2000-06-27 Kabushiki Kaisha Topcon Position measuring apparatus
WO2002069390A2 (en) * 2001-02-27 2002-09-06 Timbre Technologies, Inc. Grating test patterns and methods for overlay metrology
TW200302538A (en) * 2002-01-31 2003-08-01 Timbre Tech Inc Overlay measurements using periodic gratings
CN101393303A (en) * 2008-09-26 2009-03-25 苏州大学 Method for making near infrared band three-dimensional photon crystal
CN103048047A (en) * 2011-10-11 2013-04-17 中国科学院微电子研究所 Phase element containing normal incident broadband polarized spectrometer and optical measurement system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080990A (en) * 1997-03-21 2000-06-27 Kabushiki Kaisha Topcon Position measuring apparatus
WO2002069390A2 (en) * 2001-02-27 2002-09-06 Timbre Technologies, Inc. Grating test patterns and methods for overlay metrology
TW200302538A (en) * 2002-01-31 2003-08-01 Timbre Tech Inc Overlay measurements using periodic gratings
CN101393303A (en) * 2008-09-26 2009-03-25 苏州大学 Method for making near infrared band three-dimensional photon crystal
CN103048047A (en) * 2011-10-11 2013-04-17 中国科学院微电子研究所 Phase element containing normal incident broadband polarized spectrometer and optical measurement system

Also Published As

Publication number Publication date
CN103398666A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
Hilfiker et al. Survey of methods to characterize thin absorbing films with spectroscopic ellipsometry
JP5280507B2 (en) Apparatus and method for detecting overlay error using scatterometry
US9310192B2 (en) Lateral shift measurement using an optical technique
EP1628164B1 (en) Method and apparatus for angular-resolved spectroscopic lithography characterisation
US7230703B2 (en) Apparatus and method for measuring overlay by diffraction gratings
CN104995562B (en) Use integrated metrics based on the model and process model
US6985232B2 (en) Scatterometry by phase sensitive reflectometer
JP4768754B2 (en) Interferometer for determining object surface characteristics
US6982793B1 (en) Method and apparatus for using an alignment target with designed in offset
TWI429896B (en) Ellipsometric metrology tool and method of monitoring a babrication process
KR101254161B1 (en) Analyzing surface structure using scanning interferometry
US20080239318A1 (en) Method of measuring asymmetry in a scatterometer, a method of measuring an overlay error in a substrate and a metrology apparatus
CN101755187B (en) Generating model signals for interferometry
US7440105B2 (en) Continuously varying offset mark and methods of determining overlay
EP3031073B1 (en) Differential methods and apparatus for metrology of semiconductor targets
US7453577B2 (en) Apparatus and method for inspecting a patterned part of a sample
US20050157297A1 (en) Periodic patterns and technique to control misalignment between two layers
CN100442144C (en) Differential critical dimension and overlay metrology device and measurement method
US7339682B2 (en) Heterodyne reflectometer for film thickness monitoring and method for implementing
US7177030B2 (en) Determination of thin film topography
US7403289B2 (en) Interferometry method for ellipsometry, reflectometry, and scatterometry measurements, including characterization of thin film structures
US7372565B1 (en) Spectrometer measurement of diffracting structures
US8830472B2 (en) Method of assessing a model of a substrate, an inspection apparatus and a lithographic apparatus
US7277172B2 (en) Measuring overlay and profile asymmetry using symmetric and anti-symmetric scatterometry signals
CN101398293B (en) Measurement system and method for measuring critical dimensions using ellipsometry

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model