CN103051375B - 无线激光通信外差检测系统及其检测方法 - Google Patents

无线激光通信外差检测系统及其检测方法 Download PDF

Info

Publication number
CN103051375B
CN103051375B CN201210461890.7A CN201210461890A CN103051375B CN 103051375 B CN103051375 B CN 103051375B CN 201210461890 A CN201210461890 A CN 201210461890A CN 103051375 B CN103051375 B CN 103051375B
Authority
CN
China
Prior art keywords
signal
local oscillator
laser
coupler
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210461890.7A
Other languages
English (en)
Other versions
CN103051375A (zh
Inventor
柯熙政
陈锦妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201210461890.7A priority Critical patent/CN103051375B/zh
Publication of CN103051375A publication Critical patent/CN103051375A/zh
Application granted granted Critical
Publication of CN103051375B publication Critical patent/CN103051375B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开的一种无线激光通信外差检测系统,包括光学接收天线、光纤耦合模块、3dB耦合器、光电探测器、数字信号处理模块机数字接口且依次连接,还包括本振激光器及调制电路,本振激光器与3dB耦合器连接;译码器模块与数字接口相连接。本发明方在接收端实现发送端的副载波和接收端的副载波的外差,差生中频的交叉项,通过对中频信号进行解调,恢复出基带信息。本发明解决了目前光外差检测结构复杂、难以实现的问题,具有通信距离更远、更大容量、更容易实现等特点。

Description

无线激光通信外差检测系统及其检测方法
技术领域
本发明属于通信技术领域,涉及一种无线激光通信外差检测系统。
背景技术
无线激光通信将成为下一代激光通信的主要技术,它比光纤通信具有构架方便的主要优点,成为最后一公里宽带接入的主要技术。无线激光通信现在多用的为强度调制/直接检测技术,但是随着通信距离的增加,强度调制/直接检测技术已经不能满足人们的需要。无线光通信具有非常大的市场需求,相干通信成为人们研究的重点,但是由于相干光通信系统复杂,条件苛刻,才开始在星间通信中进行实验。
无线激光通信系统发送端采用副载波调制的原理如图1所示,副载波调制首先用输入信号对相对于光载波的副载波即高频电磁波进行调制,然后再用该副载波对光波进行二次调制。输入的基带信号可以调制副载波的幅度、频率或相位。发送端为副载波BPSK调制的性能要优于OOK,是一种有效的克服大气湍流影响的调制方法。副载波调制通常采用直接检测的方法。但是接收端为外差检测方式可以大大提高接收机的灵敏度、延长通信中继距离。
现有的光外差检测系统的工作原理如图2所示,是在接收信号光时同时加入本地振荡光,使信号光和本振光在光电探测器的光敏面上相干,形成差频信号,即中频信号。该系统要求信号光和本振光偏振态匹配,且要求本振光激光器窄线宽。
现有的光外差检测系统应用到大气信道的激光通信系统中有以下难点:
(1)由于大气环境对外差检测灵敏度的影响很大,该系统多被设计使用在星间通信或者光纤通信系统中,很少针对大气信道。
(2)该系统对光学器件精度要求高,本振激光器必须采用窄线宽的相干光源才能实现相干检测。
(3)现有的数字相干检测接收机必须使用DSP对信号进行相位解调、补偿等,随着信号传输速率的增加,电信号处理速度将面临巨大的挑战。
(4)相干检测技术对相位噪声要求高,尤其在采用多进制调制和编码技术时,信号光和相干光引入的相位噪声会使接收机灵敏度急剧劣化。
发明内容
本发明的目的是提供一种无线激光通信外差检测系统,提高现有的无线激光外差检测系统灵敏度不高的问题。
本发明的另一个目的在于提供上述无线激光通信外差检测系统的检测方法。
本发明所采用的技术方案是,一种无线激光通信外差检测系统,包括光学接收天线、光纤耦合模块、3dB耦合器、光电探测器、数字信号处理模块及数字接口且依次连接,还包括本振激光器及调制电路,本振激光器与3dB耦合器连接;译码器模块与数字接口相连接;
光学接收天线用于接收大气信道中的光信号;
光纤耦合模块用于将信号光耦合到多模光纤中;
本振激光器用于在外差检测的接收端产生本振激光,直接发送激光到多模光纤中;
调制电路用于对本振激光器进行光强度模拟调制;
3dB耦合器用于把信号光和经过本振激光器调制的本振光耦合成一路光信号;
光电探测器用于将3dB耦合器输出的光信号转换为电流信号;
数字信号处理模块用于将光电探测器输出的电流信号进行处理,即先对光电探测器输出的电流通过模数转换器采样,对其进行平方,然后通过带通滤波器进行滤波,通过载波恢复进行PSK信号解调,经过低通滤波器、判决器输出基带信号;
光学接收天线为单凸透镜;光纤耦合模块由显微物镜和光纤调整架构成;本振激光器为半导体激光器。
本发明的另一个目的是这样实现的,无线激光通信外差检测系统的检测方法,包括以下步骤:
步骤1,光学接收天线通过大气信道接收信号光,并进行聚焦;通过光纤耦合模块对空间中的信号光进行耦合;
步骤2,将接收端的本振激光器进行光强度模拟调制,得到已调光信号
步骤3,将步骤1得到的光信号和步骤2得到的已调光信号同时送入3dB耦合器,通过3dB耦合器得到一路光信号;
步骤4,将步骤3得到的光信号通过光电探测器转换,得到对应的电流信号;通过数字信号处理模块对电流信号进行采样,然后对采样值进行平方运算,平方后通过带通滤波器得到差频信号;
步骤5,通过数字信号处理模块对步骤4所得差频信号进行PSK信号解调,通过判决器得到基带信号,从数字接口输出。
本发明的有益效果是:
1.本发明主要用于发送端为副载波强度调制的光通信系统中,通过外差检测的方法提高通信距离。本发明在接收端实现发送端的副载波和接收端的副载波的外差,产生中频的交叉项,通过对中频信号进行解调,恢复出基带信息,解决了目前光外差检测结构复杂、难以实现的问题,具有通信距离更远、更大容量、更容易实现等特点。
2.本发明比相干光通信系统实现条件较低,不需要光锁相环和高度稳定的相干光源。
3.本发明不要求信号光与本振光的偏振态一致,不受大气信道产生的偏振噪声影响,大大提高了无线激光外差检测系统的灵敏度。
附图说明
图1为副载波调制的激光通信发送端原理图;
图2为光外差检测概念图;
图3为本发明无线激光外差检测系统的结构示意图;
图4为本发明数字信号处理模块数学处理方法示意图;
图5为采用现有直接检测技术检测接收到的已调副载波信号;
图6为采用本发明无线激光通信外差检测系统检测时接收到的中频信号。
图中,1.光学接收天线,2.光纤耦合模块,3.本振激光器,4.调制电路,5.3dB耦合器,6.光电探测器,7.数字信号处理模块(DSP),8.数字接口
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明无线激光通信外差系统的结构如图3所示,包括光接收天线1、光纤耦合模块2、本振激光器3、调制电路4、3dB耦合器5、光电探测器6、数字信号处理模块7、数字接口8。光学接收天线1、光纤耦合模块2、3dB耦合器5、光电探测器6、数字信号处理模块7及数字接口8且依次连接,本振激光器3与3dB耦合器5连接;译码器模块与数字接口8相连接;
光接收天线1为单凸透镜,用于接收大气信道中的光信号,对光斑起到聚焦的作用。
耦合模块2由10倍的显微物镜和精密光纤调整架构成,用于将信号光耦合到多模光纤中。
本振激光器3为半导体激光器,用于在外差检测的接收端产生本振激光,直接发送本振激光到多模光纤中。
调制电路4用于对本振激光器3进行光强度模拟调制,该调制频率成为接收端的副载波。
3dB耦合器5用于把信号光和已调本振光耦合成一路光信号。
光电探测器6用于将3dB耦合器输出的光信号转换为电流信号。
数字信号处理模块7用于将光电探测器6输出的电流进行处理,其处理方法如图4所示,先对光电探测器6输出的电流通过模数转换器(ADC)采样,对其进行平方(图4中[]2表示对模数转换器得到的电流进行平方),然后通过带通滤波器进行滤波,通过载波恢复进行PSK信号解调,经过低通滤波器、判决器输出基带信号。
本发明无线激光通信外差检测系统的检测方法,按以下步骤实施:
假设在发送端要发送的基带信号表示为信息数据序列:
b ( t ) = Σ n = - ∞ ∞ a n g ( t - n T s )
其中, a n = A , p - A , 1 - p , 基带信号在发送端通过2PSK调制,调制后的信号时域表达式为:
通过发送端强度调制,发送端的光强信号可表示为:
其中Ie'为发送端激光器光强。
包括以下步骤:
步骤1,光学接收天线1通过大气信道接收信号光,并进行聚焦;通过光纤耦合模块2对空间中在信号光进行耦合;
步骤2,将接收端的本振激光器3进行光强度模拟调制,得到已调光信号。
步骤3,将步骤1得到的光信号和步骤2得到的已调光信号同时送入3dB耦合器5,通过3dB耦合器5得到一路光信号;
步骤4,将步骤3得到的光信号通过光电探测器6转换,得到对应的电流信号;通过数字信号处理模块7对电流信号进行采样,然后对采样值进行平方运算,平方后通过带通滤波器得到差频信号;
步骤5,通过数字信号处理模块7对步骤4所得差频信号进行PSK信号解调,通过判决器得到基带信号,从数字接口8输出。
其中,步骤1中,光接收天线1采用直径为10cm的单凸透镜,把大气信道的信号光进行聚焦。通过光纤耦合模块2,将信号光耦合到光纤中,由精密光纤调整架仔细调整多模光纤的角度和距离使输出光功率达到最大。
步骤2:用正弦波对本振激光器3进行光强调制,已调的本振光光强度表示形式如下:
其中Il'为本振激光器光强度。
步骤3:将步骤1和步骤2得到的信号送入3dB耦合器5进行耦合,得到的叠加光强,通过光电探测器6将光强度信号变为电流信号。
步骤4:将步骤3得到的信号通过A/D转换器采样,送给数字信号处理模块7,数字信号处理模块7(DSP)将电流信号进行平方处理,得到的电流表达式如下:
通过切比雪夫带通滤波器得到差频信号
步骤5:通过载波恢复进行DPSK信号解调,经过低通滤波器进行滤波,通过判决器输出基带信号。
解调可以得到原始的基带信号b(t)。
参见图5,现有直接检测技术通过光电检测器6直接检测到发送端发送的已调副载波信号,信号的幅度平均值为20mv。参见图6,采用本发明无线激光通信外差检测系统检测,经过光电检测器6接收,并经过数字信号8处理单元处理的中频信号的平均值为8000mv。从实验结果计算可知,现有的直接检测系统与本发明无线激光通信外差检测系统接收到的信号相比较,本发明的增益比现有技术高20dB左右,因此,本发明更适用于大气信道激光通信的外差检测。本发明提高接收机的检测灵敏度,从而更容易实现更远距离、更大容量的无线激光通信。

Claims (2)

1.一种无线激光通信外差检测系统,其特征在于:包括光学接收天线(1)、光纤耦合模块(2)、3dB耦合器(5)、光电探测器(6)、数字信号处理模块(7)及数字接口(8)且依次连接,还包括本振激光器(3)及调制电路(4),所述本振激光器(3)与所述3dB耦合器(5)连接;译码器模块与所述数字接口(8)相连接;
所述光学接收天线(1)用于接收大气信道中的光信号;
所述光纤耦合模块(2)用于将信号光耦合到多模光纤中;
所述本振激光器(3)用于在外差检测的接收端产生本振激光,直接发送激光到多模光纤中;
所述调制电路(4)用于对所述本振激光器(3)进行光强度模拟调制;
所述3dB耦合器(5)用于把信号光和经过所述本振激光器(3)调制的本振光耦合成一路光信号;
所述光电探测器(6)用于将所述3dB耦合器(5)输出的光信号转换为电流信号;
所述数字信号处理模块(7)用于将所述光电探测器(6)输出的电流信号进行处理,即先对光电探测器(6)输出的电流通过模数转换器采样,对其进行平方,然后通过带通滤波器进行滤波,通过载波恢复进行PSK信号解调,经过低通滤波器、判决器输出基带信号;
所述光学接收天线(1)为单凸透镜;所述光纤耦合模块(2)由显微物镜和光纤调整架构成;所述本振激光器(3)为半导体激光器。
2.如权利要求1所述的无线激光通信外差检测系统的检测方法,包括 以下步骤:
步骤1,光学接收天线(1)通过大气信道接收信号光,并进行聚焦;通过光纤耦合模块(2)对空间中在信号光进行耦合;
步骤2,将接收端的本振激光器(3)进行光强度模拟调制,得到已调光信号;
步骤3,将步骤1得到的光信号和步骤2得到的已调光信号同时送入3dB耦合器(5),通过3dB耦合器(5)得到一路光信号;
步骤4,将步骤3得到的光信号通过光电探测器(6)转换,得到对应的电流信号;通过数字信号处理模块(7)对电流信号进行采样,然后对采样值进行平方运算,平方后通过带通滤波器得到差频信号;
步骤5,通过数字信号处理模块(7)对步骤4所得差频信号进行PSK信号解调,通过判决器得到基带信号,从数字接口(8)输出。
CN201210461890.7A 2012-11-15 2012-11-15 无线激光通信外差检测系统及其检测方法 Active CN103051375B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210461890.7A CN103051375B (zh) 2012-11-15 2012-11-15 无线激光通信外差检测系统及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210461890.7A CN103051375B (zh) 2012-11-15 2012-11-15 无线激光通信外差检测系统及其检测方法

Publications (2)

Publication Number Publication Date
CN103051375A CN103051375A (zh) 2013-04-17
CN103051375B true CN103051375B (zh) 2015-08-26

Family

ID=48063889

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210461890.7A Active CN103051375B (zh) 2012-11-15 2012-11-15 无线激光通信外差检测系统及其检测方法

Country Status (1)

Country Link
CN (1) CN103051375B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964780A (zh) * 2018-07-26 2018-12-07 北京邮电大学 用于相干光探测的信号发送器、信号接收器、系统及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103812645B (zh) * 2014-03-05 2017-03-01 中国科学院半导体研究所 基于光通信的会客密钥共享系统及方法
CN105634616B (zh) * 2015-12-28 2018-05-08 武汉邮电科学研究院 基于相干接收技术的无源光网络结构及信号相干检测方法
CN106603156B (zh) * 2016-12-22 2018-01-16 深圳市太赫兹科技创新研究院 基于极化编码的太赫兹数字通信系统及方法
CN107181532B (zh) * 2017-05-11 2019-04-02 上海微小卫星工程中心 数模混合外差探测接收装置及其采用的数据处理方法
CN114844561B (zh) * 2022-03-25 2024-01-02 浙江大学 一种基于艾里光束的导频辅助自相干激光通信系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571200A (zh) * 2012-01-09 2012-07-11 南京大学 多频探测光相干光时域反射仪方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102571200A (zh) * 2012-01-09 2012-07-11 南京大学 多频探测光相干光时域反射仪方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
无线光外差检测系统影响因素及关键技术研究;陈锦妮,柯熙政;《半导体光电》;20120831;第33卷(第4期);第548-552页 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108964780A (zh) * 2018-07-26 2018-12-07 北京邮电大学 用于相干光探测的信号发送器、信号接收器、系统及方法

Also Published As

Publication number Publication date
CN103051375A (zh) 2013-04-17

Similar Documents

Publication Publication Date Title
CN103051375B (zh) 无线激光通信外差检测系统及其检测方法
CN108768540B (zh) 光信号接收装置、方法及具有该装置的相干光传输系统
CN104410462B (zh) 基于偏振复用的光信号调制与直接检测的方法及装置
CN108683453B (zh) 一种基于合成单边带信号的线性直接探测方法与系统
CN102447513A (zh) 一种基于60GHz毫米波的光无线融合视频传输系统和方法
CN107634814A (zh) 一种自零差检测模分复用系统中载波路串扰的消除方法
CN105281862A (zh) 一种偏振复用直接检测系统及方法
CN101715249A (zh) 一种全双工通信的光纤无线系统
CN102075471B (zh) 基于高斯滤波最小移频键控的光无线融合系统和方法
CN102201869A (zh) 基于ofdm技术的太赫兹光载无线通信系统装置及方法
CN103532623B (zh) 基于偏振位移键控调制的光通信中继传输方法及系统
CN111130650B (zh) 强度调制直接接收的光信号生成方法、接收方法及设备
Zhang et al. A long distance real-time DPSK visible light communication system based on FPGA
CN105490749A (zh) 一种偏振复用直接检测系统及方法
CN111313976A (zh) 脉冲幅度调制信号外差相干pon系统及收发方法
CN112152849B (zh) 一种基于智能全光处理的基站及其实施方法
CN204967822U (zh) 一种自由空间光通信可调谐光相干探测ofdm装置
CN101136705B (zh) 毫米波光纤无线电上行链路的全光副载波解调装置及方法
CN208190659U (zh) 一种超高速光纤微波信息综合传输分布系统
CN102523047A (zh) 全光强度信号同时放大、反转和码型转换的方法及装置
CN108631881B (zh) 一种相干光装置
CN113438030B (zh) 一种偏振不敏感的光子辅助毫米波相干接收装置
CN114430298A (zh) 基于直接调制的多制式兼容空间激光通信方法及系统
CN107071595B (zh) 异步控制信号的传输系统
Kanno et al. All-spectrum fiber-wireless transmission for 5G backhaul and fronthaul links

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant