CN103278568A - A kind of ultrasonic hardness tester and testing method thereof - Google Patents
A kind of ultrasonic hardness tester and testing method thereof Download PDFInfo
- Publication number
- CN103278568A CN103278568A CN2013102129224A CN201310212922A CN103278568A CN 103278568 A CN103278568 A CN 103278568A CN 2013102129224 A CN2013102129224 A CN 2013102129224A CN 201310212922 A CN201310212922 A CN 201310212922A CN 103278568 A CN103278568 A CN 103278568A
- Authority
- CN
- China
- Prior art keywords
- hardness
- signal
- integrated circuit
- sensing device
- key
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 44
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000000523 sample Substances 0.000 claims abstract description 36
- 238000004891 communication Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 21
- 238000012545 processing Methods 0.000 claims abstract description 13
- 238000007493 shaping process Methods 0.000 claims abstract description 7
- 238000004364 calculation method Methods 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims 8
- 238000007373 indentation Methods 0.000 abstract description 24
- 238000007542 hardness measurement Methods 0.000 abstract description 13
- 238000010998 test method Methods 0.000 abstract description 2
- 230000006870 function Effects 0.000 description 14
- 230000006698 induction Effects 0.000 description 12
- 238000005259 measurement Methods 0.000 description 12
- 230000001939 inductive effect Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
技术领域 technical field
本发明涉及测量材料硬度的设备及方法技术领域,尤其是指一种超声波硬度计及其测试方法。 The invention relates to the technical field of equipment and methods for measuring hardness of materials, in particular to an ultrasonic hardness tester and a testing method thereof.
背景技术 Background technique
传统的硬度试验机,如布氏、洛氏、维氏硬度试验机,都是将特定压头以一定的静载荷压入被试材料表面,在其表面产生压痕,再用机械或光学的方法直接测量此压痕的大小,来评价被试材料的硬度,表征材料硬度值的压痕应是加载时材料的全部变形,但由于硬度值是在卸载的情况下读取的,被测的压痕只是残余的塑性变形,变形中的弹性恢复被忽略了。另一方面,硬度值是在假定压痕是压头真实几何形状反映的前提下确定的,而实际上残余的压痕与压头形状并不完全相符。 Traditional hardness testing machines, such as Brinell, Rockwell, and Vickers hardness testing machines, press a specific indenter into the surface of the material to be tested with a certain static load to produce indentations on the surface, and then mechanically or optically The method directly measures the size of the indentation to evaluate the hardness of the tested material. The indentation representing the hardness value of the material should be the entire deformation of the material when loaded, but since the hardness value is read under the condition of unloading, the measured The indentation is only the residual plastic deformation, and the elastic recovery in the deformation is neglected. On the other hand, hardness values are determined under the assumption that the indentation is a reflection of the true geometry of the indenter, whereas in reality the residual indentation does not exactly correspond to the shape of the indenter.
传统里氏硬度计测量是基于非完全弹性碰撞原理,通过碰撞中的冲击能量损失确定硬度值的硬度计。由于里氏硬度值的大小取决于被试材料压痕中弹性变形功在全部变形功中所占的比例,而碰撞过程时间极快,使压痕产生过程极短,因此任何影响冲击体回弹速度,消耗冲击能量,使压痕产生不充分的因素都会对测量造成影响,使其在应用过程中的技木条件受到一定的限制。 The measurement of the traditional Leeb hardness tester is based on the principle of incomplete elastic collision, and the hardness value is determined by the impact energy loss in the collision. Since the Leeb hardness value depends on the proportion of the elastic deformation work in the indentation of the tested material to the total deformation work, and the collision process time is extremely fast, the indentation process is extremely short, so any influence on the rebound of the impact body Speed, consumption of impact energy, and insufficient indentation will all affect the measurement, and the technical conditions in the application process are limited to a certain extent.
另外,传统的台式硬度测试机的测量时间比较长,每次测量时间平均在30秒左右,效率比较低,无法实现产品线上所有产品的品检。而且传统台式硬度测试机由于加载力比较大,试验力对测量材料表面造成的伤害较大,对成品测量有限制,而且台式机比较笨重,无法高空作业,无法对很多成品进行测量。 In addition, the measurement time of the traditional desktop hardness testing machine is relatively long, and the average measurement time is about 30 seconds each time. The efficiency is relatively low, and it is impossible to realize the quality inspection of all products on the product line. Moreover, due to the relatively large loading force of the traditional desktop hardness testing machine, the test force causes great damage to the surface of the measured material, which limits the measurement of finished products, and the desktop machine is relatively heavy, unable to work at high altitudes, and cannot measure many finished products.
发明内容 Contents of the invention
本发明针对现有技术的问题提供一种超声波硬度计及其测试方法,可以便携、快速地测量出材料的硬度,有效避免人工观察压痕和压痕变形产生的误差。。 The invention provides an ultrasonic hardness tester and a testing method thereof aiming at the problems in the prior art, which can measure the hardness of a material in a portable and fast manner, and effectively avoid errors caused by manual observation of indentation and indentation deformation. .
为了解决上述技术问题,本发明采用如下技术方案: In order to solve the above technical problems, the present invention adopts the following technical solutions:
一种超声波硬度计,包括主机终端和硬度测试探头,所述主机终端内部包括核心控制模块,该核心控制模块由MCU处理器、内部处理电路、通信接口及信号整形单元组成,所述主机终端外部上表面设置有显示器及控制按键,所述显示器、控制按键分别与核心控制模块导通连接;所述硬度测试探头包括探头壳体和安装于探头壳体内部的振动杆、发射感应器件、接收感应器件、集成电路板以及通讯接头,所述发射感应器件和接收感应器件分别对应安装于振动杆的两侧且均与集成电路板的一端电连接,所述通讯接头固定安装于探头壳体的顶端且与集成电路板的另一端信号连接;所述主机终端和硬度测试探头之间设置有数据线,所述数据线的一端与所述硬度测试探头的通讯接头信号连接,所述数据线的另一端与所述核心控制模块的通信接口信号连接。 An ultrasonic hardness tester, comprising a host terminal and a hardness test probe, the host terminal includes a core control module inside, the core control module is composed of an MCU processor, an internal processing circuit, a communication interface and a signal shaping unit, and the host terminal is externally The upper surface is provided with a display and control buttons, and the display and the control buttons are respectively connected to the core control module; the hardness test probe includes a probe housing and a vibrating rod installed inside the probe housing, a transmitting induction device, a receiving induction devices, integrated circuit boards and communication connectors, the transmitting and receiving sensing devices are respectively installed on both sides of the vibrating rod and electrically connected to one end of the integrated circuit board, and the communication connectors are fixedly installed on the top of the probe housing And it is connected with the other end signal of the integrated circuit board; a data line is arranged between the host terminal and the hardness test probe, one end of the data line is connected with the communication connector of the hardness test probe, and the other end of the data line is One end is signal-connected with the communication interface of the core control module.
其中,所述集成电路板上设有信号发射单元、信号处理单元及信号输出单元,分别实现信号激发、放大处理及信号输出。 Wherein, the integrated circuit board is provided with a signal transmitting unit, a signal processing unit and a signal output unit, respectively realizing signal excitation, amplification processing and signal output.
其中,所述探头壳体内部还安装有振动杆的固定块,所述振动杆的一端焊接固定于所述固定块上。 Wherein, a fixing block of a vibrating rod is installed inside the probe housing, and one end of the vibrating rod is welded and fixed on the fixing block.
其中,所述控制按键包括材料选择键、确定键、系统菜单键、硬度转换键、背光与开关一体键及方向键,所述方向键包括上键、下键、左键及右键。 Wherein, the control keys include a material selection key, a confirmation key, a system menu key, a hardness conversion key, a backlight and switch integrated key, and direction keys, and the direction keys include an up key, a down key, a left key and a right key.
其中,所述核心控制模块还包括一组或多组与之相连的数据存储器。 Wherein, the core control module also includes one or more sets of data storage connected thereto.
应用于上述超声波硬度计的一种硬度测试方法,所述硬度测试方法包括: A kind of hardness testing method that is applied to above-mentioned ultrasonic hardness tester, described hardness testing method comprises:
步骤1:提供多个已知硬度的标准块;标准块的硬度从小到大依次为:HV1、……、HVn; Step 1: Provide multiple standard blocks with known hardness; the hardness of the standard blocks from small to large is: HV 1 , ..., HV n ;
步骤2:硬度测试探头进行自动检测且当振动杆发生谐振,测得谐振频率 ; Step 2: The hardness test probe performs automatic detection and when the vibrating rod resonates, the resonant frequency is measured ;
步骤3:振动杆分别压入被测的每个标准块,振动杆分别与每个标准块发生谐振,测得变化后的谐振频率;硬度从小到大的标准块所对应的谐振频率为、……、,其中所对应的标准块的硬度为该材料的最小硬度,所对应的标准块的硬度为该材料的最大硬度; Step 3: The vibrating rod is pressed into each standard block to be tested, and the vibrating rod resonates with each standard block respectively, and the changed resonant frequency is measured; the resonant frequency corresponding to the standard blocks with hardness ranging from small to large is ,..., ,in The hardness of the corresponding standard block is the minimum hardness of the material, The hardness of the corresponding standard block is the maximum hardness of the material;
步骤4:通过超声波硬度计测试出每个标准块的谐振频率变化量,其计算公式为=-,……,=-; Step 4: Test the variation of the resonance frequency of each standard block with an ultrasonic hardness tester , its calculation formula is = - ,..., = - ;
步骤5:建立线段函数Y=A1x+b1; ……;Y=An-1x+bn-1;其中函数Y=Aix+bi,表示两端点为(,HVi-1)、(,HVi)的线段函数;其中,1<i<n;并且计算出Ai和bi的值; Step 5: Establish line segment function Y=A 1 x+b 1 ; ...; Y=A n-1 x+b n-1 ; where the function Y=A i x+b i means that the two ends are ( , HV i-1 ), ( , HV i ) line segment function; where, 1<i<n; and calculate the values of A i and b i ;
步骤6:取被测物,通过超声波硬度计测试出被测物所对应的谐振频率为,并计算出谐振频率变化量; Step 6: Take the object to be tested, and use the ultrasonic hardness tester to test the corresponding resonance frequency of the object to be tested. , and calculate the resonant frequency variation ;
步骤7:判断处于步骤5中的哪个线段函数的区域内;并通过相应的线段函数计算出被测物体的硬度值。 Step 7: Judge It is in the area of which line segment function in step 5; and calculate the hardness value of the measured object through the corresponding line segment function.
其中,在步骤3中,振动杆与标准块发生谐振的信号经过集成电路板信号放大,再经过信号整形单元的整形后,才得出数值。 Among them, in step 3, the resonant signal of the vibrating rod and the standard block is amplified by the signal of the integrated circuit board, and then the value is obtained after being shaped by the signal shaping unit .
本发明的有益效果: Beneficial effects of the present invention:
本发明的主机终端开机上电,核心控制模块中的MCU处理器初始化,并将初始的驱动信号发送至硬度测试探头的集成电路板中,使振动杆产生谐振,主机终端对此时谐振频率进行测量,测试出;然后,将振动杆压入被测材料,振动杆与被测材料产生共振,谐振频率变为,再测试出,然后得出=-;根据被相应的线段函数计算出硬度值。硬度测试过程在3秒钟内全部完成,然后保存数据。本发明便携快捷,测量时间快,效率高;另外,超声波硬度计的试验力很小,测量产生压痕小,通过超声波振动测试可避免人工观察压痕和压痕变形产生的误差。 The host terminal of the present invention is turned on and powered on, the MCU processor in the core control module is initialized, and the initial drive signal is sent to the integrated circuit board of the hardness test probe, so that the vibrating rod resonates, and the host terminal responds to the resonance frequency at this time take measurements, test out ; Then, press the vibrating rod into the material under test, the vibrating rod resonates with the material under test, and the resonant frequency becomes , and then test out , and then get = - ; Calculate the hardness value according to the corresponding line segment function. The hardness testing process is all completed within 3 seconds, and then the data is saved. The invention is portable and quick, has quick measurement time and high efficiency; in addition, the test force of the ultrasonic hardness tester is very small, and the indentation produced by measurement is small, and the errors caused by manual observation of the indentation and indentation deformation can be avoided through the ultrasonic vibration test.
附图说明 Description of drawings
图1为本发明的一种超声波硬度计结构示意图。 Fig. 1 is a structural schematic diagram of an ultrasonic hardness tester of the present invention.
图2为本发明的一种超声波硬度计剖面示意图。 Fig. 2 is a schematic cross-sectional view of an ultrasonic hardness tester of the present invention.
图3为应用于超声波硬度的一种硬度测试方法的操作流程图。 Fig. 3 is an operation flowchart of a hardness testing method applied to ultrasonic hardness.
在图1至图3中的附图标记包括: Reference numerals in FIGS. 1 to 3 include:
1—主机终端 2—硬度测试探头 21—探头壳体
1—
22—振动杆 23—发射感应器件 24—接收感应器件
22—
25—集成电路板 26—通讯接头 27—固定块
25—
31—MCU处理器 32—通信接口 4—显示器
31—
5—控制按键 6—数据线。 5—Control button 6—Data cable.
具体实施方式 Detailed ways
为了便于本领域技术人员的理解,下面结合实施例与附图对本发明作进一步的说明,实施方式提及的内容并非对本发明的限定。参见图1至图3,以下结合附图对本发明进行详细的描述。 In order to facilitate the understanding of those skilled in the art, the present invention will be further described below in conjunction with the embodiments and accompanying drawings, and the contents mentioned in the embodiments are not intended to limit the present invention. Referring to Fig. 1 to Fig. 3, the present invention will be described in detail below in conjunction with the accompanying drawings.
如图2和图3所示,本发明提供的一种超声波硬度计,包括主机终端1和硬度测试探头2,所述主机终端1内部包括核心控制模块,该核心控制模块由MCU处理器31、内部处理电路(在附图中未标出)、通信接口32及信号整形单元(在附图中未标出)组成,所述主机终端1外部上表面设置有显示器4及控制按键5,所述显示器4、控制按键5分别与核心控制模块导通连接;所述硬度测试探头2包括探头壳体21和安装于探头壳体21内部的振动杆22、发射感应器件23、接收感应器件24、集成电路板25以及通讯接头26,所述发射感应器件23和接收感应器件24分别对应安装于振动杆22的两侧且均与集成电路板25的一端电连接,所述通讯接头26固定安装于探头壳体21的顶端且与集成电路板25的另一端信号连接;所述主机终端1和硬度测试探头2之间设置有数据线6,所述数据线6的一端与所述硬度测试探头2的通讯接头26信号连接,所述数据线6的另一端与所述核心控制模块3的通信接口32信号连接。
As shown in Fig. 2 and Fig. 3, an ultrasonic hardness tester provided by the present invention includes a host terminal 1 and a
安装于振动杆22上的发射感应器件23负责发送超声信号使振动杆22产生谐振,接收感应器件24负责接收振动杆22的振动信号。在实际测试中,硬度测试探头2的集成线路板25发射电信号驱动发射感应器件23使振动杆22产生谐振,接收感应器件24接收到振动杆22的超声波后并反馈谐振信号到集成线路板25,集成线路板25对谐振信号进行处理,然后通过数据线6输出到主机终端1。
The transmitting
硬度测试探头2的谐振信号通过数据线输入到通信接口32,经过核心控制模块上的内部处理电路和信号整形单元做处理后,再输入MCU处理器31,MCU处理器31内部程序对谐振信号进行计数处理,计算得出的硬度值显示到显示器4上。
The resonance signal of the
其中,所述集成电路板25上设有信号发射单元、信号处理单元及信号输出单元,分别实现信号激发、放大处理及信号输出。在探头壳体21内部的发射感应器件23、接收感应器件24所感应产生的输出信号相对较弱,集成电路板25对输出信号做激发、放大处理再输出,可有效提高信号稳定性,达到保证测量精度和稳定性的目的。本发明采用两组感应器件(发射感应器件23和接收感应器件24),去掉了传统的磁激励线圈,使信号更加稳定;由于信号经过集成控制电路板25进行处理后再输出,加强了抗干扰能力,进一步提高稳定性和适用性。
Wherein, the integrated circuit board 25 is provided with a signal transmitting unit, a signal processing unit and a signal output unit, respectively realizing signal excitation, amplification processing and signal output. The output signals induced by the
其中,所述探头壳体21内部还安装有振动杆22的固定块27,所述振动杆22的一端固定焊接于所述固定块27上。振动杆22与固定块27固定连接为一体,导向不会产生偏移;振动杆22在下压的过程中不晃动,有效保证下压角度和精确度。
Wherein, a
如图1所示,所述控制按键5包括材料选择键、确定键、系统菜单键、硬度转换键、背光与开关一体键及方向键,所述方向键包括上键、下键、左键及右键。开关键可实现开关机和背光控制,通过系统菜单键可进入系统进行各项参数的设置,并结合左键、上键、下键及右键进行切换,通过硬度转换键切换硬度标尺,通过材料选择键选择材料。 As shown in Figure 1, the control buttons 5 include a material selection key, a confirmation key, a system menu key, a hardness conversion key, a backlight and a switch integrated key, and direction keys, and the direction keys include an up key, a down key, a left key and right click. The switch key can realize switch and backlight control. Through the system menu key, you can enter the system to set various parameters, and switch with the left key, up key, down key and right key, switch the hardness scale through the hardness conversion key, and select the material through the key to select the material.
其中,所述核心控制模块还包括一组或多组与之相连的数据存储器(在附图中未标出)。MCU处理器31内部根据用户对系统的设置选择对测量数据做不同的处理,然后将处理结果保存到数据存储器中,完成硬度测试后,通过通信接口32将测量数据导出到电脑上,然后进行综合处理和分析。
Wherein, the core control module also includes one or more sets of data memory (not marked in the drawings) connected thereto. The
应用于上述超声波硬度计的一种硬度测试方法,所述硬度测试方法包括: A kind of hardness testing method that is applied to above-mentioned ultrasonic hardness tester, described hardness testing method comprises:
步骤1:提供多个已知硬度的标准块;标准块的硬度从小到大依次为:HV1、……、HVn; Step 1: Provide multiple standard blocks with known hardness; the hardness of the standard blocks from small to large is: HV 1 , ..., HV n ;
步骤2:硬度测试探头进行自动检测且当振动杆发生谐振,测得谐振频率; Step 2: The hardness test probe performs automatic detection and when the vibrating rod resonates, the resonant frequency is measured ;
步骤3:振动杆分别压入被测的每个标准块,振动杆分别与每个标准块发生谐振,测得变化后的谐振频率;硬度从小到大的标准块所对应的谐振频率为、……、,其中所对应的标准块的硬度为该材料的最小硬度,所对应的标准块的硬度为该材料的最大硬度; Step 3: The vibrating rod is pressed into each standard block to be tested, and the vibrating rod resonates with each standard block respectively, and the changed resonant frequency is measured; the resonant frequency corresponding to the standard blocks with hardness ranging from small to large is ,..., ,in The hardness of the corresponding standard block is the minimum hardness of the material, The hardness of the corresponding standard block is the maximum hardness of the material;
步骤4:通过超声波硬度计测试出每个标准块的谐振频率变化量,其计算公式为=-,……,=-; Step 4: Test the variation of the resonance frequency of each standard block with an ultrasonic hardness tester , its calculation formula is = - ,..., = - ;
步骤5:建立线段函数Y=A1x+b1; ……;Y=An-1x+bn-1;其中函数Y=Aix+bi,表示两端点为(,HVi-1)、(,HVi)的线段函数;其中,1<i<n;并且计算出Ai和bi的值; Step 5: Establish line segment function Y=A 1 x+b 1 ; ...; Y=A n-1 x+b n-1 ; where the function Y=A i x+b i means that the two ends are ( , HV i-1 ), ( , HV i ) line segment function; where, 1<i<n; and calculate the values of A i and b i ;
步骤6:取被测物,通过超声波硬度计测试出被测物所对应的谐振频率为,并计算出谐振频率变化量;其中,被测物的材料与标准块的材料一样; Step 6: Take the object to be tested, and use the ultrasonic hardness tester to test the corresponding resonance frequency of the object to be tested. , and calculate the resonant frequency variation ; Among them, the material of the measured object is the same as that of the standard block;
步骤7:判断处于步骤5中的哪个线段函数的区域内;并通过相应的线段函数计算出被测物体的硬度值。 Step 7: Judge It is in the area of which line segment function in step 5; and calculate the hardness value of the measured object through the corresponding line segment function.
其中,在步骤3中,振动杆与标准块发生谐振的信号经过集成电路板信号放大,再经过信号整形单元的整形后,才得出数值。在步骤4中,当计算出后,MCU处理器对计算结果进行线性补偿。 Among them, in step 3, the resonant signal of the vibrating rod and the standard block is amplified by the signal of the integrated circuit board, and then the value is obtained after being shaped by the signal shaping unit . In step 4, when the calculated After, the MCU processor calculates the result Perform linear compensation.
本发明的测量方法的原理是用超声波使振动杆22振动在一个固定频率,然后把振动杆22压入被测材料,这时候振动杆22的震动固定频率会根据被测材料的不同硬度发生变化,通过这变化的频率变化量去算出被测材料的硬度值。
The principle of the measuring method of the present invention is to make the vibrating
例如:我们取两个标准块,其硬度分别是20HRC和30HRC;用超声波硬度计去测量得出:硬度为20HRC对应的频率△f是1KHZ,硬度为30HRC对应的频率△f是2KHZ。根据线段函数Y=A1x+b1,代入以上两个硬度值求出方程Y=Ax+b;得出A=0.001,b=10;即Y=0.001x+10。 For example: we take two standard blocks, the hardness of which is 20HRC and 30HRC respectively; use the ultrasonic hardness tester to measure: the frequency △f corresponding to the hardness of 20HRC is 1KHZ, and the frequency △f corresponding to the hardness of 30HRC is 2KHZ. According to the line segment function Y=A 1 x+b 1 , substitute the above two hardness values to obtain the equation Y=Ax+b; get A=0.001, b=10; that is, Y=0.001x+10.
然后再用超声波硬度计去打40HRC的标准块,若得到的频率△f是3KHZ,将30HRC、40HRC的标准块的数据代入求得A2和b2的值,得到30HRC到40HRC之间的函数Y2=A2x+b2; Then use the ultrasonic hardness tester to punch the standard block of 40HRC. If the obtained frequency △f is 3KHZ, substitute the data of the standard block of 30HRC and 40HRC into the values of A2 and b2 to obtain the function Y2= between 30HRC and 40HRC A2x+b2;
然后,在硬度测量范围内分N个段,得出N个方程首尾相交,通过本发明提供的超声波硬度计测试被测材料,当测试得到后,判断落在哪个区间,然后代入计算得出硬度值。 Then, divide N segments in the hardness measurement range, draw N equations end-to-end intersection, test the measured material by the ultrasonic hardness tester provided by the present invention, when the test obtains After, judge Which interval it falls in, and then substitute it into the calculation to get the hardness value.
本发明的测试方法为一种比对测量方法,常用于批量检测产品硬度,因为一批产品的硬度要求是要在一个误差范围内的,那么通过本超声波硬度计测试出来的应该在一个重复的误差范围内,当测试出来的值在误差范围内,该产品符合生产硬度要求;如果测试出来的值不在误差范围内,则说明该产品不符合生产硬度要求,通过这样去判别不良品。 The test method of the present invention is a comparison measurement method, which is often used to detect the hardness of products in batches, because the hardness requirements of a batch of products must be within a range of error, so the results tested by this ultrasonic hardness tester should be within a repeatable error range when the test comes out The value is within the error range, the product meets the production hardness requirements; if the tested If the value is not within the error range, it means that the product does not meet the production hardness requirements, and the defective products are judged in this way.
另外,频率变化量的计算公式也可以为:=(Eeff,A),式中:代表频率变化量,Eeff代表弹性模量,A代表压痕面积。由这个公式可知,与Eeff、A之间存在可计算的比例关系(某种函数关系)。而从压痕与形变的角度来看,硬度值HV与压力F、压痕面积A也存在可计算的比例关系,也就是传统的计算方法是:HV=F/A; In addition, the frequency variation The calculation formula of can also be: = (Eeff, A), where: Represents the frequency change, Eeff represents the elastic modulus, and A represents the indentation area. From this formula, it can be known that There is a calculable proportional relationship (some kind of functional relationship) between Eeff and A. From the perspective of indentation and deformation, there is also a calculable proportional relationship between the hardness value HV, the pressure F, and the indentation area A, that is, the traditional calculation method is: HV=F/A;
传统维氏硬度机产生的压痕本来就很小,而压痕边缘的判定是由人来观察的,难免出现错误。本发明的振动杆22所产生的压痕就更小,不过频率却可以借由电路的计算精确得到;如果我们知道某种材料的弹性模量,又测得了频率,那可以借助换算关系用与Eeff来表示A而不用去测量压痕直径。由于力值F可以事先设定(振动杆压紧到被材料表面,靠的就是施力弹簧,而弹簧的压紧力是可以事先设定的,这就是超声波探头有不同型号的缘故,其型号的不同,就是取决于弹簧压紧力,簧压紧力从10N~98N不等),那么硬度值的计算公式可以转化成:HV=F/(,Eeff)。不用费心去观察压痕了,也避免压痕边缘不清晰和形变所带来的误差了。由于不同材料的弹性模量会有差异,而且为变化量,得先把弹性模量Eeff测量出来,否则无法应用上述的计算公式,除非事先知道被测材料的弹性模量Eeff。
The indentation produced by the traditional Vickers hardness machine is very small, and the judgment of the edge of the indentation is observed by humans, and mistakes are inevitable. The indentation produced by the vibrating
使用本发明时,被测材料的弹性模量Eeff为未知数时,事先用被测材料做一个样块,先用现有技术中的台式机测量出硬度值HV,用公式表示为HV=F/(,Eeff)。用本发明的超声波硬度计去测试同种不同硬度值的被测材料的硬度值HV1,用公式表示为HV1=F/(,Eeff)。首先用机器去打硬度标准块得出HV,然后用超声波去打标准块得到,用代入函数算出HV测量值。然后确定一个比例关系C=HV/HV测量值,即HV1=(A1 +b)*C 。 When using the present invention, when the elastic modulus Eeff of the measured material is an unknown number, a sample piece is made with the tested material in advance, and the hardness value HV is first measured with a desktop computer in the prior art, and expressed as HV=F/ ( , Eeff). Use the ultrasonic hardness tester of the present invention to test the hardness value HV1 of the tested material of the same kind of different hardness values, expressed as HV1=F/( , Eeff). First use a machine to punch the hardness standard block to get HV, and then use ultrasonic to punch the standard block to get ,use Substitute the function to calculate the HV measurement . Then determine a proportional relationship C=HV/HV measured value , namely HV1=(A 1 +b)*C .
以上内容仅为本发明的较佳实施例,对于本领域的普通技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,本说明书内容不应理解为对本发明的限制。 The above content is only a preferred embodiment of the present invention. For those of ordinary skill in the art, according to the idea of the present invention, there will be changes in the specific implementation and application scope. limits.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102129224A CN103278568A (en) | 2013-05-31 | 2013-05-31 | A kind of ultrasonic hardness tester and testing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013102129224A CN103278568A (en) | 2013-05-31 | 2013-05-31 | A kind of ultrasonic hardness tester and testing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103278568A true CN103278568A (en) | 2013-09-04 |
Family
ID=49061148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013102129224A Pending CN103278568A (en) | 2013-05-31 | 2013-05-31 | A kind of ultrasonic hardness tester and testing method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103278568A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104390871A (en) * | 2014-11-21 | 2015-03-04 | 广西智通节能环保科技有限公司 | Hardness measuring meter |
CN106841561A (en) * | 2017-01-06 | 2017-06-13 | 无锡职业技术学院 | The lossless hardness measuring device of hardened steel and method |
CN107727522A (en) * | 2017-09-27 | 2018-02-23 | 健研检测集团有限公司 | A kind of device based on hardness method measurement steel strength |
CN109632540A (en) * | 2018-11-22 | 2019-04-16 | 中国人民解放军陆军装甲兵学院 | A method of measurement alloyed steel surface hardness |
CN113974563A (en) * | 2016-12-19 | 2022-01-28 | 麦克赛尔株式会社 | Hardness meter and hardness measuring method |
CN117347207A (en) * | 2023-10-16 | 2024-01-05 | 秦皇岛华日升电子有限公司 | Online hardness automatic detection system |
CN119178803A (en) * | 2024-11-22 | 2024-12-24 | 湖南省湘电试验研究院有限公司 | Method for measuring hardness of electroceramics material, ultrasonic sclerometer and control system thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2073115U (en) * | 1990-05-23 | 1991-03-13 | 营口市站前区试验仪器厂 | Miniature supersonic hardness probe |
CN101963561A (en) * | 2009-07-24 | 2011-02-02 | 北京神州华测科技有限责任公司 | Novel concrete strength tester |
-
2013
- 2013-05-31 CN CN2013102129224A patent/CN103278568A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2073115U (en) * | 1990-05-23 | 1991-03-13 | 营口市站前区试验仪器厂 | Miniature supersonic hardness probe |
CN101963561A (en) * | 2009-07-24 | 2011-02-02 | 北京神州华测科技有限责任公司 | Novel concrete strength tester |
Non-Patent Citations (4)
Title |
---|
何克勤: "超声波硬度计的原理及应用", 《工程与试验》, no. 03, 31 March 2013 (2013-03-31), pages 51 - 53 * |
张玉彪等: "CSS-148型智能超声硬度计的研究", 《机械工程师》, no. 1, 31 December 1991 (1991-12-31) * |
蔡鹏等: "超声波应用于零件表面硬度检测的研究", 《机械设计与制造》, no. 5, 31 May 2007 (2007-05-31), pages 124 - 126 * |
郭雨梅等: "智能超声硬度计", 《沈阳工业大学学报》, vol. 21, no. 1, 28 February 1999 (1999-02-28) * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104390871A (en) * | 2014-11-21 | 2015-03-04 | 广西智通节能环保科技有限公司 | Hardness measuring meter |
CN113974563A (en) * | 2016-12-19 | 2022-01-28 | 麦克赛尔株式会社 | Hardness meter and hardness measuring method |
CN106841561A (en) * | 2017-01-06 | 2017-06-13 | 无锡职业技术学院 | The lossless hardness measuring device of hardened steel and method |
CN107727522A (en) * | 2017-09-27 | 2018-02-23 | 健研检测集团有限公司 | A kind of device based on hardness method measurement steel strength |
CN109632540A (en) * | 2018-11-22 | 2019-04-16 | 中国人民解放军陆军装甲兵学院 | A method of measurement alloyed steel surface hardness |
CN117347207A (en) * | 2023-10-16 | 2024-01-05 | 秦皇岛华日升电子有限公司 | Online hardness automatic detection system |
CN117347207B (en) * | 2023-10-16 | 2024-06-04 | 秦皇岛华日升电子有限公司 | Online hardness automatic detection system |
CN119178803A (en) * | 2024-11-22 | 2024-12-24 | 湖南省湘电试验研究院有限公司 | Method for measuring hardness of electroceramics material, ultrasonic sclerometer and control system thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103278568A (en) | A kind of ultrasonic hardness tester and testing method thereof | |
US9696356B2 (en) | Apparatus and methods for testing of acoustic devices and systems | |
CN104297346A (en) | Nondestructive detection system of sheet metal by ultrasonic planar guided-wave and detection method thereof | |
CN103486960A (en) | An ultrasonic, eddy current and EMAT integrated non-destructive thickness gauge and method thereof | |
CN101458074A (en) | Ultrasonic thickness meter with sensor automatic recognition function | |
CN107703161A (en) | A kind of Shock stress Wave detecting system | |
CN103616102B (en) | A kind of ultrasonic leakage compressional wave sensing device detected for sheet metal residual stress distribution | |
CN101609068B (en) | Novel acoustic nondestructive test method | |
CN104849351A (en) | Surface acoustic impedance detection method and system based on non-contact air coupling | |
CN103743817B (en) | A kind of low frequency ultrasound transducer array couples detection means | |
CN201340367Y (en) | Material elastic property tester | |
CN105865923A (en) | Soft matter mechanical property measurement method and system | |
CN206074213U (en) | The modal idenlification system that a kind of Transformer Winding loosens | |
CN104854450A (en) | Ultrasound method and device for inspecting the bulk of a weld for the presence of defects | |
CN204855288U (en) | Bergamot pear compactness nondestructive test device | |
CN217484251U (en) | Electromagnetic ultrasonic and eddy current composite sensor and thickness gauge with same | |
CN105043311A (en) | Ultrasonic thickness gauge | |
CN203732503U (en) | Low-frequency ultrasonic transducer type array coupling detection device | |
CN213397458U (en) | Residual stress measuring device based on phased array supersound | |
CN204594938U (en) | Acoustics spectrum analysis is utilized to identify the successional device of special-shaped parts | |
CN204788285U (en) | Ultrasonic thickness gauge | |
CN104569150A (en) | Coal rock mechanical parameter detector and method for measuring mechanical parameters of coal rock | |
CN201191179Y (en) | Thickness measurer having probe recognition function | |
CN201673210U (en) | High frequency dielectric loss measurement apparatus for enamelled wires | |
CN106885847B (en) | An acoustic-vibration non-destructive testing system and method for fragrant pear hardness based on piezoelectric beam sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20130904 |