CN103066179B - The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the - Google Patents

The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the Download PDF

Info

Publication number
CN103066179B
CN103066179B CN 201310013703 CN201310013703A CN103066179B CN 103066179 B CN103066179 B CN 103066179B CN 201310013703 CN201310013703 CN 201310013703 CN 201310013703 A CN201310013703 A CN 201310013703A CN 103066179 B CN103066179 B CN 103066179B
Authority
CN
Grant status
Grant
Patent type
Application number
CN 201310013703
Other languages
Chinese (zh)
Other versions
CN103066179A (en )
Inventor
楼刚
Original Assignee
楼刚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及一种低错位率、大面积、高良率的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法,实现低成本、高光效的垂直结构的LED制造。 Preparation The present invention relates to a gallium nitride thin film low dislocation rate, large-area, high-yield sapphire substrate can be peeled from the epitaxial structure and method, low cost, LED manufacturing a vertical structure high light efficiency. 它包括上部的外延层和底部的蓝宝石衬底,在外延层与蓝宝石衬底间设有弱机械强度层,弱机械强度层包括矩阵状排列的若干点状结构,点状结构部分突出于蓝宝石衬底表面,其余部分深入蓝宝石衬底;外延层与蓝宝石衬底表面接触尽可能少。 It comprises an upper portion of the epitaxial layer and the bottom of the sapphire substrate, with the mechanical strength of the weak layer between the sapphire substrate and the epitaxial layer, the mechanical strength of the weak layer structure comprising a plurality of dots arranged in a matrix, dot-like projecting portion of the sapphire substrate structure a bottom surface, the remainder of the depth of the sapphire substrate; an epitaxial layer of the sapphire substrate surface contact as little as possible.

Description

蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法 The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the

技术领域 FIELD

[0001] 本发明涉及一种氮化镓薄膜的制备方法,尤其涉及一种蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法。 [0001] The present invention relates to a method for preparing a gallium nitride thin film, and particularly to a gallium nitride film comprising preparing a sapphire substrate may be peeled off from the epitaxial structure and method of use.

背景技术 Background technique

[0002] LED作为一种固态光源具有体积小、寿命长、亮度高、能耗低、不产生二次污染、易集成等众多优点,作为一种绿色照明光源,它已经从高端照明领域逐渐进入通用照明。 [0002] LED As a solid state light source having a small size, long life, high brightness, low energy consumption, no secondary pollution, easy integration and many other advantages, as a green light source, it has gradually entered from the lighting end general lighting. 目前市场化的白光LED制备方法主要通过有机金属气相沉积法在蓝宝石衬底、碳化硅衬底或硅衬底上制成具有氮化镓基发光结构的外延片,然后将外延片通过光刻、电极蒸镀等工艺进一步制成横向结构或垂直结构的LED。 White LED current market is mainly prepared by organic metal vapor deposition method on a sapphire substrate, silicon carbide substrate or a silicon substrate having a gallium nitride based light emitting structure made of wafer, then the wafer by photolithography, an electrode made of LED vapor deposition process further lateral structure or a vertical structure. 所谓横向结构的LED,其正负金属电极都处于LED芯片的同一侧。 LED-called lateral structure, the metal electrodes which are in the same negative side of the LED chip. 所谓垂直结构的LED,其正负金属电极分处芯片的上侧和下侧。 The so-called vertical LED structure, its partial metal negative electrode of the chip on the upper and lower sides. 垂直结构的LED因电流密度分布更均匀,更易于导出发光层内生热量,降低结温,故垂直结构的LED具有更尚的光效。 The vertical structure LED by the current density distribution is more uniform, easier to export the green light-emitting layer of heat, reduce the junction temperature, so that LED having a vertical structure light efficiency still more.

[0003] 碳化硅衬底和硅衬底因其导热导电性好,可腐蚀,可制成光效更高的垂直结构LED0但这两种衬底或因成本高昂,或因技术难度大而无法推广。 [0003] The silicon carbide substrate and the silicon substrate due to its good thermally conductive, corrosion can be made with higher optical efficiency LED0 but the two vertical structures or the substrate due to high cost, or because of technical difficulty and can not promotion.

[0004] 三种衬底中蓝宝石衬底的外延生长技术最成熟,成本低廉,但蓝宝石衬底因其耐腐蚀、硬度高、透光、绝热、电绝缘的特性,市场上主要应用横向结构设计制造小尺寸的LED,并对蓝宝石衬底进行研磨减薄,提高光效。 [0004] The three techniques for epitaxial growth substrate of the sapphire substrate most mature and low cost, but because of the sapphire substrate corrosion resistance, high hardness, light transmission, thermal insulation properties, electrical insulation, the main transverse structural design applications on the market producing small size the LED, the sapphire substrate was polished and thinned to improve light efficiency. 但是大尺寸、大功率的LED,因横向结构自身不可避免的电流扩散问题和蓝宝石衬底散热问题,制约了光效和亮度的进一步提升。 However, large size, high power of the LED, current spreading due to the inevitable problem of lateral structure itself and the sapphire substrate cooling problems, restricted further improve luminance and luminous efficiency.

[0005] 为了进一步提高LED的光效和亮度,必须对蓝宝石衬底进行剥离,实现垂直结构的LED0 [0005] In order to further improve luminance and luminous efficiency of the LED must be peeled off of the sapphire substrate, to achieve a vertical structure LED0

[0006]目前剥离蓝宝石衬底的方法主要有三种:激光剥离、选择性化学腐蚀剥离和具有弱机械强度层的自剥离。 [0006] Current methods the sapphire substrate there are three: laser lift-off, and selective chemical etching having a self-peel peeling strength of the mechanical weak layer. 激光剥离技术剥离速度快,但设备成本高、剥离良率低,仅有少数大型厂家应用。 Laser lift peeling speed, but the high equipment cost, low yield peeling, only a few large manufacturers applications. 选择性化学腐蚀利用InGaN和GaN的禁带宽度不同或者不同的GaN掺杂,通过光照激活或电流选择,将InGaN和η型重掺杂的GaN选择性化学腐蚀(U)ARStonas,T.Margalith? SPDenBaars? LAColdren,ELHu,Development of selective lateralphotoelectrochemical etching of InGaN/GaN for lift-off applicat1ns,App1.Phys.Lett.78,1945 (2001)。 Selective chemical etching using a band gap different from InGaN and GaN doped GaN or different, or by light activation current selection, InGaN and η-type heavily doped GaN selective chemical etching (U) ARStonas, T.Margalith? SPDenBaars? LAColdren, ELHu, Development of selective lateralphotoelectrochemical etching of InGaN / GaN for lift-off applicat1ns, App1.Phys.Lett.78,1945 (2001). (选择性光电化学侧腐蚀)(⑵ J.Park, KMSong, SRJeon, JHBaek, and S.ff.Ryu,Doping selective lateral electrochemical etching of GaN forchemical lift-off ,Appl.Phys.Lett.94, 221907 (2009)。(选择性电化学侧腐蚀))。 (Selective photoelectrochemical etching side) (⑵ J.Park, KMSong, SRJeon, JHBaek, and S.ff.Ryu, Doping selective lateral electrochemical etching of GaN forchemical lift-off, Appl.Phys.Lett.94, 221907 (2009 ). (selective electrochemical etching side)). 选择性化学腐蚀腐蚀具有无损伤发光层的优点,但因腐蚀速率的制约,一般芯片尺寸不超过1mm。 Etching selective chemical etching has the advantage that no damage of the light emitting layer, but restrict the corrosion rate, the chip size is generally not more than 1mm. 具有弱机械强度层的自剥离衬底要求蓝宝石衬底和氮化镓接触面具有较低的机械强度,以实现外延层和衬底的分离。 Since the release substrate layer having a weak mechanical strength requirements of the sapphire substrate and the gallium nitride contact surface has a low mechanical strength, to effect separation of the epitaxial layer and the substrate. 弱机械强度层的制作主要通过两种方法实现:外延自生成和选择性化学腐蚀。 Weak mechanical strength layer made mainly achieved by two methods: self-generating epitaxial and selective chemical etching. 外延自生成方法通过在衬底上先沉积一层氮化镓薄膜,再通过光电化学方法对薄膜腐蚀,形成具有众多孔隙的弱机械强度层,然后继续氮化镓外延生长(⑶Y.Zhang,B.Leung,J.Han,A liftoff process of GaN layers and devices through nanoporoustransformat1n, App1.Phys.Lett.100,181908 (2012)。(纳米孔隙机械剥离))。 Self-generating epitaxial method on a substrate by first depositing a layer of gallium nitride thin film, and then etching the film, the mechanical strength of the weak layer is formed has numerous apertures by photo chemical method, gallium nitride epitaxial growth then continues (⑶Y.Zhang, B .Leung, J.Han, A liftoff process of GaN layers and devices through nanoporoustransformat1n, App1.Phys.Lett.100,181908 (2012). (nanopores mechanical peeling)). 此种方法因孔隙尺寸控制难度大,氮化镓错位率高,故影响LED光效,导致成本上升,总体良率下降。 This method is difficult to control due to the pore size, high dislocation gallium nitride, so that impact LED luminous efficiency, the cost is increased, decreased overall yield. 选择性化学腐蚀的方法在外延生长前先沉积一层具有条状或网状结构的可腐蚀的牺牲层,在完成外延生长后,对外延层分割腐蚀,然后再进行机械剥离(ωΜ.S.Lin, CFLin,ff.C.Huang, GMWang, BCShieh,JJDai,SYChang, DSWuu, PLLiu, RHHorng,Chemical - Mechanical Lift-Off Process for InGaN Epitaxial Layers, Appl.Phys.Express4,062101 (2011)。(选择性化学侧腐蚀后生成纳米柱再机械剥离),RHHorng,CTPan,TYTsai,DSffuu,Transferring Thin Film GaN LED Ep1-Structure to the CuSubstrate by Chemical Lift-Off Technology, Electrochem.Solid-State Lett.14(7)H281-H284(2011)o )。 Selective chemical etching prior to the epitaxial growth method of depositing a first sacrificial layer etching having one strip or mesh structure, after the completion of the epitaxial growth, etching of the epitaxial layer is divided, and then mechanically peeled (ωΜ.S. Lin, CFLin, ff.C.Huang, GMWang, BCShieh, JJDai, SYChang, DSWuu, PLLiu, RHHorng, Chemical - Mechanical Lift-Off Process for InGaN Epitaxial Layers, Appl.Phys.Express4,062101 (2011) (selectivity. generating nano-mechanical stripping column and then after chemical etching side), RHHorng, CTPan, TYTsai, DSffuu, Transferring Thin Film GaN LED Ep1-Structure to the CuSubstrate by chemical Lift-Off Technology, Electrochem.Solid-State Lett.14 (7) H281 -H284 (2011) o). 这种方法延续了侧向化学腐蚀的缺点,生产效率低,LED尺寸小,无法进行大规模应用。 This method continues disadvantages side chemically resistant, low production efficiency, small size of the LED, not for large-scale applications.

发明内容 SUMMARY

[0007] 本发明的目的就是为解决上述问题,提供一种低错位率、大面积、高良率的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构及方法,实现低成本、高光效的垂直结构的LED制造。 [0007] The object of the present invention is to solve the above problems, to provide a low dislocation rate, large-area, high-yield preparation of GaN thin films from sapphire substrates may be stripped using methods and epitaxial structure, low cost, high efficiency vertical structure LED fabricated.

[0008] 为实现上述目的,本发明采用如下技术方案: [0008] To achieve the above object, the present invention adopts the following technical solution:

[0009] —种蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,它包括上部的外延层和底部的蓝宝石衬底,在外延层与蓝宝石衬底间设有弱机械强度层,弱机械强度层包括矩阵状排列的若干点状结构,点状结构部分突出于蓝宝石衬底表面,其余部分深入蓝宝石衬底;外延层与蓝宝石衬底表面接触尽可能少。 [0009] - Preparation of gallium nitride thin film peeled from the substrate may be a sapphire seed by epitaxial structure comprising an upper portion of the epitaxial layer and the bottom of the sapphire substrate, with the mechanical strength of the weak layer between the sapphire substrate and the epitaxial layer, weak mechanical strength layer comprises a plurality of dots arranged in a matrix structure, the protruding dot moiety to the substrate surface of the sapphire, the remainder of the depth of the sapphire substrate; an epitaxial layer of the sapphire substrate surface contact as little as possible.

[0010] 所述点状结构为六棱台、圆台或半球状,各点状结构的底部镶嵌在蓝宝石衬底中,点阵中间隔处暴露出蓝宝石衬底的表面;各点状结构包括一个金属层,金属层三面被包裹在钝化层中,金属层底面与蓝宝石衬底接触,作为蓝宝石衬底表面图形化掩膜。 [0010] The dot structure of hexagonal units, frustum or hemispherical, the bottom of each dot structure embedded in the sapphire substrate, the lattice spacing of the surface of the sapphire substrate is exposed; each dot structure comprising a three sides of the metal layer, the metal layer is wrapped in the passivation layer, the metal layer in contact with the bottom surface of the sapphire substrate, a sapphire substrate surface patterned as a mask.

[0011] 所述六棱台形、圆台或半球状高度不大于3 μπι,边长或直径不大于4 μπι,最小间距不大于2 μπι。 [0011] The hexagonal trapezoidal, hemispherical or frustum height is no greater than 3 μπι, length or diameter is no greater than 4 μπι, the minimum distance is not greater than 2 μπι.

[0012] 所述外延层自上而下至少包含:ρ型GaN、多重InGaN/GaN量子阱、η型GaN以及缓冲层。 [0012] The epitaxial layer includes at least a top-down: ρ type GaN, multiple InGaN / GaN quantum wells, η-type GaN buffer layer as well.

[0013] 所述外延层厚度不小于6 μ m,缓冲层须足以覆盖弱机械强度层。 [0013] The epitaxial layer thickness not less than 6 μ m, the buffer layer must be sufficient to cover the weak mechanical strength of the layer.

[0014] 所述η型GaN与缓冲层间设有一层η型AlGaN。 The [0014] between the η-type GaN buffer layer is provided with a layer of η-type AlGaN.

[0015] 所述钝化层材料为S12S SiN。 [0015] The passivation layer material is S12S SiN.

[0016] —种外延结构的蓝宝石衬底剥离方法,具体过程为: [0016] - a sapphire substrate lift-off method, the specific types of epitaxial structures for the process:

[0017] 步骤一,在蓝宝石衬底上制备弱机械强度层; [0017] Step a weak mechanical strength of the layer is prepared on a sapphire substrate;

[0018] 步骤二,进行氮化镓的外延层生长,将弱机械强度层完全覆盖,直至P型GaN完成生长; [0018] Step two, gallium nitride epitaxial layer growth, the weak mechanical strength of the covering layer completely, until completing the growth of P-type GaN;

[0019] 步骤三,在完成整个外延生长后,在外延片顶部P型GaN之上镀p型电极,p型电极可以是金属电极或ITO和金属电极组合的复合电极,在P型电极上焊接导热导电的支撑基板,采用机械辅助方式剥离蓝宝石衬底,留余的外延层由基板支撑; [0019] Step three, after completing the whole epitaxial growth, on top of the P-type GaN epitaxial wafer coated p-type electrode, a p-type electrode may be a metal or a composite electrode ITO electrode and electrode assembly of metal, welded to the P-type electrode thermally and electrically conductive support substrate by mechanical assist mode peeling the sapphire substrate, an epitaxial layer is left over the support by the substrate;

[0020] 步骤四,将缓冲层蚀刻去除后,进行芯片加工,在η型GaN上镀上金属电极,制作完成的芯片自上而下具有:n型电极、发光外延层、作为P型电极的导热导电基板。 [0020] Step four, the buffer layer was removed by etching, for processing chip, a metal electrode on the plated η-type GaN, having finished chips from top to bottom: n-type electrode, a light emitting epitaxial layer, a P-type electrode, thermally conductive substrate.

[0021] 所述步骤一的具体过程为: [0021] The steps of a specific process:

[0022] 步骤1-1,蓝宝石衬底进行图形化掩膜制作: [0022] Step 1-1, the sapphire substrate is patterned mask produced:

[0023] 在蓝宝石衬底上沉积一层掩膜,并图形化,形成矩阵状排布的孔洞; [0023] The mask layer is deposited on a sapphire substrate, and patterned to form apertures arranged in a matrix;

[0024] 步骤1-2:蓝宝石衬底图形化 [0024] Step 1-2: patterning the sapphire substrate

[0025] 进一步采用干法蚀刻或湿法蚀刻对蓝宝石衬底进行蚀刻,形成与掩膜的孔洞相对应的孔洞; [0025] Further by dry etching or wet etching on the sapphire substrate is etched to form the mask holes corresponding to the hole;

[0026] 步骤1-3:镀金属层 [0026] Step 1-3: metallization layer

[0027] 在图形化的蓝宝石衬底上镀上一层厚度不小于孔洞深度的金属层; [0027] coated on the patterned sapphire substrate having a thickness of not less than the depth of the holes of the metal layer;

[0028] 步骤1-4:图形化金属层 [0028] Step 1-4: patterning a metal layer

[0029] 将各孔洞间多余的金属层蚀刻去除,暴露出对应的蓝宝石衬底表面; [0029] The excess metal between the holes of each layer is removed by etching, to expose a corresponding surface of the sapphire substrate;

[0030] 步骤1-5:镀钝化层 [0030] Step 1-5: coating a passivation layer

[0031] 先在图形化金属层上再沉积一层0.5-1 μπι厚的S12钝化层,再将孔洞间多余的S1ji化层蚀刻去除,暴露出相应蓝宝石衬底表面,完成弱机械强度层的制备。 [0031] In the first patterned metal layer was deposited a layer thickness of 0.5-1 μπι S12 passivation layer between the hole and then the excess S1ji layer is removed by etching to expose the surface of the sapphire substrate corresponding to complete the weak mechanical strength layer prepared.

[0032] 所述步骤三的具体过程为: The specific process [0032] The three steps are:

[0033] 步骤3-1,镀P型电极 [0033] Step 3-1, the P-type electrode plating

[0034] 首先在P型GaN层上沉积一层厚200_250nm的透明导电层ΙΤ0,在ITO之上再沉积一层I μm厚的金电极; [0034] depositing a first thickness of the transparent conductive layer ΙΤ0 200_250nm on a P type GaN layer, and then depositing a layer of I μm thick gold electrode on top of the ITO;

[0035] 步骤3-2,焊接支撑基板 [0035] Step 3-2, welding the supporting substrate

[0036] 将涂有金锡焊料的导热导电基板与镀有P型电极的外延片紧贴,并进行10-20min280-300°C退火,使基板与外延片焊紧; [0036] coated with the gold-tin solder is thermally and electrically conductive substrate and the epitaxial wafer with a P-type electrode against plating, 10-20min280-300 ° C and annealing the substrate and epitaxial wafer tight welding;

[0037] 步骤3-3,机械辅助剥离蓝宝石衬底 [0037] Step 3-3, the sapphire substrate is mechanically assisted

[0038] 将外延片进行50次以上_30°C至120°C的快速升降温处理,变温速度以不损伤外延层为易;金属层的快速热应变以及氮化镓和蓝宝石本身固有的热变形差,使弱机械强度层与外延层完全脱离,进而使蓝宝石衬底被剥离。 [0038] The epitaxial wafer for 50 times or more rapid rise to _30 ° C to 120 ° C temperature treatment, the temperature change rate of the epitaxial layer so as not to damage easily; rapid thermal strain inherent thermal metal layer, and a gallium nitride and sapphire itself difference in deformation, so that the mechanical strength of the weak layer and the epitaxial layer is completely disengaged, thereby enabling the sapphire substrate is peeled.

[0039] 本发明的有益效果是:利用金属层热变性、钝化层与外延层的不浸润,并且利用掩膜横向外延生长技术,在提高外延层生长质量的同时,实现外延层与蓝宝石衬底剥离的可能,并通过对外延片反复多次的升降温处理,进一步减少弱机械强度层对外延层的粘附力,实现了外延层的批量的整体剥离,大大提高了生产效率。 [0039] Advantageous effects of the present invention is that: the metal layer by heat denaturation, the passivation layer and the epitaxial layer is non-wetting, and lateral epitaxial growth technique using a mask, while improving the quality of the epitaxial layer is grown, the sapphire substrate and the epitaxial layer to achieve Potential substrates peeling, an epitaxial wafer by l of repeated cooling process, to further reduce the mechanical strength of the weak adhesion layer on the epitaxial layer, to achieve the overall bulk of the epitaxial layer is peeled off, greatly improving production efficiency.

附图说明 BRIEF DESCRIPTION

[0040]图1是本发明实施例的含有弱机械强度层的外延片的结构示意图。 [0040] FIG. 1 is a schematic structural diagram of an epitaxial wafer containing a weak mechanical strength of the layer of the embodiment of the present invention.

[0041] 图2是本发明的弱机械强度层工作原理示意图。 [0041] FIG. 2 is a weak mechanical strength of the layer is a schematic view of the working principle of the present invention.

[0042] 图2a是钝化层与外延层脱离后形成空穴示意图。 [0042] Figure 2a is a schematic view of a hole formed in the passivation layer from the epitaxial layer.

[0043] 图3是本发明实施例的弱机械强度层的结构制造工艺示意图。 [0043] FIG. 3 is a schematic structural diagram of manufacturing process of the weak mechanical strength of the layer according to embodiments of the present invention.

[0044] 图4是本发明实施例的蓝宝石衬底转移的结构制造工艺示意图 [0044] FIG. 4 is a schematic structural diagram of manufacturing process of the sapphire substrate of the present embodiment of the invention, the transfer

[0045] 图5是本发明实施例的垂直结构LED的结构示意图。 [0045] FIG. 5 is a structural diagram of a vertical LED structure of the embodiment of the present invention.

具体实施方式 detailed description

[0046] 以下结合附图和实施例对本发明作进一步的详细描述。 [0046] Hereinafter, the present invention will be further described in detail in conjunction with the accompanying drawings and embodiments.

[0047] 本实施例采用氮化镓LED通用的外延结构(图1),其自上而下包括: [0047] The present embodiment adopts a common GaN LED epitaxial structure (FIG. 1), which comprises from top to bottom:

[0048] (I)外延层130 [0048] (I) epitaxial layer 130

[0049] 外延层130为LED发光的核心结构,其自上而下至少包含:P型GaN 134、多重InGaN/GaN量子阱133、n型GaN 132以及缓冲层131。 [0049] The epitaxial layer 130 is an LED emitting core structure, from top to bottom which comprises at least: P-type GaN 134, multiple InGaN / GaN quantum well 133, n-type GaN 132 and a buffer layer 131. 这里的缓冲层131也可以η型的GaN。 Where the buffer layer 131 may be η-type GaN. 如缓冲层为未掺杂的GaN,则在蓝宝石衬底剥离后对缓冲层进行干法蚀刻去除。 The buffer layer is undoped GaN, the buffer layer is removed by dry etching after peeling the sapphire substrate. 如需对外延层的厚度进行控制,可以在η型GaN和缓冲层间插入一层η型的AlGaN,作为光电化学蚀刻的阻挡层。 To control the thickness of the epitaxial layer, a layer may be interposed between AlGaN η-type and η-type GaN buffer layer, a barrier layer as photoelectrochemical etching.

[0050] 外延层130厚度不小于6 μ m,其中缓冲层131须足以覆盖弱机械强度层120。 [0050] The thickness of the epitaxial layer 130 is not less than 6 μ m, wherein the buffer layer 131 must be sufficient to cover the weak mechanical strength of the layer 120.

[0051] 氮化镓外延层的生长可以采用通用的两步生长法,在蓝宝石衬底110表面形成GaN核,并通过高温退火结晶化,然后进行缓冲层131的生长。 [0051] The gallium nitride epitaxial layer may be grown using a common two-step growth method, GaN is formed on a surface of the sapphire substrate core 110, and a high temperature annealing crystallization, and then the buffer layer 131 is grown.

[0052] 弱机械强度层120,其表面对η型的GaN不浸润,促使缓冲层131横向生长,阻止了晶体缺陷的向上延伸,提高了GaN晶体的质量。 [0052] The weak mechanical strength layer 120, which is non-wetting surface of η-type GaN, the buffer layer 131 to promote the lateral growth, prevents the crystal defects extend upwardly, improve the quality of GaN crystal. 此外不浸润的表面对氮化镓外延层的粘连较小,利于衬底的剥离。 In addition to blocking surface nonwettable gallium nitride epitaxial layer is small, facilitate peeling of the substrate.

[0053] (2)弱机械强度层120 [0053] (2) a weak mechanical strength layer 120

[0054]弱机械强度层120须在高温下保持稳定,并提供氮化镓横向外延生长所需的掩膜。 [0054] The weak mechanical strength layer 120 must be stable at high temperatures and provide the desired lateral epitaxial growth of gallium nitride mask.

[0055] 弱机械强度层120下层为金属层121,可以为金、铝、银、钼等,本实例选金。 [0055] The weak mechanical strength of the lower layer 120 is a metal layer 121, may be gold, aluminum, silver, molybdenum, etc., the present example with gold. 金表面覆盖一层S12S SiN钝化层122,同时作为氮化镓外延生长的掩膜。 S12S SiN gold surface covered with a passivation layer 122, while the gallium nitride epitaxial grown as a mask.

[0056] 弱机械强度层120有呈点状矩阵排列的点结构,点结构部分突出于蓝宝石衬底110表面,其余深入蓝宝石衬底110,从而提高对蓝宝石衬底110的附着力。 [0056] The weak mechanical strength of the structural layer 120 with a point-dot matrix arrangement, point moiety projecting on the surface of the sapphire substrate 110, the sapphire substrate 110 remaining depth to improve the adhesion of the sapphire substrate 110. 氮化镓外延层130与蓝宝石衬底110表面的接触应尽可能少,少至外延层130和蓝宝石衬底110的粘附力可以轻易剥离,但足够抵抗晶格适配应变为佳,故本例弱机械强度层120点状外形优选六棱台形。 The contact surface 110 of the sapphire substrate 130 of gallium nitride epitaxial layer should be as little as possible, as few as epitaxial layer 130 and adhesion of the sapphire substrate 110 can be easily peeled off, but sufficiently resistant strain is better adapted to the lattice, so the Examples of weak mechanical strength layer 120 is preferably a hexagonal dot trapezoidal shape.

[0057] 六棱台高度不大于3 μm,本例优选为1.5 μm,边长不大于4 μm,本例优选为2 μπι。 [0057] is no greater than the height of a hexagonal table 3 μm, the present embodiment is preferably 1.5 μm, to grow up edge 4 μm, the present embodiment is preferably 2 μπι. 六棱台间最小间距不大于2 μm,本例优选为0.5 μπι。 Minimum spacing between the hexagonal table not more than 2 μm, the present embodiment is preferably 0.5 μπι.

[0058] 金属层121在钝化层122的保护下不因氮化镓外延生长时的高温而变化,保持金属状态。 [0058] The metal layer 121 not because of the high temperature during the epitaxial growth of gallium nitride varies under a protective passivation layer 122, the metal holding state.

[0059] 如图2所示弱机械强度层的工作原理:金属层121在氮化镓外延层130生长时因高温而膨胀,且因钝化层122本身对氮化镓不浸润,故在外延层130生长完成后随着金属层121的冷却收缩,钝化层122受金属层121拉扯与外延层130脱离形成空穴221。 Working Principle [0059] The mechanical strength of the layer 2 in FIG weakness: the metal layer 121 due to heat expansion of the gallium nitride epitaxial layer 130 is grown, and the passivation layer 122 itself due to non-wetting gallium nitride, epitaxial layer so 130 with cooling after completion of growth of the contraction of the metal layer 121, a passivation layer 122 is formed by a metal layer 121 is pulled out of the hole 221 and the epitaxial layer 130.

[0060] 空穴使外延层与蓝宝石衬底接触面大大减少,直至可以通过进一步的快升降温使外延层和蓝宝石衬底可以轻易的被剥离。 [0060] The epitaxial layer and the hole-contact surface of the sapphire substrate is greatly reduced, until it can be further quickly ramp the sapphire substrate and the epitaxial layer can be easily peeled off.

[0061] (3)蓝宝石衬底110。 [0061] (3) the sapphire substrate 110.

[0062] 本实例所述弱机械强度层采用如下制造方法(图3): [0062] Examples of the weak mechanical strength of the present layer using a production method (FIG. 3):

[0063] 步骤310:蓝宝石衬底图形化掩膜制作 [0063] Step 310: a sapphire substrate patterned mask produced

[0064] 在蓝宝石衬底110上沉积一层掩膜312,并图形化,露出如呈矩阵314排列的直径2 μ m、间距3.25 μ m的孔洞313。 [0064] depositing a mask layer 110 on a sapphire substrate 312, and patterned to expose a diameter of 2 μ m as the form 314 arranged in a matrix, a hole pitch of 3.25 μ m 313. 掩膜的材料根据干法或湿法蚀刻方法,可采用S12或光刻胶,或其它材料。 Masking material according to a dry or wet etching method can be employed S12 or resist, or other material.

[0065] 步骤320:蓝宝石衬底图形化 [0065] Step 320: patterning the sapphire substrate

[0066] 进一步采用干法蚀刻或湿法蚀刻对蓝宝石衬底110进行蚀刻,形成深不大于2 μπι、直径2 μπι、间距I μπι呈矩阵314排列的孔洞321。 [0066] Further by dry etching or wet etching on the sapphire substrate 110 is etched to form deep not more than 2 μπι, diameter 2 μπι, I μπι pitch was 321 holes 314 arranged in a matrix.

[0067] 步骤330:镀金属层 [0067] Step 330: metallization layer

[0068] 可采用电子束蒸发工艺或等离子辅助镀膜技术在图形化的蓝宝石衬底上镀上一层厚度不小于孔洞321深度的金属层331,本例取3 μπι。 [0068] may be used electron beam evaporation process or a plasma-assisted deposition technique on the patterned sapphire substrate coated with a layer thickness not less than the depth of the holes 321 of the metal layer 331, in this case take 3 μπι.

[0069] 步骤340:图形化金属层 [0069] Step 340: a metal layer patterned

[0070] 采用光刻技术及用王水将多余的金属层331蚀刻去除,暴露出宽1.5 μπι的蓝宝石衬底表面342,构成如矩阵314排列的金属铟六棱台。 [0070] The photolithographic technique with aqua regia and excess metal layer 331 is removed by etching to expose the surface of the sapphire substrate width 1.5 μπι 342, 314 arranged in a matrix configuration such as a hexagonal indium station. 铟六棱台边长1.4 μπι。 Hexagonal indium station side length 1.4 μπι.

[0071] 步骤350:镀钝化层 [0071] Step 350: plating the passivation layer

[0072] 先在图形化金属层331上再沉积一层0.5-1 μ m厚的S12钝化层361,再采用光刻技术及用王水将多余的Si0#4刻去除,暴露出宽0.5 μπι的蓝宝石衬底表面362,构成六棱台形弱机械强度层120。 [0072] In the first patterned metal layer 331 and then depositing a layer of 0.5-1 μ m thick passivation layer 361 S12, and then using a photolithography technique with aqua regia excess Si0 # 4 carved removed, exposing width of 0.5 μπι surface of the sapphire substrate 362, constituting the hexagonal trapezoid weak mechanical strength layer 120.

[0073] 在完成弱机械强度层120的制造后,蓝宝石衬底110即进行氮化镓的外延层130生长。 [0073] After completion of the manufacturing of the weak mechanical strength of the layer 120, i.e., the sapphire substrate 110 for growing a gallium nitride epitaxial layer 130. 氮化镓外延层130生长采用通用的两步法进行。 For gallium nitride epitaxial layer 130 is grown using a common two-step process. 先在氢气氛下对衬底进行1min的1050°C高温灼烧,去除蓝宝石衬底110表面杂质。 1min first substrate is at 1050 ° C under an atmosphere of hydrogen burning temperature, removing the sapphire substrate 110 surface impurities. 因钝化层122对金属层121的保护,弱机械强度层120的结构在高温不被破坏。 The passivation layer 122 by the metal protective layer 121, the weak mechanical strength of the structural layer 120 is not destroyed at high temperatures. 完成高温灼烧后再降温至500-550°C沉积一层20-30nm厚的未掺杂GaN,然后在氢气氛下升温至1040_1050°C结晶化,形成核层。 Complete burning temperature was lowered to 500-550 ° C and then depositing a 20-30nm thick undoped GaN, then warmed to 1040_1050 ° C crystallized nucleation layer is formed under a hydrogen atmosphere. 然后继续进行未掺杂或η型GaN生长并降温至900-950°C,持续约500-1000s,再缓步升温,在500-1000s内回升至1040-1050°C,继续生长2 μ m的未掺杂或η型GaN。 Then proceed undoped or η-type GaN grown and cooled down to 900-950 ° C, for about 500-1000s, then slowly warmed, rose to 1040-1050 ° C in 500-1000s, continued growth of 2 μ m η-type or undoped GaN. 经如上步骤,弱机械强度层120被氮化镓完全覆盖。 Through the above steps, the weak mechanical strength of the gallium nitride layer 120 is completely covered. 因三维晶体生长模式,氮化镓晶体中的大部分缺陷被转为横向发展,降低了氮化镓晶体的缺陷密度。 Because three-dimensional crystal growth modes, most of the gallium nitride crystal defects are developed to landscape, reducing the defect density gallium nitride crystal. 在此基础上,继续LED的外延发光层的生长,直至外延层完成生长。 On this basis, we continue to grow the LED epitaxial light emitting layer, until completing the growth of the epitaxial layer.

[0074] 完成整个LED发光结构的外延层130生长后,参照如图4所示方法进行蓝宝石衬底110的转移,其步骤如下: [0074] complete the LED epitaxial layer 130 is grown after the light emitting structure, with reference to the method shown in Figure 4 transferred to the sapphire substrate 110, the following steps:

[0075] 步骤410:镀P型电极 [0075] Step 410: P-type electrode plating

[0076] 首先按照LED通用的P型电极的制造方法,在P型GaN层134 (图1)上沉积一层厚200-250nm的透明导电层ITO 414。 [0076] First, a method for manufacturing an LED according to a common P-type electrode, depositing a layer thickness of the transparent conductive layer of ITO 414 200-250nm on a P-type GaN layer 134 (FIG. 1). 在ITO 414之上再沉积一层I μ m厚的电极415。 On the electrode layer of ITO 414 is deposited and then a thickness of 415 I μ m. 为提高出光效率,也可以镀上一层高反射率的反射层。 In order to improve the light extraction efficiency, the reflective layer may be coated with a layer of high reflectance.

[0077] 为方便蓝宝石衬底110的剥离,也可先将蓝宝石衬底110通过研磨减薄,制成所需尺寸规格的晶粒。 [0077] For the convenience of the sapphire substrate 110, the sapphire substrate 110 may be first thinned by grinding, into a desired grain size specifications.

[0078] 步骤420:焊接支撑基板 [0078] Step 420: Welding support substrate

[0079] 采用通用半导体焊接技术,将涂有金锡焊料的铜基板421与镀有金电极的外延片130紧贴,并进行10-20min 280_300°C退火,使铜基板421与外延片130焊紧。 [0079] using a common semiconductor welding, the copper substrate coated with the gold-tin solder plated gold electrode 421 and the wafer 130 close, 10-20min 280_300 ° C and annealed, the copper substrate 421 and the epitaxial wafer bonding 130 tight.

[0080] 步骤430:机械辅助剥离蓝宝石衬底110 [0080] Step 430: the sapphire substrate 110 mechanically assisted peeling

[0081] 将外延片130进行50次以上_30°C至120°C的快速升降温处理,变温速度以不损伤外延片130为易,本例优化为不大于50°C /min,进一步优化为30°C /min。 [0081] The wafer 130 is more than 50 times faster liters _30 ° C to to 120 ° C temperature treatment, the temperature change speed without damaging the wafer 130 is easily, this embodiment is optimized for not more than 50 ° C / min, further optimized of 30 ° C / min. 金属层的快速热应变以及氮化镓和蓝宝石本身固有的热变形差,使弱机械强度层120与外延层130完全脱离。 Rapid thermal strain of the metal layer, and a gallium nitride and sapphire inherent difference in thermal deformation, so that the mechanical strength of the weak layer 120 and epitaxial layer 130 is completely disengaged.

[0082] 使用蓝膜粘附在蓝宝石衬底110上,通过撕去蓝膜将蓝宝石衬底110剥离。 [0082] using a blue film is adhered on a sapphire substrate 110, the sapphire substrate is torn blue films 110 peeled off. 留余的外延层130由铜基板421支撑,以方便进行下一步的芯片制作。 Epitaxial layer 130 is left over the support substrate 421 made of copper, to facilitate the next step in making the chip.

[0083] 转移至铜基板421的外延层130即可按照通用的芯片制程进行,此处仅作简述。 [0083] transferred to a copper substrate to the epitaxial layer 421 is 130 chips in accordance with the general manufacturing process, as only briefly here.

[0084] 铜基板421转移的外延层130暴露出缓冲层131。 [0084] Copper transfer substrate 421 to expose the epitaxial layer 130, buffer layer 131. 如缓冲层为无掺杂的GaN,须进行蚀刻去除。 The buffer layer is undoped GaN, it is removed by etching. 如缓冲层为η型GaN,即可直接于其上镀上金属,制成η型电极530。 The η-type buffer layer is GaN, it can be directly coated on the metal, η-type electrode 530. 制作完成的芯片具有如图5所示的垂直结构,其自上而下具有:η型电极530、发光外延层130、作为P型电极的导热导电的铜基板421。 Finished chips having a vertical structure as shown in FIG. 5, which has a top to bottom: η-type electrode 530, a light emitting epitaxial layer 130, a P-type electrode electrically and thermally conductive substrate 421 of copper.

[0085] 本实例所示的垂直结构LED的制造方法,利用金属层热变性、钝化层122与外延层130的不浸润,并且利用掩膜横向外延生长技术,在提高外延层130生长质量的同时,实现外延层130与蓝宝石衬底110剥离的可能,并通过对外延层130反复多次的升降温处理,进一步减少弱机械强度层120对外延层130的粘附力,实现了外延层130的批量的整体剥离,大大提高了生产效率。 The method of manufacturing a vertical LED structure [0085] shown in the present example, by thermal denaturation of the metal layer, the passivation layer 122 and the epitaxial layer 130 is non-wetting, and lateral epitaxial growth technique using a mask, to improve the quality of the epitaxial layer 130 is grown Meanwhile, the sapphire substrate 130 may achieve release epitaxial layer 110, and repeated by 130 l of the epitaxial layer cooling process, to further reduce the mechanical strength of the weak adhesion layer 120 on the epitaxial layer 130, epitaxial layer 130 is realized the bulk of the overall stripping, greatly improving production efficiency.

[0086]另外,本领域技术人员还可在本发明精神内做其它变化。 [0086] Additionally, one skilled in the art may make other variations within the spirit of the present invention. 当然,这些依据本发明精神所作的变化,都应包含在本发明所要求保护的范围内。 Of course, these changes are made according to the spirit of the present invention, intended to be included within the scope of the claimed invention.

Claims (9)

  1. 1.一种蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,它包括上部的外延层和底部的蓝宝石衬底,其特征是,在外延层与蓝宝石衬底间设有弱机械强度层,弱机械强度层包括矩阵状排列的若干点状结构,点状结构部分突出于蓝宝石衬底表面,其余部分深入蓝宝石衬底;外延层与蓝宝石衬底表面接触尽可能少,少至外延层和蓝宝石衬底的粘附力可以轻易剥离,但足够抵抗晶格适配应变; 所述点状结构为六棱台、圆台或半球状,各点状结构的底部镶嵌在蓝宝石衬底中,点阵中间隔处暴露出蓝宝石衬底的表面;各点状结构包括一个金属层,金属层三面被包裹在钝化层中,金属层底面与蓝宝石衬底接触,作为蓝宝石衬底表面图形化掩膜。 A gallium nitride thin film was prepared sapphire substrate may be peeled from the epitaxial structure comprising an epitaxial layer and the bottom of the upper portion of the sapphire substrate, wherein, with weak mechanical strength between the sapphire substrate and the epitaxial layer layer, the mechanical strength of the weak layer structure comprising a plurality of dots arranged in a matrix, dot-like projecting moiety to the substrate surface of the sapphire, the remainder of the depth of the sapphire substrate; an epitaxial layer of the sapphire substrate surface contact as little as possible, as few epitaxial layer and adhesion of the sapphire substrate can be easily peeled off, but sufficiently adapted to resist lattice strain; the dot structure of hexagonal units, frustum or hemispherical, the bottom of each dot structure embedded in the sapphire substrate, point array interval expose the surface of the sapphire substrate; each dot structure comprising a three-sided metal layer, a metal layer is wrapped in the passivation layer, the metal layer in contact with the bottom surface of the sapphire substrate, a sapphire substrate surface patterned mask .
  2. 2.如权利要求1所述的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,其特征是,所述六棱台形高度不大于3 μ m,边长不大于4 μ m,六棱台最小间距不大于2 μπι。 2. The gallium nitride thin film as claimed in claim 1 prepared sapphire substrate may be peeled from the epitaxial structure, characterized in that said hexagonal-shaped table height is no greater than 3 μ m, sides grow in 4 μ m, six bevel minimum distance is not greater than 2 μπι.
  3. 3.如权利要求1所述的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,其特征是,所述外延层自上而下至少包含:ρ型GaN、多重InGaN/GaN量子阱、η型GaN以及缓冲层。 Multiple InGaN / GaN quantum wells ρ type GaN,: 3. Preparation of gallium nitride thin film as the sapphire substrate 1 may be peeled from the epitaxial structure according to claim, characterized in that the epitaxial layer comprises at least a top-down , η-type GaN buffer layer as well.
  4. 4.如权利要求3所述的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,其特征是,所述外延层厚度不小于6 μ m,缓冲层须足以覆盖弱机械强度层。 4. The sapphire substrate according to claim 3, wherein the gallium nitride thin film may be peeled off from the prepared epitaxial structure, characterized in that, the epitaxial layer thickness not less than 6 μ m, the buffer layer must be sufficient to cover the weak mechanical strength of the layer.
  5. 5.如权利要求3所述的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,其特征是,所述η型GaN与缓冲层间设有一层AlGaN。 The sapphire substrate according to claim 3, wherein the gallium nitride thin film may be peeled off from the prepared epitaxial structure, characterized in that, between the η-type GaN buffer layer is provided with a layer of AlGaN.
  6. 6.如权利要求1所述的蓝宝石衬底可自剥离的氮化镓薄膜制备用外延结构,其特征是,所述钝化层材料为S12S SiN。 6. The sapphire substrate according to claim 1 of the gallium nitride thin film may be peeled off from the prepared epitaxial structure, wherein the passivation layer material is S12S SiN.
  7. 7.—种权利要求1-6任一所述的外延结构的蓝宝石衬底剥离方法,其特征是,具体过程为: 步骤一,在蓝宝石衬底上制备弱机械强度层; 步骤二,进行氮化镓的外延层生长,将弱机械强度层完全覆盖,直至P型GaN完成生长; 步骤三,在完成整个外延生长后,在外延片顶部镀P型电极,在P型电极上焊接导热导电的支撑基板,采用机械辅助方式剥离蓝宝石衬底,留余的外延层由基板支撑; 步骤四,将缓冲层蚀刻取出后,进行芯片加工,制作完成的芯片自上而下具有m型电极、发光外延层、作为P型电极的导热导电基板。 Peeling epitaxial sapphire substrate structure according to any one of claims 1-6 7.- species, wherein the specific process is: Step a weak mechanical strength of the layer is prepared on a sapphire substrate; two step, nitrogen gallium epitaxial layer growth, the weak mechanical strength of the layer is completely covered, until the P-type GaN to complete growth; step three, after completing the whole epitaxial growth on top of the epitaxial wafer coated P-type electrode on the P-type electrode pads electrically and thermally conductive support substrate by mechanical assist mode peeling the sapphire substrate, an epitaxial layer is left over by the substrate support; step four, the buffer layer is etched taken out processing chips, finished chips having a top-down electrode type m, epitaxial light emission layer, a P-type substrate is thermally and electrically conductive electrode.
  8. 8.如权利要求7所述的蓝宝石衬底剥离方法,其特征是,所述步骤一的具体过程为: 步骤1-1,蓝宝石衬底进行图形化掩膜制作: 在蓝宝石衬底上沉积一层掩膜,并图形化,形成矩阵状排布的孔洞; 步骤1-2:蓝宝石衬底图形化进一步采用干法蚀刻或湿法蚀刻对蓝宝石衬底进行蚀刻,形成与掩膜的孔洞相对应的孔洞; 步骤1-3:镀金属层在图形化的蓝宝石衬底上镀上一层厚度不小于孔洞深度的金属层; 步骤1-4:图形化金属层将各孔洞间多余的金属层蚀刻去除,暴露出对应的蓝宝石衬底表面; 步骤1-5:镀钝化层先在图形化金属层上再沉积一层0.5-1 μπι厚的S12钝化层,再将孔洞间多余的S1 2钝化层蚀刻去除,暴露出相应蓝宝石衬底表面;完成弱机械强度层的制备。 8. The method of peeling the sapphire substrate according to claim 7, wherein said step of a specific process: Step 1-1, the sapphire substrate is patterned mask produced: depositing on a sapphire substrate a mask layer, and patterned to form apertures arranged in a matrix; step 1-2: a sapphire substrate is further patterned by dry etching or wet etching on the sapphire substrate is etched to form a mask with holes corresponding to holes; step 1-3: plated-metal layer on the patterned sapphire substrate coated with a layer thickness not less than the depth of the holes of the metal layer; step 1-4: the patterned metal layer between the apertures excess metal layer etching removed, exposing the corresponding surface of the sapphire substrate; step 1-5: coating a passivation layer on the first patterned metal layer and then depositing a layer of a thickness of 0.5-1 μπι S12 of the passivation layer, the holes then excess S1 2 the passivation layer is etched away to expose a corresponding surface of the sapphire substrate; preparation weak mechanical strength layer is completed.
  9. 9.如权利要求7所述的蓝宝石衬底剥离方法,其特征是,所述步骤三的具体过程为: 步骤3-1,镀P型电极首先在P型GaN层上沉积一层厚200-250nm的透明导电层ITO,在ITO之上再沉积一层I μ m厚的金电极; 步骤3-2,焊接支撑基板将涂有金锡焊料的导热导电的支撑基板与镀有P型电极的外延片紧贴,并进行10-20min280-300°C退火,使导热导电的支撑基板与外延片焊紧; 步骤3-3,机械辅助剥离蓝宝石衬底将外延片进行50次以上-30°C至120°C的快速升降温处理,变温速度以不损伤外延层为易;金属层的快速热应变以及氮化镓和蓝宝石本身固有的热变形差,使弱机械强度层与外延层完全脱离,剥离蓝宝石衬底,留余的外延层由导热导电的支撑基板支撑,以方便进行下一步的芯片制作。 9. The method of peeling the sapphire substrate according to claim 7, characterized in that the specific process step III: Step 3-1, the P-type electrode plating is first deposited on a P-type GaN layer thickness of 200- 250nm ITO transparent conductive layer, gold is deposited on the electrode layer of ITO and then I μ m thick; step 3-2, the supporting substrate is coated with the solder of gold-tin solder with a thermally and electrically conductive support substrate coated with a P-type electrode epitaxial film close 10-20min280-300 ° C and annealing the thermally and electrically conductive support substrate and epitaxial wafer tight welding; step 3-3, the mechanical release assist epitaxial sapphire substrate sheet is more than 50 -30 ° C rise to rapid cooling treatment to 120 ° C, temperature ramp to an easily without damaging the epitaxial layer; rapid thermal strain of the metal layer, and a gallium nitride and sapphire inherent difference in thermal deformation, so that the mechanical strength of the weak layer and the epitaxial layer is completely disengaged, peeling the sapphire substrate, an epitaxial layer is left over by the thermally and electrically conductive support substrate support to facilitate the next chip fabrication.
CN 201310013703 2013-01-14 2013-01-14 The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the CN103066179B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201310013703 CN103066179B (en) 2013-01-14 2013-01-14 The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201310013703 CN103066179B (en) 2013-01-14 2013-01-14 The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the

Publications (2)

Publication Number Publication Date
CN103066179A true CN103066179A (en) 2013-04-24
CN103066179B true CN103066179B (en) 2015-12-02

Family

ID=48108720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201310013703 CN103066179B (en) 2013-01-14 2013-01-14 The gallium nitride epitaxial film structure and method of preparing a sapphire substrate can be peeled off from the

Country Status (1)

Country Link
CN (1) CN103066179B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105226155B (en) * 2014-05-30 2018-02-23 无锡极目科技有限公司 The method of the laminated board is directly led epitaxial growth and Application

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117869A (en) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 Method for stripping substrate of LED
CN102723264A (en) * 2011-03-29 2012-10-10 清华大学 Preparation method for substrate with nanometer microstructure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060080827A (en) * 2005-01-06 2006-07-11 엘지전자 주식회사 Method for lifting off sapphire substrate from epi-layer in light emitting device
KR101510377B1 (en) * 2008-01-21 2015-04-06 엘지이노텍 주식회사 Method of producing a nitride semiconductor light emitting device and a vertical type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102117869A (en) * 2011-01-21 2011-07-06 厦门市三安光电科技有限公司 Method for stripping substrate of LED
CN102723264A (en) * 2011-03-29 2012-10-10 清华大学 Preparation method for substrate with nanometer microstructure

Also Published As

Publication number Publication date Type
CN103066179A (en) 2013-04-24 application

Similar Documents

Publication Publication Date Title
US7250638B2 (en) Method of fabricating vertical structure LEDs
US20060234408A1 (en) Method for manufacturing vertical group III-nitride light emitting device
US20090261363A1 (en) Group-III Nitride Epitaxial Layer on Silicon Substrate
US20030189212A1 (en) Method of fabricating vertical devices using a metal support film
US20110281422A1 (en) Method for obtaining high-quality boundary for semiconductor devices fabricated on a partitioned substrate
US20100012969A1 (en) Light emitting device and fabrication method thereof
JP2010056458A (en) Method of manufacturing light emitting element
CN101009344A (en) Coarse sapphire bushing LED and its making method
US20100006881A1 (en) Light emitting device and method for fabricating the same
JP2011181834A (en) Semiconductor light emitting element and method for manufacturing the same
CN1564331A (en) Method of mfg. GaN-base LED
CN101604717A (en) Vertical GaN-based LED chip and manufacture method thereof
JP2007294972A (en) Light emitting element and method of manufacturing same
US20110291120A1 (en) Light Emitting Devices Using Connection Structures And Methods Of Manufacturing The Same
CN101552312A (en) Method for fabricating light-emitting diode (LED) chip
JP2007036240A (en) Gallium-nitride-based light-emitting diode element having vertical structure and manufacturing method thereof
CN101872813A (en) Light-emitting diode chip and manufacturing method thereof
US7781242B1 (en) Method of forming vertical structure light emitting diode with heat exhaustion structure
JP2008078275A (en) Method of manufacturing compound semiconductor element
US7439091B2 (en) Light-emitting diode and method for manufacturing the same
US7741632B2 (en) InGaAIN light-emitting device containing carbon-based substrate and method for making the same
JP2007305909A (en) Production method of gallium nitride-based compound semiconductor, and production method of light-emitting element
WO2009117845A1 (en) Semiconductor light-emitting device with double-sided passivation
CN101908505A (en) Method for manufacturing light-emitting diode chip
JP2010147164A (en) Method of manufacturing semiconductor element

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CF01