CN103260329A - Plasma jet device with suspension electrode - Google Patents

Plasma jet device with suspension electrode Download PDF

Info

Publication number
CN103260329A
CN103260329A CN2013101418956A CN201310141895A CN103260329A CN 103260329 A CN103260329 A CN 103260329A CN 2013101418956 A CN2013101418956 A CN 2013101418956A CN 201310141895 A CN201310141895 A CN 201310141895A CN 103260329 A CN103260329 A CN 103260329A
Authority
CN
China
Prior art keywords
plasma jet
electrode
tube
jet device
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2013101418956A
Other languages
Chinese (zh)
Inventor
刘大伟
胡江天
卢新培
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong University of Science and Technology
Original Assignee
Huazhong University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong University of Science and Technology filed Critical Huazhong University of Science and Technology
Priority to CN2013101418956A priority Critical patent/CN103260329A/en
Publication of CN103260329A publication Critical patent/CN103260329A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

本发明属于等离子体技术领域,提供了一种带悬浮电极的等离子体射流装置,包括:两端开口的介质管、套接于所述介质管的入口端的通气口,悬浮于所述介质管内的悬浮电极,用于支持所述悬浮电极的支撑结构,包裹在所述介质管的出口端的高压电极以及与所述高压电极连接的工作电源;工作时,工作气体从通气口处通入,经过介质管的出口端流出并产生活性粒子密度高的等离子体射流。本发明由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低的问题;还能够加大等离子体的横截面积,从而在材料处理和生物应用中能够加大处理面积。

The invention belongs to the field of plasma technology, and provides a plasma jet device with suspended electrodes, comprising: a dielectric tube with openings at both ends, an air vent sleeved at the inlet end of the dielectric tube, and a The suspension electrode is used to support the support structure of the suspension electrode, the high-voltage electrode wrapped around the outlet end of the medium pipe and the working power supply connected to the high-voltage electrode; when working, the working gas is passed through the vent and passes through the medium The outlet end of the tube flows out and creates a plasma jet with a high density of active particles. Due to the high taper of the tip of the needle electrode, the present invention can form a strong electric field, making ionization more likely to occur, thereby effectively reducing the breakdown voltage, and ionizing active particles more easily, effectively solving the problem of low active particle density in the prior art problem; also being able to increase the cross-sectional area of the plasma, thus enabling larger processing areas in materials processing and biological applications.

Description

一种带悬浮电极的等离子体射流装置A plasma jet device with suspended electrodes

技术领域technical field

本发明属于等离子体技术领域,更具体地,涉及一种带悬浮电极的等离子体射流装置。The invention belongs to the field of plasma technology, and more specifically relates to a plasma jet device with suspended electrodes.

背景技术Background technique

现有的等离子体射流装置可以分为以下几种:第一种如图1所示的一种千赫兹交流电源的等离子体发生装置,包括高压电极14与接地电极12通过介质圆片13隔开,共同置于介质管15中,工作气体源16为氮气,流量为3升/秒。工作电源11为高压交流电源,频率为20千赫兹。等离子体通过电极和介质圆片中的小孔从管内喷出。第二种如图2所示的一种射频等离子体针中,工作电源27为射频电源,直径为0.3毫米的钨丝作为高压电极23接于射频电源上,高压电极置于直径为4毫米内介质管21中,外面套一个介质容器22,高压电极、内介质管、外介质容器共同安放于底座26上。工作气体25通过底座上开孔进入内介质管,从而产生放电。Existing plasma jet devices can be divided into the following types: the first one is a plasma generating device of a kilohertz AC power supply as shown in Figure 1, comprising a high-voltage electrode 14 and a ground electrode 12 separated by a dielectric disc 13 , are placed together in the medium pipe 15, the working gas source 16 is nitrogen, and the flow rate is 3 liters/second. The working power source 11 is a high-voltage AC power source with a frequency of 20 kHz. Plasma is ejected from the tube through small holes in the electrodes and dielectric disc. In the second type of radio frequency plasma needle shown in Figure 2, the working power supply 27 is a radio frequency power supply, and a tungsten wire with a diameter of 0.3 mm is connected to the radio frequency power supply as a high voltage electrode 23, and the high voltage electrode is placed within a diameter of 4 mm. The medium pipe 21 is covered with a medium container 22 outside, and the high-voltage electrode, the inner medium pipe and the outer medium container are placed on the base 26 together. The working gas 25 enters the inner dielectric tube through the opening on the base, thereby generating discharge.

另外还有一种如图3所示的双电机双频电源,其中,电源31为射频电源,接至高压电极33上,高压电极33位于介质管32中,工作气体从介质管32中流过,接地电极34包裹于介质管外侧。另一交流电源36连接一电极板35,并置于介质管下方,其作用是控制等离子射流的长度、粗细。In addition, there is a dual-motor dual-frequency power supply as shown in Figure 3, wherein the power supply 31 is a radio frequency power supply connected to the high-voltage electrode 33, and the high-voltage electrode 33 is located in the dielectric tube 32, and the working gas flows through the dielectric tube 32 and is grounded. The electrodes 34 are wrapped on the outside of the dielectric tube. Another AC power supply 36 is connected to an electrode plate 35 and placed under the dielectric tube, and its function is to control the length and thickness of the plasma jet.

目前已有的技术都存在一部分的缺点,如产生等离子体活性粒子密度低、等离子体温度高、等离子体处理面积小,这些问题使得等离子体的应用效果不是很理想。The current existing technologies have some shortcomings, such as low density of plasma active particles, high plasma temperature, and small plasma treatment area. These problems make the application effect of plasma unsatisfactory.

发明内容Contents of the invention

针对现有技术的缺陷,本发明的目的在于提供一种带悬浮电极的等离子体射流装置,旨在解决现有技术中活性粒子密度低的问题。Aiming at the defects of the prior art, the object of the present invention is to provide a plasma jet device with suspended electrodes, aiming at solving the problem of low density of active particles in the prior art.

为实现上述目的,本发明提供了一种带悬浮电极的等离子体射流装置,包括:两端开口的介质管、套接于所述介质管的入口端的通气口,悬浮于所述介质管内的悬浮电极,用于支持所述悬浮电极的支撑结构,包裹在所述介质管的出口端的高压电极以及与所述高压电极连接的工作电源;工作时,工作气体从通气口处通入,经过介质管的出口端流出并产生活性粒子密度高的等离子体射流。In order to achieve the above object, the present invention provides a plasma jet device with suspended electrodes, comprising: a dielectric tube with openings at both ends, a vent hole sleeved at the inlet end of the dielectric tube, and a suspended electrode suspended in the dielectric tube. The electrode is used to support the support structure of the suspension electrode, the high-voltage electrode wrapped at the outlet end of the medium tube and the working power supply connected to the high-voltage electrode; when working, the working gas is passed through the vent and passes through the medium tube The outlet port flows out and produces a plasma jet with a high density of active particles.

更进一步地,所述介质管为空心的石英管或玻璃管,所述介质管的内直径为6毫米-12毫米。Furthermore, the medium tube is a hollow quartz tube or glass tube, and the inner diameter of the medium tube is 6mm-12mm.

更进一步地,所述悬浮电极为不锈钢针、铜线或铜棒。Furthermore, the suspension electrodes are stainless steel needles, copper wires or copper rods.

更进一步地,所述悬浮电极包括铜线以及一端封口的玻璃管或陶瓷管,所述铜线位于所述玻璃管或陶瓷管中。Furthermore, the suspension electrode includes a copper wire and a glass or ceramic tube with one end sealed, and the copper wire is located in the glass or ceramic tube.

更进一步地,所述高压电极为锡纸、铜片或铁片。Furthermore, the high-voltage electrode is tin foil, copper sheet or iron sheet.

更进一步地,所述通气口为柔性密闭管道结构。Furthermore, the air vent is a flexible and airtight pipe structure.

更进一步地,所述等离子体射流装置还包括与所述通气口连接的减压阀和与所述减压阀连接的储气器,工作气体储存于所述储气器中并经过减压阀后从通气口处通入所述介质管中。Furthermore, the plasma jet device also includes a pressure reducing valve connected to the vent and a gas reservoir connected to the pressure reducing valve, the working gas is stored in the gas reservoir and passed through the pressure reducing valve Then pass into the medium pipe from the vent.

更进一步地,所述工作气体为氦气、氩气、氮气、氧气、空气、混合气体、气态化合物或气态有机物。Furthermore, the working gas is helium, argon, nitrogen, oxygen, air, mixed gas, gaseous compound or gaseous organic compound.

更进一步地,所述工作电源为脉冲电源、射频电源或交流电源。Furthermore, the working power is pulse power, radio frequency power or AC power.

本发明由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低的问题;还能够加大等离子体的横截面积,从而在材料处理和生物应用中能够加大处理面积。Due to the high taper of the tip of the needle electrode, the present invention can form a strong electric field, making ionization more likely to occur, thereby effectively reducing the breakdown voltage, and ionizing active particles more easily, effectively solving the problem of low active particle density in the prior art problem; also being able to increase the cross-sectional area of the plasma, thus enabling larger processing areas in materials processing and biological applications.

附图说明Description of drawings

图1是现有技术提供的一种千赫兹交流等离子射流装置的结构示意图;Fig. 1 is the structural representation of a kind of kilohertz AC plasma jet device provided by the prior art;

图2是现有技术提供的一种射频等离子体针的结构示意图;Fig. 2 is a schematic structural view of a radio frequency plasma needle provided by the prior art;

图3为现有技术提供的一种双电极双频等离子体射流装置示意图;Fig. 3 is a schematic diagram of a dual-electrode dual-frequency plasma jet device provided by the prior art;

图4为本发明第一个实施例提供的带悬浮电极的等离子体射流装置的结构示意图;FIG. 4 is a schematic structural view of a plasma jet device with suspended electrodes provided in the first embodiment of the present invention;

图5为本发明第二个实施例提供的带悬浮电极的等离子体射流装置的结构示意图;5 is a schematic structural diagram of a plasma jet device with suspended electrodes provided in a second embodiment of the present invention;

图6为本发明实施例提供的悬浮电极不同位置的结构示意图;Fig. 6 is a schematic structural diagram of different positions of the suspension electrode provided by the embodiment of the present invention;

图7为本发明实验照片示意图。Fig. 7 is a schematic diagram of an experiment photo of the present invention.

具体实施方式Detailed ways

为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.

本发明提供的带悬浮电极的等离子体射流装置可以产生活性粒子密度高的等离子体射流;通过改变悬浮电极和电源电极的相对位置,悬浮电极不仅能降低等离子体射流的击穿电压,而且能增加等离子体的活性,还能增加射流的长度。本发明装置制作简单,使用时安全、方便,工作气体范围广,使等离子体的应用范围进一步提高。The plasma jet device with suspended electrodes provided by the present invention can produce plasma jets with high density of active particles; by changing the relative positions of the suspended electrodes and the power electrodes, the suspended electrodes can not only reduce the breakdown voltage of the plasma jet, but also increase the The activity of the plasma also increases the length of the jet. The device of the invention is simple to manufacture, safe and convenient to use, and has a wide range of working gas, which further improves the application range of the plasma.

图4和图5示出了本发明实施例提供的带悬浮电极的等离子体射流装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:Figure 4 and Figure 5 show the structure of the plasma jet device with suspended electrodes provided by the embodiment of the present invention. For the convenience of description, only the parts related to the embodiment of the present invention are shown, and the details are as follows:

带悬浮电极的等离子体射流装置包括:两端开口的介质管2、套接于介质管2的入口端的通气口10,悬浮于介质管2内的悬浮电极1,用于支持悬浮电极1的支撑结构7,包裹在介质管2的出口端的高压电极3以及与高压电极3连接的工作电源6;工作时,工作气体从通气口10处通入,经过介质管2的出口端流出并产生活性粒子密度高的等离子体射流。The plasma jet device with suspended electrodes includes: a dielectric tube 2 with openings at both ends, a vent 10 sleeved at the inlet end of the dielectric tube 2, a suspended electrode 1 suspended in the dielectric tube 2, and a support for supporting the suspended electrode 1 Structure 7, the high-voltage electrode 3 wrapped at the outlet end of the dielectric tube 2 and the working power supply 6 connected to the high-voltage electrode 3; when working, the working gas is passed through the vent 10, flows out through the outlet end of the medium tube 2 and generates active particles High density plasma jet.

其中,介质管2与工作气体连通,介质管2为空心管,可以为石英管或玻璃管,介质管的内直径为6毫米-12毫米。Wherein, the medium pipe 2 communicates with the working gas, and the medium pipe 2 is a hollow pipe, which can be a quartz tube or a glass tube, and the inner diameter of the medium pipe is 6mm-12mm.

悬浮电极1位于介质管内,不与介质管壁接触;悬浮电极1可以为不锈钢针、铜线或铜棒。悬浮电极1还可以包括铜线以及一端封口的玻璃管或陶瓷管,铜线位于玻璃管或陶瓷管中;并置于介质管内。不锈钢针由于其高锥度,更容易发生电晕放电,减小击穿电压;使用铜线或铜棒则能减小悬浮电极与高压电极的距离,促进均匀的等离子体射流产生。The suspension electrode 1 is located in the medium tube, not in contact with the wall of the medium tube; the suspension electrode 1 can be a stainless steel needle, copper wire or copper rod. The suspension electrode 1 may also include a copper wire and a glass tube or a ceramic tube sealed at one end, and the copper wire is located in the glass tube or ceramic tube; and placed in the dielectric tube. Due to its high taper, the stainless steel needle is more prone to corona discharge and reduces the breakdown voltage; the use of copper wire or copper rod can reduce the distance between the suspension electrode and the high voltage electrode and promote uniform plasma jet generation.

高压电极3为包裹在介质管出口处的导电介质,可以为锡纸、铜片或铁片等等。The high-voltage electrode 3 is a conductive medium wrapped at the outlet of the medium pipe, which can be tin foil, copper sheet or iron sheet or the like.

支撑结构7用于使悬浮电极1悬浮于介质管2内,不与管壁接触,支撑结构7为绝缘材料。The support structure 7 is used to suspend the suspension electrode 1 in the dielectric tube 2 without contacting the tube wall, and the support structure 7 is an insulating material.

通气口10用于使工作气体12进入介质管2内,通气口10套接于介质管2的端口,通气口10可以采用柔性管道结构,必须保证紧密连接。The air vent 10 is used to allow the working gas 12 to enter the medium pipe 2. The air vent 10 is socketed on the port of the medium pipe 2. The air vent 10 can adopt a flexible pipe structure and must ensure tight connection.

工作电源6可以为脉冲电源、射频电源或交流电源等。脉冲电源产生等离子体温度低,活性粒子密度适中,适用于生物医学应用;射频电源产生等离子有高密度的活性粒子,适用于材料处理;交流电源能够产生长距离的射流,有更高对复杂三维目标的处理能力。The working power supply 6 can be a pulse power supply, a radio frequency power supply or an AC power supply and the like. Pulse power supply produces plasma with low temperature and moderate density of active particles, which is suitable for biomedical applications; radio frequency power supply produces plasma with high density of active particles, which is suitable for material processing; AC power supply can generate long-distance jets, and has higher precision for complex three-dimensional The processing power of the target.

在本发明实施例中,等离子体射流装置还包括与通气口10连接的减压阀11和与减压阀11连接的储气器12,工作气体储存于储气器12中并经过减压阀11后从通气口处通入介质管2中。In the embodiment of the present invention, the plasma jet device further includes a decompression valve 11 connected to the vent 10 and a gas reservoir 12 connected to the decompression valve 11, the working gas is stored in the gas reservoir 12 and passes through the decompression valve After 11, pass in the medium pipe 2 from the air vent.

本发明提供的带悬浮电极的等离子体射流装置可以产生低温、活性粒子密度高的等离子体射流,并且适用于多种工作气体。其中,工作气体可以为氦气、氩气、氮气、氧气、空气、混合气体、气态化合物或气态有机物。The plasma jet device with suspended electrodes provided by the invention can generate plasma jets with low temperature and high density of active particles, and is suitable for various working gases. Wherein, the working gas may be helium, argon, nitrogen, oxygen, air, mixed gas, gaseous compound or gaseous organic compound.

在本发明实施例中,悬浮电极是指不接地的金属电极,当置于高压电极形成的电场中,电势差能够激发电子电离,从而获得电位,产生等离子体,并且能够提高等离子的性能。装置中,高压电极套于介质管外端口处,悬浮电极置于介质管中心,介质管为空心管,与工作气体源相通。其特点在于:悬浮电极不仅能降低等离子体射流的击穿电压,而且能增加等离子体的活性,还能加长等离子体射流的长度,加大射流面积。In the embodiment of the present invention, the floating electrode refers to an ungrounded metal electrode. When placed in the electric field formed by the high-voltage electrode, the potential difference can excite electron ionization, thereby obtaining potential, generating plasma, and improving the performance of the plasma. In the device, the high-voltage electrode is set at the outer port of the medium tube, the suspension electrode is placed in the center of the medium tube, and the medium tube is a hollow tube that communicates with the working gas source. The characteristic is that the suspension electrode can not only reduce the breakdown voltage of the plasma jet, but also increase the activity of the plasma, lengthen the length of the plasma jet, and increase the area of the jet.

本发明制作简单,使用时安全、方便;工作气体范围广,工作气体可以为氦气、氩气、氮气、氧气等单质气体或混有其他气体的混合气体,也可以是空气、气态化合物或气态有机物等;工作电源可以为脉冲电源、射频电源、交流电源等,适用于多种电源;击穿电压低,并且在大气压下即能得到稳定的射流,无需真空环境;等离子体的温度较低、长度长、面积大,可以广泛应用于等离子体材料处理、生物医学杀菌等各个方面。The invention is simple to manufacture, safe and convenient to use; the range of working gas is wide, and the working gas can be simple gas such as helium, argon, nitrogen, oxygen or mixed gas mixed with other gases, and can also be air, gaseous compound or gaseous Organic matter, etc.; the working power supply can be pulse power supply, radio frequency power supply, AC power supply, etc., which are suitable for a variety of power supplies; the breakdown voltage is low, and a stable jet can be obtained under atmospheric pressure without a vacuum environment; the temperature of the plasma is low, It has a long length and a large area, and can be widely used in various aspects such as plasma material processing and biomedical sterilization.

为了更进一步的说明本发明实施例提供的带悬浮电极的等离子体射流装置,现参考附图并结合具体实例详述如下:In order to further illustrate the plasma jet device with suspended electrodes provided by the embodiments of the present invention, the details are as follows with reference to the accompanying drawings and specific examples:

实施例1:如图4所示,等离子体射流装置包括介质管2、悬浮电极1、高压电极3、通气口10、工作气体12、减压阀11,介质管2为两端开口的石英管或玻璃管,内直径8毫米,悬浮电极1为一不锈钢针,高压电极3紧贴于介质管外壁。电源6为脉冲电源,电源6与高压电极3连接,工作气体12经过减压阀11从通气口10处通入,经过介质管2流出,在介质管另一侧产生等离子体4。工作气体可以为氦气、氩气、氮气、氧气等单质气体或混有其他气体的混合气体,也可以是空气、气态化合物或气态有机物等。Embodiment 1: As shown in Figure 4, the plasma jet device includes a dielectric tube 2, a suspension electrode 1, a high voltage electrode 3, a vent 10, a working gas 12, and a pressure reducing valve 11, and the dielectric tube 2 is a quartz tube with openings at both ends Or a glass tube with an inner diameter of 8 mm, the suspension electrode 1 is a stainless steel needle, and the high-voltage electrode 3 is closely attached to the outer wall of the medium tube. The power supply 6 is a pulse power supply, and the power supply 6 is connected to the high-voltage electrode 3. The working gas 12 enters from the vent 10 through the pressure reducing valve 11, flows out through the medium pipe 2, and generates plasma 4 on the other side of the medium pipe. The working gas can be simple gas such as helium, argon, nitrogen, oxygen, or a mixed gas mixed with other gases, or it can be air, gaseous compounds, or gaseous organic compounds.

目前已存在的等离子体射流装置产生等离子体活性粒子密度低,实施例1中由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低这一问题。Existing plasma jet devices currently have a low density of plasma active particles. In Example 1, due to the high taper of the needle electrode head, a strong electric field can be formed, making ionization easier to occur, thereby effectively reducing the breakdown voltage, and more The active particles are easily ionized, effectively solving the problem of low active particle density in the prior art.

实施例2:如图5所示,介质管2、高压电极3、脉冲电源6参数与实例一中相同,悬浮电极单元1由悬浮电极和一端封口的玻璃管组成,悬浮电极为铜线,位于玻璃管内;悬浮电极单元采用上述结构,绝缘介质插入放电空间形成介质阻挡放电,这种悬浮电极装置不仅具有实施例1的优点,还能够加大等离子体的横截面积,从而在材料处理和生物医学应用中能够加大处理面积。由于使用玻璃或陶瓷作为介质阻挡放电,等离子体的温度低,一般为室温或者略高于室温。Embodiment 2: As shown in Figure 5, the parameters of the dielectric tube 2, the high-voltage electrode 3, and the pulse power supply 6 are the same as those in Example 1. The suspension electrode unit 1 is composed of a suspension electrode and a glass tube with one end sealed. The suspension electrode is a copper wire located at In the glass tube; the suspension electrode unit adopts the above structure, and the insulating medium is inserted into the discharge space to form a dielectric barrier discharge. This suspension electrode device not only has the advantages of embodiment 1, but also can increase the cross-sectional area of the plasma, so that it can be used in material processing and biological In medical applications, the treatment area can be increased. Due to the use of glass or ceramics as the dielectric barrier discharge, the temperature of the plasma is low, generally room temperature or slightly higher than room temperature.

以氦气为例,介质管内壁直径为8毫米,当通入气体流量为3升/分时,脉冲电源频率为10千赫兹,脉宽为300纳秒,调节悬浮电极的位置,产生的等离子体活性粒子密度高,温度低,略高于室温,能够用手直接触摸,等离子体射流长度可达5厘米以上。Taking helium as an example, the diameter of the inner wall of the dielectric tube is 8 mm. When the gas flow rate is 3 liters per minute, the frequency of the pulse power supply is 10 kHz, the pulse width is 300 nanoseconds, and the position of the suspended electrode is adjusted to generate plasma. The density of bioactive particles is high, the temperature is low, slightly higher than room temperature, and can be directly touched by hands, and the length of the plasma jet can reach more than 5 cm.

本装置没有悬浮电极时,脉冲电压幅值增加到10千伏,高压电极和接地电极距离减少至1厘米时还未产生等离子体。图6为悬浮电极位置改变的示意图,当悬浮针电极在介质管内时如图6(a)所示,接地电极距离高压电极3厘米时,击穿电压为5.6千伏,在介质管外如图6(b)所示则为3.2千伏。介质阻挡悬浮电极也会有类似的现象:在管内时如图6(c)所示击穿电压为5.02千伏,在管外如图6(d)所示则降至3.7千伏。以上实验数据充分说明了悬浮电极能够降低放电电压,更容易产生等离子体。When the device does not have a floating electrode, the pulse voltage amplitude is increased to 10 kV, and the plasma has not yet been generated when the distance between the high-voltage electrode and the ground electrode is reduced to 1 cm. Figure 6 is a schematic diagram of the position change of the suspension electrode. When the suspension needle electrode is in the dielectric tube, as shown in Figure 6(a), when the ground electrode is 3 cm away from the high-voltage electrode, the breakdown voltage is 5.6 kV. 6(b) shows 3.2 kV. The dielectric barrier suspension electrode also has a similar phenomenon: the breakdown voltage is 5.02 kV as shown in Figure 6(c) inside the tube, and drops to 3.7 kV outside the tube as shown in Figure 6(d). The above experimental data fully demonstrate that the suspended electrode can reduce the discharge voltage and generate plasma more easily.

等离子射流照片如图7所示,图7(a)(b)(c)(d)与图6(a)(b)(c)(d)一一对应,从图7(b)和(d)中可以看出,悬浮电极位于管外时,增加了放电强度。并且图7(d)中显示,当介质阻挡悬浮电极位于管外时,等离子体射流能够形成双通道,增加了等离子体的处理面积。The photo of the plasma jet is shown in Figure 7, Figure 7(a)(b)(c)(d) corresponds to Figure 6(a)(b)(c)(d), from Figure 7(b) and ( In d), it can be seen that when the suspended electrode is located outside the tube, the discharge intensity is increased. And it is shown in Fig. 7(d) that when the dielectric barrier suspension electrode is located outside the tube, the plasma jet can form a double channel, which increases the plasma processing area.

本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.

Claims (9)

1.一种带悬浮电极的等离子体射流装置,其特征在于,包括:两端开口的介质管、套接于所述介质管的入口端的通气口,悬浮于所述介质管内的悬浮电极,用于支持所述悬浮电极的支撑结构,包裹在所述介质管的出口端的高压电极以及与所述高压电极连接的工作电源;1. A plasma jet device with a suspended electrode is characterized in that it comprises: a dielectric tube with openings at both ends, an air vent sleeved at the inlet end of the medium tube, and a suspended electrode suspended in the medium tube, with For the support structure supporting the suspension electrode, the high-voltage electrode wrapped around the outlet end of the medium tube and the working power supply connected to the high-voltage electrode; 工作时,工作气体从通气口处通入,经过介质管的出口端流出并产生活性粒子密度高的等离子体射流。When working, the working gas enters through the air vent and flows out through the outlet of the medium pipe to generate a plasma jet with high density of active particles. 2.如权利要求1所述的等离子体射流装置,其特征在于,所述介质管为空心的石英管或玻璃管,所述介质管的内直径为6毫米-12毫米。2 . The plasma jet device according to claim 1 , wherein the medium tube is a hollow quartz tube or glass tube, and the inner diameter of the medium tube is 6mm-12mm. 3.如权利要求1所述的等离子体射流装置,其特征在于,所述悬浮电极为不锈钢针、铜线或铜棒。3. The plasma jet device according to claim 1, wherein the suspension electrode is a stainless steel needle, a copper wire or a copper rod. 4.如权利要求1所述的等离子体射流装置,其特征在于,所述悬浮电极包括铜线以及一端封口的玻璃管或陶瓷管,所述铜线位于所述玻璃管或陶瓷管中。4 . The plasma jet device according to claim 1 , wherein the suspension electrode comprises a copper wire and a glass or ceramic tube with one end sealed, and the copper wire is located in the glass or ceramic tube. 5.如权利要求1所述的等离子体射流装置,其特征在于,所述高压电极为锡纸、铜片或铁片。5. The plasma jet device according to claim 1, wherein the high voltage electrode is tin foil, copper sheet or iron sheet. 6.如权利要求1所述的等离子体射流装置,其特征在于,所述通气口为柔性密闭管道结构。6. The plasma jet device according to claim 1, wherein the air vent is a flexible airtight pipe structure. 7.如权利要求1所述的等离子体射流装置,其特征在于,所述等离子体射流装置还包括与所述通气口连接的减压阀和与所述减压阀连接的储气器,工作气体储存于所述储气器中并经过减压阀后从通气口处通入所述介质管中。7. The plasma jet device as claimed in claim 1, characterized in that, the plasma jet device also comprises a pressure reducing valve connected with the air vent and an air reservoir connected with the pressure reducing valve, working The gas is stored in the gas storage and flows into the medium pipe from the vent after passing through the pressure reducing valve. 8.如权利要求1或7所述的等离子体射流装置,其特征在于,所述工作气体为氦气、氩气、氮气、氧气、空气、混合气体、气态化合物或气态有机物。8. The plasma jet device according to claim 1 or 7, wherein the working gas is helium, argon, nitrogen, oxygen, air, mixed gas, gaseous compound or gaseous organic substance. 9.如权利要求1所述的等离子体射流装置,其特征在于,所述工作电源为脉冲电源、射频电源或交流电源。9. The plasma jet device according to claim 1, wherein the working power is pulse power, radio frequency power or AC power.
CN2013101418956A 2013-04-23 2013-04-23 Plasma jet device with suspension electrode Pending CN103260329A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013101418956A CN103260329A (en) 2013-04-23 2013-04-23 Plasma jet device with suspension electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013101418956A CN103260329A (en) 2013-04-23 2013-04-23 Plasma jet device with suspension electrode

Publications (1)

Publication Number Publication Date
CN103260329A true CN103260329A (en) 2013-08-21

Family

ID=48963945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013101418956A Pending CN103260329A (en) 2013-04-23 2013-04-23 Plasma jet device with suspension electrode

Country Status (1)

Country Link
CN (1) CN103260329A (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254188A (en) * 2014-10-10 2014-12-31 中国地质大学(武汉) Miniature normal-voltage glow discharge plasma excitation source
CN104883806A (en) * 2015-03-06 2015-09-02 苏州大学 Plasma jet device and assembly, and crystalline silicon battery surface oxidation and decontamination method
CN106132056A (en) * 2016-07-01 2016-11-16 中国科学院电工研究所 Plasma jet device and the method for suppression epoxy resin surface charge buildup
CN106714435A (en) * 2016-11-15 2017-05-24 北京理工大学 Large-area atmospheric pressure plasma jet generation device
CN106954332A (en) * 2017-05-17 2017-07-14 北京交通大学 A device for generating glow discharge plasma
RU2633705C1 (en) * 2016-06-20 2017-10-17 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Method of producing plasma jet and device for its implementation
CN107333376A (en) * 2017-04-21 2017-11-07 南京航空航天大学 A kind of atomic plasma jet generating device of atmospheric pressure
CN108322983A (en) * 2018-01-26 2018-07-24 中国科学院西安光学精密机械研究所 Floating electrode enhanced dielectric barrier discharge dispersion plasma jet generating device
CN108352224A (en) * 2015-10-16 2018-07-31 美国专利创新有限公司 Low electromagnetic field electrosurgery cable
CN108566714A (en) * 2018-06-09 2018-09-21 贵州电网有限责任公司 A kind of plasma jet device
CN109872940A (en) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 An ion source device utilizing dielectric barrier discharge to assist ionization
CN110047722A (en) * 2019-02-28 2019-07-23 华中科技大学 It is a kind of for handling the charged particle generating device of atmospheric environment
CN111472954A (en) * 2020-03-25 2020-07-31 北京交通大学 Insulating anode cathode arc propeller with auxiliary suspension potential electrode
CN112874165A (en) * 2020-11-25 2021-06-01 华中科技大学 Plasma microbeam coaxial electric polarization induction electric spray printing device and spray printing method
CN113365406A (en) * 2021-06-18 2021-09-07 杭州清稞科技有限公司 Low-temperature plasma generating device and application
CN113993263A (en) * 2021-11-15 2022-01-28 安徽工业大学 Atmospheric pressure plasma generator, preparation method and plasma generating device
CN114501761A (en) * 2022-02-10 2022-05-13 大连理工大学 Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode
CN114513890A (en) * 2022-04-19 2022-05-17 北京大学第三医院(北京大学第三临床医学院) Plasma sterilization device with high energy utilization rate and application
CN115161166A (en) * 2022-07-27 2022-10-11 安徽大学 An experimental device for inactivating microorganisms by low temperature plasma
WO2024021306A1 (en) * 2022-07-28 2024-02-01 中国科学院苏州生物医学工程技术研究所 Non-contact high-voltage pulse device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101252805A (en) * 2008-03-31 2008-08-27 大连理工大学 Simple Atmospheric Pressure Suspended Electrode Cold Plasma Jet Generator
CN201167433Y (en) * 2008-01-29 2008-12-17 华中科技大学 Dielectric barrier discharge plasma jet device
CN201399098Y (en) * 2008-12-30 2010-02-10 王龙哲 Plasma micro-beam current generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201167433Y (en) * 2008-01-29 2008-12-17 华中科技大学 Dielectric barrier discharge plasma jet device
CN101252805A (en) * 2008-03-31 2008-08-27 大连理工大学 Simple Atmospheric Pressure Suspended Electrode Cold Plasma Jet Generator
CN201399098Y (en) * 2008-12-30 2010-02-10 王龙哲 Plasma micro-beam current generator

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104254188A (en) * 2014-10-10 2014-12-31 中国地质大学(武汉) Miniature normal-voltage glow discharge plasma excitation source
CN104254188B (en) * 2014-10-10 2017-02-01 中国地质大学(武汉) Miniature normal-voltage glow discharge plasma excitation source
CN104883806A (en) * 2015-03-06 2015-09-02 苏州大学 Plasma jet device and assembly, and crystalline silicon battery surface oxidation and decontamination method
CN104883806B (en) * 2015-03-06 2018-09-25 苏州大学 A kind of plasma jet device and component and a kind of method of crystal silicon battery surface oxidation and decontamination
CN108352224A (en) * 2015-10-16 2018-07-31 美国专利创新有限公司 Low electromagnetic field electrosurgery cable
CN108352224B (en) * 2015-10-16 2022-06-14 美国专利创新有限公司 Low electromagnetic field electrosurgical cable
RU2633705C1 (en) * 2016-06-20 2017-10-17 Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) Method of producing plasma jet and device for its implementation
CN106132056A (en) * 2016-07-01 2016-11-16 中国科学院电工研究所 Plasma jet device and the method for suppression epoxy resin surface charge buildup
CN106714435B (en) * 2016-11-15 2019-06-14 北京理工大学 A large area atmospheric pressure plasma jet generating device
CN106714435A (en) * 2016-11-15 2017-05-24 北京理工大学 Large-area atmospheric pressure plasma jet generation device
CN107333376A (en) * 2017-04-21 2017-11-07 南京航空航天大学 A kind of atomic plasma jet generating device of atmospheric pressure
CN106954332A (en) * 2017-05-17 2017-07-14 北京交通大学 A device for generating glow discharge plasma
CN106954332B (en) * 2017-05-17 2019-12-13 北京交通大学 A device for generating glow discharge plasma
CN109872940A (en) * 2017-12-05 2019-06-11 中国科学院大连化学物理研究所 An ion source device utilizing dielectric barrier discharge to assist ionization
CN109872940B (en) * 2017-12-05 2020-05-08 中国科学院大连化学物理研究所 An ion source device utilizing dielectric barrier discharge to assist ionization
CN108322983A (en) * 2018-01-26 2018-07-24 中国科学院西安光学精密机械研究所 Floating electrode enhanced dielectric barrier discharge dispersion plasma jet generating device
CN108322983B (en) * 2018-01-26 2024-05-31 中国科学院西安光学精密机械研究所 Floating electrode reinforced dielectric barrier discharge dispersion plasma jet generating device
CN108566714A (en) * 2018-06-09 2018-09-21 贵州电网有限责任公司 A kind of plasma jet device
CN110047722A (en) * 2019-02-28 2019-07-23 华中科技大学 It is a kind of for handling the charged particle generating device of atmospheric environment
CN111472954A (en) * 2020-03-25 2020-07-31 北京交通大学 Insulating anode cathode arc propeller with auxiliary suspension potential electrode
CN112874165B (en) * 2020-11-25 2022-01-07 华中科技大学 A kind of plasma microbeam coaxial electric polarization induced electrospray printing device and printing method
CN112874165A (en) * 2020-11-25 2021-06-01 华中科技大学 Plasma microbeam coaxial electric polarization induction electric spray printing device and spray printing method
CN113365406A (en) * 2021-06-18 2021-09-07 杭州清稞科技有限公司 Low-temperature plasma generating device and application
CN113993263A (en) * 2021-11-15 2022-01-28 安徽工业大学 Atmospheric pressure plasma generator, preparation method and plasma generating device
CN113993263B (en) * 2021-11-15 2024-03-22 安徽工业大学 Atmospheric pressure plasma generator, preparation method and plasma generating device
CN114501761A (en) * 2022-02-10 2022-05-13 大连理工大学 Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode
CN114501761B (en) * 2022-02-10 2023-01-24 大连理工大学 Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode
CN114513890A (en) * 2022-04-19 2022-05-17 北京大学第三医院(北京大学第三临床医学院) Plasma sterilization device with high energy utilization rate and application
CN115161166A (en) * 2022-07-27 2022-10-11 安徽大学 An experimental device for inactivating microorganisms by low temperature plasma
WO2024021306A1 (en) * 2022-07-28 2024-02-01 中国科学院苏州生物医学工程技术研究所 Non-contact high-voltage pulse device

Similar Documents

Publication Publication Date Title
CN103260329A (en) Plasma jet device with suspension electrode
CN101227790B (en) plasma jet device
CN102523674B (en) Handheld plasma electric torch
CN105551923B (en) Plasma generating equipment and plasma generating method
CN102595757B (en) Three-electrode discharge device for generating large-volume atmosphere pressure plasma
CN206024220U (en) A kind of low-temperature plasma jet device
CN106572586B (en) It is a kind of to generate device that is uniform, stablizing jet plasma
CN103179772B (en) Produce method and the special purpose device thereof of DC Atmospheric Pressure Glow Discharge
CN105848399B (en) A kind of glow discharge jet plasma generating structure
CN105792495B (en) A kind of device and method generating atmospheric pressure homogeneous plasma brush
KR101056097B1 (en) Atmospheric Pressure Plasma Generator
CN101426327A (en) Plasma jet device
CN203761669U (en) Atmospheric pressure cold plasma generator capable of being used for wound healing
CN101702865B (en) Plasma needle device
CN101232770A (en) Dielectric barrier discharge plasma jet device
CN201643445U (en) Contact-type plasma discharger
CN103781271A (en) Atmospheric pressure cold plasma generating device for wound healing
CN108834298A (en) A device and method for controlling the length of radio frequency jet through auxiliary discharge
CN104812154A (en) Three-electrode dielectric barrier discharging plasma generation device
CN106714435B (en) A large area atmospheric pressure plasma jet generating device
CN201167434Y (en) plasma jet device
CN106658931A (en) Portable atmospheric pressure normal temperature plasma jet generating device
CN106028616A (en) A sliding arc discharge plasma jet generating device and method
CN106973482A (en) A kind of petal type glow discharge jet plasma generating structure
CN201167433Y (en) Dielectric barrier discharge plasma jet device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20130821