CN103260329A - Plasma jet device with suspension electrode - Google Patents
Plasma jet device with suspension electrode Download PDFInfo
- Publication number
- CN103260329A CN103260329A CN2013101418956A CN201310141895A CN103260329A CN 103260329 A CN103260329 A CN 103260329A CN 2013101418956 A CN2013101418956 A CN 2013101418956A CN 201310141895 A CN201310141895 A CN 201310141895A CN 103260329 A CN103260329 A CN 103260329A
- Authority
- CN
- China
- Prior art keywords
- plasma jet
- electrode
- tube
- jet device
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000725 suspension Substances 0.000 title claims abstract description 28
- 239000002245 particle Substances 0.000 claims abstract description 18
- 239000007789 gas Substances 0.000 claims description 37
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- 239000011521 glass Substances 0.000 claims description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 12
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000010949 copper Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 239000001307 helium Substances 0.000 claims description 6
- 229910052734 helium Inorganic materials 0.000 claims description 6
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 claims description 6
- 229910052757 nitrogen Inorganic materials 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 229910001220 stainless steel Inorganic materials 0.000 claims description 5
- 239000010935 stainless steel Substances 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical group [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 3
- 239000003570 air Substances 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 239000000126 substance Substances 0.000 claims 1
- 230000015556 catabolic process Effects 0.000 abstract description 9
- 235000010599 Verbascum thapsus Nutrition 0.000 abstract description 4
- 244000178289 Verbascum thapsus Species 0.000 abstract description 4
- 230000005684 electric field Effects 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000003913 materials processing Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 230000004888 barrier function Effects 0.000 description 4
- 230000006837 decompression Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000002894 organic compounds Chemical class 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Plasma Technology (AREA)
Abstract
本发明属于等离子体技术领域,提供了一种带悬浮电极的等离子体射流装置,包括:两端开口的介质管、套接于所述介质管的入口端的通气口,悬浮于所述介质管内的悬浮电极,用于支持所述悬浮电极的支撑结构,包裹在所述介质管的出口端的高压电极以及与所述高压电极连接的工作电源;工作时,工作气体从通气口处通入,经过介质管的出口端流出并产生活性粒子密度高的等离子体射流。本发明由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低的问题;还能够加大等离子体的横截面积,从而在材料处理和生物应用中能够加大处理面积。
The invention belongs to the field of plasma technology, and provides a plasma jet device with suspended electrodes, comprising: a dielectric tube with openings at both ends, an air vent sleeved at the inlet end of the dielectric tube, and a The suspension electrode is used to support the support structure of the suspension electrode, the high-voltage electrode wrapped around the outlet end of the medium pipe and the working power supply connected to the high-voltage electrode; when working, the working gas is passed through the vent and passes through the medium The outlet end of the tube flows out and creates a plasma jet with a high density of active particles. Due to the high taper of the tip of the needle electrode, the present invention can form a strong electric field, making ionization more likely to occur, thereby effectively reducing the breakdown voltage, and ionizing active particles more easily, effectively solving the problem of low active particle density in the prior art problem; also being able to increase the cross-sectional area of the plasma, thus enabling larger processing areas in materials processing and biological applications.
Description
技术领域technical field
本发明属于等离子体技术领域,更具体地,涉及一种带悬浮电极的等离子体射流装置。The invention belongs to the field of plasma technology, and more specifically relates to a plasma jet device with suspended electrodes.
背景技术Background technique
现有的等离子体射流装置可以分为以下几种:第一种如图1所示的一种千赫兹交流电源的等离子体发生装置,包括高压电极14与接地电极12通过介质圆片13隔开,共同置于介质管15中,工作气体源16为氮气,流量为3升/秒。工作电源11为高压交流电源,频率为20千赫兹。等离子体通过电极和介质圆片中的小孔从管内喷出。第二种如图2所示的一种射频等离子体针中,工作电源27为射频电源,直径为0.3毫米的钨丝作为高压电极23接于射频电源上,高压电极置于直径为4毫米内介质管21中,外面套一个介质容器22,高压电极、内介质管、外介质容器共同安放于底座26上。工作气体25通过底座上开孔进入内介质管,从而产生放电。Existing plasma jet devices can be divided into the following types: the first one is a plasma generating device of a kilohertz AC power supply as shown in Figure 1, comprising a high-
另外还有一种如图3所示的双电机双频电源,其中,电源31为射频电源,接至高压电极33上,高压电极33位于介质管32中,工作气体从介质管32中流过,接地电极34包裹于介质管外侧。另一交流电源36连接一电极板35,并置于介质管下方,其作用是控制等离子射流的长度、粗细。In addition, there is a dual-motor dual-frequency power supply as shown in Figure 3, wherein the
目前已有的技术都存在一部分的缺点,如产生等离子体活性粒子密度低、等离子体温度高、等离子体处理面积小,这些问题使得等离子体的应用效果不是很理想。The current existing technologies have some shortcomings, such as low density of plasma active particles, high plasma temperature, and small plasma treatment area. These problems make the application effect of plasma unsatisfactory.
发明内容Contents of the invention
针对现有技术的缺陷,本发明的目的在于提供一种带悬浮电极的等离子体射流装置,旨在解决现有技术中活性粒子密度低的问题。Aiming at the defects of the prior art, the object of the present invention is to provide a plasma jet device with suspended electrodes, aiming at solving the problem of low density of active particles in the prior art.
为实现上述目的,本发明提供了一种带悬浮电极的等离子体射流装置,包括:两端开口的介质管、套接于所述介质管的入口端的通气口,悬浮于所述介质管内的悬浮电极,用于支持所述悬浮电极的支撑结构,包裹在所述介质管的出口端的高压电极以及与所述高压电极连接的工作电源;工作时,工作气体从通气口处通入,经过介质管的出口端流出并产生活性粒子密度高的等离子体射流。In order to achieve the above object, the present invention provides a plasma jet device with suspended electrodes, comprising: a dielectric tube with openings at both ends, a vent hole sleeved at the inlet end of the dielectric tube, and a suspended electrode suspended in the dielectric tube. The electrode is used to support the support structure of the suspension electrode, the high-voltage electrode wrapped at the outlet end of the medium tube and the working power supply connected to the high-voltage electrode; when working, the working gas is passed through the vent and passes through the medium tube The outlet port flows out and produces a plasma jet with a high density of active particles.
更进一步地,所述介质管为空心的石英管或玻璃管,所述介质管的内直径为6毫米-12毫米。Furthermore, the medium tube is a hollow quartz tube or glass tube, and the inner diameter of the medium tube is 6mm-12mm.
更进一步地,所述悬浮电极为不锈钢针、铜线或铜棒。Furthermore, the suspension electrodes are stainless steel needles, copper wires or copper rods.
更进一步地,所述悬浮电极包括铜线以及一端封口的玻璃管或陶瓷管,所述铜线位于所述玻璃管或陶瓷管中。Furthermore, the suspension electrode includes a copper wire and a glass or ceramic tube with one end sealed, and the copper wire is located in the glass or ceramic tube.
更进一步地,所述高压电极为锡纸、铜片或铁片。Furthermore, the high-voltage electrode is tin foil, copper sheet or iron sheet.
更进一步地,所述通气口为柔性密闭管道结构。Furthermore, the air vent is a flexible and airtight pipe structure.
更进一步地,所述等离子体射流装置还包括与所述通气口连接的减压阀和与所述减压阀连接的储气器,工作气体储存于所述储气器中并经过减压阀后从通气口处通入所述介质管中。Furthermore, the plasma jet device also includes a pressure reducing valve connected to the vent and a gas reservoir connected to the pressure reducing valve, the working gas is stored in the gas reservoir and passed through the pressure reducing valve Then pass into the medium pipe from the vent.
更进一步地,所述工作气体为氦气、氩气、氮气、氧气、空气、混合气体、气态化合物或气态有机物。Furthermore, the working gas is helium, argon, nitrogen, oxygen, air, mixed gas, gaseous compound or gaseous organic compound.
更进一步地,所述工作电源为脉冲电源、射频电源或交流电源。Furthermore, the working power is pulse power, radio frequency power or AC power.
本发明由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低的问题;还能够加大等离子体的横截面积,从而在材料处理和生物应用中能够加大处理面积。Due to the high taper of the tip of the needle electrode, the present invention can form a strong electric field, making ionization more likely to occur, thereby effectively reducing the breakdown voltage, and ionizing active particles more easily, effectively solving the problem of low active particle density in the prior art problem; also being able to increase the cross-sectional area of the plasma, thus enabling larger processing areas in materials processing and biological applications.
附图说明Description of drawings
图1是现有技术提供的一种千赫兹交流等离子射流装置的结构示意图;Fig. 1 is the structural representation of a kind of kilohertz AC plasma jet device provided by the prior art;
图2是现有技术提供的一种射频等离子体针的结构示意图;Fig. 2 is a schematic structural view of a radio frequency plasma needle provided by the prior art;
图3为现有技术提供的一种双电极双频等离子体射流装置示意图;Fig. 3 is a schematic diagram of a dual-electrode dual-frequency plasma jet device provided by the prior art;
图4为本发明第一个实施例提供的带悬浮电极的等离子体射流装置的结构示意图;FIG. 4 is a schematic structural view of a plasma jet device with suspended electrodes provided in the first embodiment of the present invention;
图5为本发明第二个实施例提供的带悬浮电极的等离子体射流装置的结构示意图;5 is a schematic structural diagram of a plasma jet device with suspended electrodes provided in a second embodiment of the present invention;
图6为本发明实施例提供的悬浮电极不同位置的结构示意图;Fig. 6 is a schematic structural diagram of different positions of the suspension electrode provided by the embodiment of the present invention;
图7为本发明实验照片示意图。Fig. 7 is a schematic diagram of an experiment photo of the present invention.
具体实施方式Detailed ways
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present invention, not to limit the present invention.
本发明提供的带悬浮电极的等离子体射流装置可以产生活性粒子密度高的等离子体射流;通过改变悬浮电极和电源电极的相对位置,悬浮电极不仅能降低等离子体射流的击穿电压,而且能增加等离子体的活性,还能增加射流的长度。本发明装置制作简单,使用时安全、方便,工作气体范围广,使等离子体的应用范围进一步提高。The plasma jet device with suspended electrodes provided by the present invention can produce plasma jets with high density of active particles; by changing the relative positions of the suspended electrodes and the power electrodes, the suspended electrodes can not only reduce the breakdown voltage of the plasma jet, but also increase the The activity of the plasma also increases the length of the jet. The device of the invention is simple to manufacture, safe and convenient to use, and has a wide range of working gas, which further improves the application range of the plasma.
图4和图5示出了本发明实施例提供的带悬浮电极的等离子体射流装置的结构,为了便于说明,仅示出了与本发明实施例相关的部分,详述如下:Figure 4 and Figure 5 show the structure of the plasma jet device with suspended electrodes provided by the embodiment of the present invention. For the convenience of description, only the parts related to the embodiment of the present invention are shown, and the details are as follows:
带悬浮电极的等离子体射流装置包括:两端开口的介质管2、套接于介质管2的入口端的通气口10,悬浮于介质管2内的悬浮电极1,用于支持悬浮电极1的支撑结构7,包裹在介质管2的出口端的高压电极3以及与高压电极3连接的工作电源6;工作时,工作气体从通气口10处通入,经过介质管2的出口端流出并产生活性粒子密度高的等离子体射流。The plasma jet device with suspended electrodes includes: a
其中,介质管2与工作气体连通,介质管2为空心管,可以为石英管或玻璃管,介质管的内直径为6毫米-12毫米。Wherein, the
悬浮电极1位于介质管内,不与介质管壁接触;悬浮电极1可以为不锈钢针、铜线或铜棒。悬浮电极1还可以包括铜线以及一端封口的玻璃管或陶瓷管,铜线位于玻璃管或陶瓷管中;并置于介质管内。不锈钢针由于其高锥度,更容易发生电晕放电,减小击穿电压;使用铜线或铜棒则能减小悬浮电极与高压电极的距离,促进均匀的等离子体射流产生。The suspension electrode 1 is located in the medium tube, not in contact with the wall of the medium tube; the suspension electrode 1 can be a stainless steel needle, copper wire or copper rod. The suspension electrode 1 may also include a copper wire and a glass tube or a ceramic tube sealed at one end, and the copper wire is located in the glass tube or ceramic tube; and placed in the dielectric tube. Due to its high taper, the stainless steel needle is more prone to corona discharge and reduces the breakdown voltage; the use of copper wire or copper rod can reduce the distance between the suspension electrode and the high voltage electrode and promote uniform plasma jet generation.
高压电极3为包裹在介质管出口处的导电介质,可以为锡纸、铜片或铁片等等。The high-
支撑结构7用于使悬浮电极1悬浮于介质管2内,不与管壁接触,支撑结构7为绝缘材料。The
通气口10用于使工作气体12进入介质管2内,通气口10套接于介质管2的端口,通气口10可以采用柔性管道结构,必须保证紧密连接。The
工作电源6可以为脉冲电源、射频电源或交流电源等。脉冲电源产生等离子体温度低,活性粒子密度适中,适用于生物医学应用;射频电源产生等离子有高密度的活性粒子,适用于材料处理;交流电源能够产生长距离的射流,有更高对复杂三维目标的处理能力。The working power supply 6 can be a pulse power supply, a radio frequency power supply or an AC power supply and the like. Pulse power supply produces plasma with low temperature and moderate density of active particles, which is suitable for biomedical applications; radio frequency power supply produces plasma with high density of active particles, which is suitable for material processing; AC power supply can generate long-distance jets, and has higher precision for complex three-dimensional The processing power of the target.
在本发明实施例中,等离子体射流装置还包括与通气口10连接的减压阀11和与减压阀11连接的储气器12,工作气体储存于储气器12中并经过减压阀11后从通气口处通入介质管2中。In the embodiment of the present invention, the plasma jet device further includes a
本发明提供的带悬浮电极的等离子体射流装置可以产生低温、活性粒子密度高的等离子体射流,并且适用于多种工作气体。其中,工作气体可以为氦气、氩气、氮气、氧气、空气、混合气体、气态化合物或气态有机物。The plasma jet device with suspended electrodes provided by the invention can generate plasma jets with low temperature and high density of active particles, and is suitable for various working gases. Wherein, the working gas may be helium, argon, nitrogen, oxygen, air, mixed gas, gaseous compound or gaseous organic compound.
在本发明实施例中,悬浮电极是指不接地的金属电极,当置于高压电极形成的电场中,电势差能够激发电子电离,从而获得电位,产生等离子体,并且能够提高等离子的性能。装置中,高压电极套于介质管外端口处,悬浮电极置于介质管中心,介质管为空心管,与工作气体源相通。其特点在于:悬浮电极不仅能降低等离子体射流的击穿电压,而且能增加等离子体的活性,还能加长等离子体射流的长度,加大射流面积。In the embodiment of the present invention, the floating electrode refers to an ungrounded metal electrode. When placed in the electric field formed by the high-voltage electrode, the potential difference can excite electron ionization, thereby obtaining potential, generating plasma, and improving the performance of the plasma. In the device, the high-voltage electrode is set at the outer port of the medium tube, the suspension electrode is placed in the center of the medium tube, and the medium tube is a hollow tube that communicates with the working gas source. The characteristic is that the suspension electrode can not only reduce the breakdown voltage of the plasma jet, but also increase the activity of the plasma, lengthen the length of the plasma jet, and increase the area of the jet.
本发明制作简单,使用时安全、方便;工作气体范围广,工作气体可以为氦气、氩气、氮气、氧气等单质气体或混有其他气体的混合气体,也可以是空气、气态化合物或气态有机物等;工作电源可以为脉冲电源、射频电源、交流电源等,适用于多种电源;击穿电压低,并且在大气压下即能得到稳定的射流,无需真空环境;等离子体的温度较低、长度长、面积大,可以广泛应用于等离子体材料处理、生物医学杀菌等各个方面。The invention is simple to manufacture, safe and convenient to use; the range of working gas is wide, and the working gas can be simple gas such as helium, argon, nitrogen, oxygen or mixed gas mixed with other gases, and can also be air, gaseous compound or gaseous Organic matter, etc.; the working power supply can be pulse power supply, radio frequency power supply, AC power supply, etc., which are suitable for a variety of power supplies; the breakdown voltage is low, and a stable jet can be obtained under atmospheric pressure without a vacuum environment; the temperature of the plasma is low, It has a long length and a large area, and can be widely used in various aspects such as plasma material processing and biomedical sterilization.
为了更进一步的说明本发明实施例提供的带悬浮电极的等离子体射流装置,现参考附图并结合具体实例详述如下:In order to further illustrate the plasma jet device with suspended electrodes provided by the embodiments of the present invention, the details are as follows with reference to the accompanying drawings and specific examples:
实施例1:如图4所示,等离子体射流装置包括介质管2、悬浮电极1、高压电极3、通气口10、工作气体12、减压阀11,介质管2为两端开口的石英管或玻璃管,内直径8毫米,悬浮电极1为一不锈钢针,高压电极3紧贴于介质管外壁。电源6为脉冲电源,电源6与高压电极3连接,工作气体12经过减压阀11从通气口10处通入,经过介质管2流出,在介质管另一侧产生等离子体4。工作气体可以为氦气、氩气、氮气、氧气等单质气体或混有其他气体的混合气体,也可以是空气、气态化合物或气态有机物等。Embodiment 1: As shown in Figure 4, the plasma jet device includes a
目前已存在的等离子体射流装置产生等离子体活性粒子密度低,实施例1中由于针电极头部的高锥度,能够形成强电场,使得电离更容易发生,从而能够有效降低击穿电压,并且更容易电离出活性粒子,有效解决了现有技术中活性粒子密度低这一问题。Existing plasma jet devices currently have a low density of plasma active particles. In Example 1, due to the high taper of the needle electrode head, a strong electric field can be formed, making ionization easier to occur, thereby effectively reducing the breakdown voltage, and more The active particles are easily ionized, effectively solving the problem of low active particle density in the prior art.
实施例2:如图5所示,介质管2、高压电极3、脉冲电源6参数与实例一中相同,悬浮电极单元1由悬浮电极和一端封口的玻璃管组成,悬浮电极为铜线,位于玻璃管内;悬浮电极单元采用上述结构,绝缘介质插入放电空间形成介质阻挡放电,这种悬浮电极装置不仅具有实施例1的优点,还能够加大等离子体的横截面积,从而在材料处理和生物医学应用中能够加大处理面积。由于使用玻璃或陶瓷作为介质阻挡放电,等离子体的温度低,一般为室温或者略高于室温。Embodiment 2: As shown in Figure 5, the parameters of the
以氦气为例,介质管内壁直径为8毫米,当通入气体流量为3升/分时,脉冲电源频率为10千赫兹,脉宽为300纳秒,调节悬浮电极的位置,产生的等离子体活性粒子密度高,温度低,略高于室温,能够用手直接触摸,等离子体射流长度可达5厘米以上。Taking helium as an example, the diameter of the inner wall of the dielectric tube is 8 mm. When the gas flow rate is 3 liters per minute, the frequency of the pulse power supply is 10 kHz, the pulse width is 300 nanoseconds, and the position of the suspended electrode is adjusted to generate plasma. The density of bioactive particles is high, the temperature is low, slightly higher than room temperature, and can be directly touched by hands, and the length of the plasma jet can reach more than 5 cm.
本装置没有悬浮电极时,脉冲电压幅值增加到10千伏,高压电极和接地电极距离减少至1厘米时还未产生等离子体。图6为悬浮电极位置改变的示意图,当悬浮针电极在介质管内时如图6(a)所示,接地电极距离高压电极3厘米时,击穿电压为5.6千伏,在介质管外如图6(b)所示则为3.2千伏。介质阻挡悬浮电极也会有类似的现象:在管内时如图6(c)所示击穿电压为5.02千伏,在管外如图6(d)所示则降至3.7千伏。以上实验数据充分说明了悬浮电极能够降低放电电压,更容易产生等离子体。When the device does not have a floating electrode, the pulse voltage amplitude is increased to 10 kV, and the plasma has not yet been generated when the distance between the high-voltage electrode and the ground electrode is reduced to 1 cm. Figure 6 is a schematic diagram of the position change of the suspension electrode. When the suspension needle electrode is in the dielectric tube, as shown in Figure 6(a), when the ground electrode is 3 cm away from the high-voltage electrode, the breakdown voltage is 5.6 kV. 6(b) shows 3.2 kV. The dielectric barrier suspension electrode also has a similar phenomenon: the breakdown voltage is 5.02 kV as shown in Figure 6(c) inside the tube, and drops to 3.7 kV outside the tube as shown in Figure 6(d). The above experimental data fully demonstrate that the suspended electrode can reduce the discharge voltage and generate plasma more easily.
等离子射流照片如图7所示,图7(a)(b)(c)(d)与图6(a)(b)(c)(d)一一对应,从图7(b)和(d)中可以看出,悬浮电极位于管外时,增加了放电强度。并且图7(d)中显示,当介质阻挡悬浮电极位于管外时,等离子体射流能够形成双通道,增加了等离子体的处理面积。The photo of the plasma jet is shown in Figure 7, Figure 7(a)(b)(c)(d) corresponds to Figure 6(a)(b)(c)(d), from Figure 7(b) and ( In d), it can be seen that when the suspended electrode is located outside the tube, the discharge intensity is increased. And it is shown in Fig. 7(d) that when the dielectric barrier suspension electrode is located outside the tube, the plasma jet can form a double channel, which increases the plasma processing area.
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。It is easy for those skilled in the art to understand that the above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present invention, All should be included within the protection scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101418956A CN103260329A (en) | 2013-04-23 | 2013-04-23 | Plasma jet device with suspension electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2013101418956A CN103260329A (en) | 2013-04-23 | 2013-04-23 | Plasma jet device with suspension electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103260329A true CN103260329A (en) | 2013-08-21 |
Family
ID=48963945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2013101418956A Pending CN103260329A (en) | 2013-04-23 | 2013-04-23 | Plasma jet device with suspension electrode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103260329A (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104254188A (en) * | 2014-10-10 | 2014-12-31 | 中国地质大学(武汉) | Miniature normal-voltage glow discharge plasma excitation source |
CN104883806A (en) * | 2015-03-06 | 2015-09-02 | 苏州大学 | Plasma jet device and assembly, and crystalline silicon battery surface oxidation and decontamination method |
CN106132056A (en) * | 2016-07-01 | 2016-11-16 | 中国科学院电工研究所 | Plasma jet device and the method for suppression epoxy resin surface charge buildup |
CN106714435A (en) * | 2016-11-15 | 2017-05-24 | 北京理工大学 | Large-area atmospheric pressure plasma jet generation device |
CN106954332A (en) * | 2017-05-17 | 2017-07-14 | 北京交通大学 | A device for generating glow discharge plasma |
RU2633705C1 (en) * | 2016-06-20 | 2017-10-17 | Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) | Method of producing plasma jet and device for its implementation |
CN107333376A (en) * | 2017-04-21 | 2017-11-07 | 南京航空航天大学 | A kind of atomic plasma jet generating device of atmospheric pressure |
CN108322983A (en) * | 2018-01-26 | 2018-07-24 | 中国科学院西安光学精密机械研究所 | Floating electrode enhanced dielectric barrier discharge dispersion plasma jet generating device |
CN108352224A (en) * | 2015-10-16 | 2018-07-31 | 美国专利创新有限公司 | Low electromagnetic field electrosurgery cable |
CN108566714A (en) * | 2018-06-09 | 2018-09-21 | 贵州电网有限责任公司 | A kind of plasma jet device |
CN109872940A (en) * | 2017-12-05 | 2019-06-11 | 中国科学院大连化学物理研究所 | An ion source device utilizing dielectric barrier discharge to assist ionization |
CN110047722A (en) * | 2019-02-28 | 2019-07-23 | 华中科技大学 | It is a kind of for handling the charged particle generating device of atmospheric environment |
CN111472954A (en) * | 2020-03-25 | 2020-07-31 | 北京交通大学 | Insulating anode cathode arc propeller with auxiliary suspension potential electrode |
CN112874165A (en) * | 2020-11-25 | 2021-06-01 | 华中科技大学 | Plasma microbeam coaxial electric polarization induction electric spray printing device and spray printing method |
CN113365406A (en) * | 2021-06-18 | 2021-09-07 | 杭州清稞科技有限公司 | Low-temperature plasma generating device and application |
CN113993263A (en) * | 2021-11-15 | 2022-01-28 | 安徽工业大学 | Atmospheric pressure plasma generator, preparation method and plasma generating device |
CN114501761A (en) * | 2022-02-10 | 2022-05-13 | 大连理工大学 | Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode |
CN114513890A (en) * | 2022-04-19 | 2022-05-17 | 北京大学第三医院(北京大学第三临床医学院) | Plasma sterilization device with high energy utilization rate and application |
CN115161166A (en) * | 2022-07-27 | 2022-10-11 | 安徽大学 | An experimental device for inactivating microorganisms by low temperature plasma |
WO2024021306A1 (en) * | 2022-07-28 | 2024-02-01 | 中国科学院苏州生物医学工程技术研究所 | Non-contact high-voltage pulse device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101252805A (en) * | 2008-03-31 | 2008-08-27 | 大连理工大学 | Simple Atmospheric Pressure Suspended Electrode Cold Plasma Jet Generator |
CN201167433Y (en) * | 2008-01-29 | 2008-12-17 | 华中科技大学 | Dielectric barrier discharge plasma jet device |
CN201399098Y (en) * | 2008-12-30 | 2010-02-10 | 王龙哲 | Plasma micro-beam current generator |
-
2013
- 2013-04-23 CN CN2013101418956A patent/CN103260329A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201167433Y (en) * | 2008-01-29 | 2008-12-17 | 华中科技大学 | Dielectric barrier discharge plasma jet device |
CN101252805A (en) * | 2008-03-31 | 2008-08-27 | 大连理工大学 | Simple Atmospheric Pressure Suspended Electrode Cold Plasma Jet Generator |
CN201399098Y (en) * | 2008-12-30 | 2010-02-10 | 王龙哲 | Plasma micro-beam current generator |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104254188A (en) * | 2014-10-10 | 2014-12-31 | 中国地质大学(武汉) | Miniature normal-voltage glow discharge plasma excitation source |
CN104254188B (en) * | 2014-10-10 | 2017-02-01 | 中国地质大学(武汉) | Miniature normal-voltage glow discharge plasma excitation source |
CN104883806A (en) * | 2015-03-06 | 2015-09-02 | 苏州大学 | Plasma jet device and assembly, and crystalline silicon battery surface oxidation and decontamination method |
CN104883806B (en) * | 2015-03-06 | 2018-09-25 | 苏州大学 | A kind of plasma jet device and component and a kind of method of crystal silicon battery surface oxidation and decontamination |
CN108352224A (en) * | 2015-10-16 | 2018-07-31 | 美国专利创新有限公司 | Low electromagnetic field electrosurgery cable |
CN108352224B (en) * | 2015-10-16 | 2022-06-14 | 美国专利创新有限公司 | Low electromagnetic field electrosurgical cable |
RU2633705C1 (en) * | 2016-06-20 | 2017-10-17 | Федеральное государственное бюджетное учреждение науки Институт сильноточной электроники Сибирского отделения Российской академии наук (ИСЭ СО РАН) | Method of producing plasma jet and device for its implementation |
CN106132056A (en) * | 2016-07-01 | 2016-11-16 | 中国科学院电工研究所 | Plasma jet device and the method for suppression epoxy resin surface charge buildup |
CN106714435B (en) * | 2016-11-15 | 2019-06-14 | 北京理工大学 | A large area atmospheric pressure plasma jet generating device |
CN106714435A (en) * | 2016-11-15 | 2017-05-24 | 北京理工大学 | Large-area atmospheric pressure plasma jet generation device |
CN107333376A (en) * | 2017-04-21 | 2017-11-07 | 南京航空航天大学 | A kind of atomic plasma jet generating device of atmospheric pressure |
CN106954332A (en) * | 2017-05-17 | 2017-07-14 | 北京交通大学 | A device for generating glow discharge plasma |
CN106954332B (en) * | 2017-05-17 | 2019-12-13 | 北京交通大学 | A device for generating glow discharge plasma |
CN109872940A (en) * | 2017-12-05 | 2019-06-11 | 中国科学院大连化学物理研究所 | An ion source device utilizing dielectric barrier discharge to assist ionization |
CN109872940B (en) * | 2017-12-05 | 2020-05-08 | 中国科学院大连化学物理研究所 | An ion source device utilizing dielectric barrier discharge to assist ionization |
CN108322983A (en) * | 2018-01-26 | 2018-07-24 | 中国科学院西安光学精密机械研究所 | Floating electrode enhanced dielectric barrier discharge dispersion plasma jet generating device |
CN108322983B (en) * | 2018-01-26 | 2024-05-31 | 中国科学院西安光学精密机械研究所 | Floating electrode reinforced dielectric barrier discharge dispersion plasma jet generating device |
CN108566714A (en) * | 2018-06-09 | 2018-09-21 | 贵州电网有限责任公司 | A kind of plasma jet device |
CN110047722A (en) * | 2019-02-28 | 2019-07-23 | 华中科技大学 | It is a kind of for handling the charged particle generating device of atmospheric environment |
CN111472954A (en) * | 2020-03-25 | 2020-07-31 | 北京交通大学 | Insulating anode cathode arc propeller with auxiliary suspension potential electrode |
CN112874165B (en) * | 2020-11-25 | 2022-01-07 | 华中科技大学 | A kind of plasma microbeam coaxial electric polarization induced electrospray printing device and printing method |
CN112874165A (en) * | 2020-11-25 | 2021-06-01 | 华中科技大学 | Plasma microbeam coaxial electric polarization induction electric spray printing device and spray printing method |
CN113365406A (en) * | 2021-06-18 | 2021-09-07 | 杭州清稞科技有限公司 | Low-temperature plasma generating device and application |
CN113993263A (en) * | 2021-11-15 | 2022-01-28 | 安徽工业大学 | Atmospheric pressure plasma generator, preparation method and plasma generating device |
CN113993263B (en) * | 2021-11-15 | 2024-03-22 | 安徽工业大学 | Atmospheric pressure plasma generator, preparation method and plasma generating device |
CN114501761A (en) * | 2022-02-10 | 2022-05-13 | 大连理工大学 | Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode |
CN114501761B (en) * | 2022-02-10 | 2023-01-24 | 大连理工大学 | Atmospheric pressure pulse discharge plasma generating device of suspension conductive electrode |
CN114513890A (en) * | 2022-04-19 | 2022-05-17 | 北京大学第三医院(北京大学第三临床医学院) | Plasma sterilization device with high energy utilization rate and application |
CN115161166A (en) * | 2022-07-27 | 2022-10-11 | 安徽大学 | An experimental device for inactivating microorganisms by low temperature plasma |
WO2024021306A1 (en) * | 2022-07-28 | 2024-02-01 | 中国科学院苏州生物医学工程技术研究所 | Non-contact high-voltage pulse device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103260329A (en) | Plasma jet device with suspension electrode | |
CN101227790B (en) | plasma jet device | |
CN102523674B (en) | Handheld plasma electric torch | |
CN105551923B (en) | Plasma generating equipment and plasma generating method | |
CN102595757B (en) | Three-electrode discharge device for generating large-volume atmosphere pressure plasma | |
CN206024220U (en) | A kind of low-temperature plasma jet device | |
CN106572586B (en) | It is a kind of to generate device that is uniform, stablizing jet plasma | |
CN103179772B (en) | Produce method and the special purpose device thereof of DC Atmospheric Pressure Glow Discharge | |
CN105848399B (en) | A kind of glow discharge jet plasma generating structure | |
CN105792495B (en) | A kind of device and method generating atmospheric pressure homogeneous plasma brush | |
KR101056097B1 (en) | Atmospheric Pressure Plasma Generator | |
CN101426327A (en) | Plasma jet device | |
CN203761669U (en) | Atmospheric pressure cold plasma generator capable of being used for wound healing | |
CN101702865B (en) | Plasma needle device | |
CN101232770A (en) | Dielectric barrier discharge plasma jet device | |
CN201643445U (en) | Contact-type plasma discharger | |
CN103781271A (en) | Atmospheric pressure cold plasma generating device for wound healing | |
CN108834298A (en) | A device and method for controlling the length of radio frequency jet through auxiliary discharge | |
CN104812154A (en) | Three-electrode dielectric barrier discharging plasma generation device | |
CN106714435B (en) | A large area atmospheric pressure plasma jet generating device | |
CN201167434Y (en) | plasma jet device | |
CN106658931A (en) | Portable atmospheric pressure normal temperature plasma jet generating device | |
CN106028616A (en) | A sliding arc discharge plasma jet generating device and method | |
CN106973482A (en) | A kind of petal type glow discharge jet plasma generating structure | |
CN201167433Y (en) | Dielectric barrier discharge plasma jet device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130821 |