CN103007913A - Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst - Google Patents
Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst Download PDFInfo
- Publication number
- CN103007913A CN103007913A CN2012105373521A CN201210537352A CN103007913A CN 103007913 A CN103007913 A CN 103007913A CN 2012105373521 A CN2012105373521 A CN 2012105373521A CN 201210537352 A CN201210537352 A CN 201210537352A CN 103007913 A CN103007913 A CN 103007913A
- Authority
- CN
- China
- Prior art keywords
- graphene
- photocatalyst
- tio2
- doped
- visible light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 130
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 121
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 75
- 239000002131 composite material Substances 0.000 title claims abstract description 26
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000011941 photocatalyst Substances 0.000 title abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000004913 activation Effects 0.000 claims abstract description 26
- 239000010936 titanium Substances 0.000 claims abstract description 23
- 239000004408 titanium dioxide Substances 0.000 claims abstract description 10
- 239000003054 catalyst Substances 0.000 claims description 48
- 229910002804 graphite Inorganic materials 0.000 claims description 13
- 239000010439 graphite Substances 0.000 claims description 13
- 239000007864 aqueous solution Substances 0.000 claims description 12
- 229910021642 ultra pure water Inorganic materials 0.000 claims description 10
- 239000012498 ultrapure water Substances 0.000 claims description 10
- 238000001132 ultrasonic dispersion Methods 0.000 claims description 10
- 238000001035 drying Methods 0.000 claims description 9
- -1 graphite alkene Chemical class 0.000 claims description 7
- 206010013786 Dry skin Diseases 0.000 claims 1
- 230000003213 activating effect Effects 0.000 claims 1
- 238000013019 agitation Methods 0.000 claims 1
- 230000009467 reduction Effects 0.000 abstract description 18
- 230000000694 effects Effects 0.000 abstract description 13
- 230000004048 modification Effects 0.000 abstract description 13
- 238000012986 modification Methods 0.000 abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 9
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 9
- 239000001257 hydrogen Substances 0.000 abstract description 9
- 238000004519 manufacturing process Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 4
- 238000012546 transfer Methods 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 abstract description 3
- 239000002243 precursor Substances 0.000 abstract description 2
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 230000004298 light response Effects 0.000 abstract 1
- 239000002105 nanoparticle Substances 0.000 abstract 1
- 238000001994 activation Methods 0.000 description 30
- 229910010413 TiO 2 Inorganic materials 0.000 description 24
- 238000006722 reduction reaction Methods 0.000 description 18
- 239000000523 sample Substances 0.000 description 14
- 230000001699 photocatalysis Effects 0.000 description 13
- 230000002829 reductive effect Effects 0.000 description 13
- 230000000052 comparative effect Effects 0.000 description 12
- 238000003760 magnetic stirring Methods 0.000 description 8
- 238000002525 ultrasonication Methods 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000011068 loading method Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- 238000006731 degradation reaction Methods 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 238000011160 research Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 230000000593 degrading effect Effects 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000006303 photolysis reaction Methods 0.000 description 4
- 230000015843 photosynthesis, light reaction Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229940012189 methyl orange Drugs 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 239000008380 degradant Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- STZCRXQWRGQSJD-GEEYTBSJSA-M methyl orange Chemical compound [Na+].C1=CC(N(C)C)=CC=C1\N=N\C1=CC=C(S([O-])(=O)=O)C=C1 STZCRXQWRGQSJD-GEEYTBSJSA-M 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000007146 photocatalysis Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- NWZSZGALRFJKBT-KNIFDHDWSA-N (2s)-2,6-diaminohexanoic acid;(2s)-2-hydroxybutanedioic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O.NCCCC[C@H](N)C(O)=O NWZSZGALRFJKBT-KNIFDHDWSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 230000032900 absorption of visible light Effects 0.000 description 1
- 238000006664 bond formation reaction Methods 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000005492 condensed matter physics Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000007857 degradation product Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- YWEUIGNSBFLMFL-UHFFFAOYSA-N diphosphonate Chemical compound O=P(=O)OP(=O)=O YWEUIGNSBFLMFL-UHFFFAOYSA-N 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine monohydrate Substances O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 239000007777 multifunctional material Substances 0.000 description 1
- DLYUQMMRRRQYAE-UHFFFAOYSA-N phosphorus pentoxide Inorganic materials O1P(O2)(=O)OP3(=O)OP1(=O)OP2(=O)O3 DLYUQMMRRRQYAE-UHFFFAOYSA-N 0.000 description 1
- 238000013033 photocatalytic degradation reaction Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002336 sorption--desorption measurement Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Catalysts (AREA)
Abstract
Description
技术领域 technical field
本发明涉及纳米光催化材料领域,尤其是涉及是以廉价易得的P25为原料,可以一步实现对TiO2的Ti3+自掺杂改性、氧化石墨烯的还原改性、以及TiO2与石墨烯的复合改性,从而得到一种新型Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法。The present invention relates to the field of nanometer photocatalytic materials, in particular to using cheap and easy-to-obtain P25 as a raw material, which can realize Ti3 + self-doping modification of TiO2 , reduction modification of graphene oxide, and TiO2 and TiO2 in one step. Composite modification of graphene to obtain a novel Ti 3+ doped TiO 2 composite graphene photocatalyst preparation method.
背景技术 Background technique
众所周知,TiO2光催化技术只能有效利用太阳光入射到地球表面不到6%的紫外光能量,并不完全具备可持续性发展的潜力。为了克服TiO2的这一缺点,关于对TiO2进行与碳材料复合改性,以提高其对可见光响应的研究逐渐受到人们的关注。石墨烯是材料科学和凝聚态物质物理学中一颗冉冉升起的新星。石墨烯这种绝对的二维材料具有优异的机械,热学,光学和电学性能,这大大激发了人们对设计以石墨烯为基础,可应用于纳米电子学,生物传感,高分子复合材料,氢气生产和储存,药物输送和光催化技术等技术领域的新型材料的兴趣。石墨烯由于具有比碳纳米管更为优异的电学性质,以及良好的导电性和化学稳定性,而被认为是比碳纳米管更好的传递电子或空穴的多功能材料。近年来.利用石墨烯独特的电学性质对一些材料进行修饰以及制备性能更好的复合新材料是当前的研究热点。将石墨烯应用于对TiO2进行电化学性能的修饰是近期光催化领域的研究热点。石墨烯作为载体既可以起到传递电子通道的作用,又可以提高TiO2的光学、电学和光电转换等性能。石墨烯和二氧化钛之间的复合将大大提高光生载流子的传递效率。因此,设计并制备一种新型高效TiO2复合石墨烯光催化剂是TiO2光催化领域的研究热点和重点。As we all know, TiO 2 photocatalytic technology can only effectively utilize the ultraviolet light energy that is less than 6% of the sunlight incident on the earth's surface, and does not fully have the potential for sustainable development. In order to overcome this shortcoming of TiO 2 , research on compound modification of TiO 2 with carbon materials to improve its response to visible light has gradually attracted people's attention. Graphene is a rising star in materials science and condensed matter physics. Graphene, an absolute two-dimensional material, has excellent mechanical, thermal, optical and electrical properties, which has greatly inspired people to design graphene-based materials, which can be applied to nanoelectronics, biosensing, polymer composites, Interest in novel materials in technological fields such as hydrogen production and storage, drug delivery and photocatalytic technologies. Graphene is considered to be a multifunctional material that can transport electrons or holes better than carbon nanotubes due to its superior electrical properties, good electrical conductivity and chemical stability. In recent years, using the unique electrical properties of graphene to modify some materials and prepare new composite materials with better performance is a current research hotspot. The application of graphene to modify the electrochemical properties of TiO2 is a research hotspot in the field of photocatalysis recently. As a carrier, graphene can not only play the role of electron transfer channel, but also improve the optical, electrical and photoelectric conversion properties of TiO 2 . The recombination between graphene and titania will greatly improve the transfer efficiency of photogenerated carriers. Therefore, designing and preparing a new type of high-efficiency TiO 2 composite graphene photocatalyst is a research hotspot and focus in the field of TiO 2 photocatalysis.
虽然石墨烯负载TiO2已经成为一种新型的高性能光催化剂,但关于氧化石墨烯的还原还存在很多问题。比如,水合肼作为一种还原剂被广泛用于氧化石墨烯的还原,但其毒性强,还会引起环境污染。而醇的还原性低,只可还原氧化石墨烯中的环氧基,而不能还原羟基和羧基。这样得到的石墨烯其实是一种中间过渡形式,其性质和结构介于氧化石墨烯和“完全”还原石墨烯之间。因此,目前需找新的绿色环保型还原剂以及探寻新的一步还原法逐渐成为石墨烯复合光催化剂的研究热点。Although graphene-supported TiO2 has become a new type of high-performance photocatalyst, there are still many questions about the reduction of graphene oxide. For example, hydrazine hydrate is widely used as a reducing agent in the reduction of graphene oxide, but it is highly toxic and causes environmental pollution. Alcohol has low reducibility and can only reduce epoxy groups in graphene oxide, but not hydroxyl and carboxyl groups. The resulting graphene is actually an intermediate transition form, with properties and structures between graphene oxide and "fully" reduced graphene. Therefore, it is necessary to find a new green and environment-friendly reducing agent and to explore a new one-step reduction method, which has gradually become a research hotspot of graphene composite photocatalysts.
发明内容 Contents of the invention
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种实现对TiO2及氧化石墨烯的还原改性,增强对可见光的响应的Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法。The purpose of the present invention is exactly to provide a kind of realization to TiO 2 and the reduction modification of graphene oxide in order to overcome the defective that above-mentioned prior art exists, strengthens the Ti 3+ doped TiO 2 composite graphene photocatalysts of the response of visible light Preparation.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法,该方法以氧化石墨烯、气相二氧化钛(P25)为前驱体,采用低温真空活化法制备新型Ti3+掺杂TiO2复合石墨烯光催化剂,具体包括以下步骤:The preparation method of Ti 3+ doped TiO 2 composite graphene photocatalyst, this method uses graphene oxide, fumed titanium dioxide (P25) as precursor, adopts low-temperature vacuum activation method to prepare novel Ti 3+ doped TiO 2 composite graphene photocatalyst Catalyst, specifically comprises the following steps:
将氧化石墨烯水溶液分散于超纯水中,超声分散1h后,再加入气相二氧化钛,磁力搅拌1h后,再超声分散1h,100℃干燥后,于300℃下真空活化3h,即制备得到Ti3+掺杂TiO2复合石墨烯光催化剂。Disperse the graphene oxide aqueous solution in ultrapure water, ultrasonically disperse for 1 hour, then add gas-phase titanium dioxide, stir magnetically for 1 hour, then ultrasonically disperse for 1 hour, dry at 100°C, and vacuum activate at 300°C for 3 hours to prepare Ti 3 + Doped TiO2 composite graphene photocatalyst.
所述的氧化石墨烯水溶液的浓度为2-3mg/ml。The concentration of the graphene oxide aqueous solution is 2-3mg/ml.
所述的气相二氧化钛与氧化石墨烯水溶液的加入量比为0.5g气相二氧化钛/0.05-4.0ml氧化石墨烯水溶液。The addition ratio of the gas-phase titanium dioxide to the graphene oxide aqueous solution is 0.5g gas-phase titanium dioxide/0.05-4.0ml graphene oxide aqueous solution.
所述的氧化石墨烯水溶液采用Hummer方法制备得到。The graphene oxide aqueous solution is prepared by the Hummer method.
制备得到的负Ti3+掺杂TiO2复合石墨烯光催化剂对可见光具有非常强的吸收。The prepared negative Ti 3+ doped TiO 2 composite graphene photocatalyst has a very strong absorption of visible light.
以甲基橙有机化合物为目标降解物,Ti3+掺杂TiO2复合石墨烯光催化剂表现出比没有复合石墨烯的P25,及机械混合法制得的P25复合石墨烯光催化剂更好的紫外、可见光降解能力。Taking methyl orange organic compound as the target degradation product, the Ti 3+ doped TiO 2 composite graphene photocatalyst showed better UV, Visible light degradation ability.
在可见光下照射下,Ti3+掺杂TiO2复合石墨烯光催化剂具有比空白P25更强的光解水制氢性能。Under visible light irradiation, the Ti3 + -doped TiO2 composite graphene photocatalyst has a stronger performance of photo-splitting water to produce hydrogen than the blank P25.
与现有技术相比,本发明采用低温真空活化法制备系列新型TiO2复合石墨烯光催化剂。一步真空活化法不仅可以实现对TiO2的还原改性,还可以同时实现对氧化石墨烯的还原改性。在真空活化过程中,TiO2的表面和体相将产生大量的活性Ti3+及氧缺陷。Ti3+和氧缺陷形成的杂质能级有效减小了TiO2的禁带宽度,增强其对可见光的响应,大大提高TiO2的可见光催化活性。真空活化过程还可以有效去除催化剂表面的羟基,从而提高氧化石墨烯的被还原程度,使其导电性更接近完全还原态的石墨烯。此外,真空活化过程还能促进TiO2表面晶格氧及表面羟基的脱离,有利于石墨烯中的C原子与TiO2的表面Ti结合,增强光生电子从TiO2到石墨烯的传输效率。更重要的是,Ti3+的自掺杂与Ti-O-C化学键之间的协同作用,是引起石墨烯复合TiO2光催化剂的光催化活性的主要原因,相对于传统的掺杂、复合等改性方法,真空活化法设备简单,大大降低了生产成本,有利于工业化推广。为了进一步增强复合光催化剂的光催化活性,我们还将对石墨烯及其表面负载的TiO2进行一系列的掺杂改性。经过掺杂改性后的石墨烯及TiO2产生光生电子的数量将大大增加,光生电子的转移效率也将进一步提高,具体包括以下优点:Compared with the prior art, the invention adopts a low-temperature vacuum activation method to prepare a series of novel TiO2 composite graphene photocatalysts. The one-step vacuum activation method can not only realize the reductive modification of TiO2 , but also realize the reductive modification of graphene oxide at the same time. During the vacuum activation process, the surface and bulk phase of TiO 2 will generate a large number of active Ti 3+ and oxygen vacancies. The impurity energy levels formed by Ti 3+ and oxygen vacancies effectively reduce the band gap of TiO 2 , enhance its response to visible light, and greatly improve the visible light catalytic activity of TiO 2 . The vacuum activation process can also effectively remove the hydroxyl groups on the surface of the catalyst, thereby increasing the degree of reduction of graphene oxide and making its conductivity closer to that of fully reduced graphene. In addition, the vacuum activation process can also promote the detachment of lattice oxygen and surface hydroxyl groups on the surface of TiO2 , which is beneficial to the combination of C atoms in graphene and Ti on the surface of TiO2 , and enhances the transmission efficiency of photogenerated electrons from TiO2 to graphene. More importantly, the synergy between Ti 3+ self-doping and Ti-OC chemical bonds is the main reason for the photocatalytic activity of graphene composite TiO 2 photocatalysts. The unique method, the vacuum activation method has simple equipment, greatly reduces the production cost, and is conducive to industrialization. In order to further enhance the photocatalytic activity of the composite photocatalyst, we will also perform a series of doping modifications on graphene and its surface-loaded TiO2 . The number of photogenerated electrons generated by doped modified graphene and TiO2 will be greatly increased, and the transfer efficiency of photogenerated electrons will be further improved, including the following advantages:
1)相对于传统的掺杂、复合等改性方法,真空活化法设备简单,大大降低了生产成本,有利于工业化推广。1) Compared with traditional modification methods such as doping and compounding, the vacuum activation method has simple equipment, greatly reduces production costs, and is conducive to industrialization.
2)一步真空活化法不仅可以实现对TiO2的还原改性,还可以同时实现对氧化石墨烯的还原改性。2) The one-step vacuum activation method can not only realize the reductive modification of TiO2 , but also realize the reductive modification of graphene oxide at the same time.
3)TiO2的表面和体相将产生大量的活性Ti3+及氧缺陷。Ti3+和氧缺陷形成的杂质能级有效减小了TiO2的禁带宽度,增强其对可见光的响应。3) The surface and bulk phase of TiO 2 will generate a large number of active Ti 3+ and oxygen vacancies. The impurity energy level formed by Ti 3+ and oxygen vacancies effectively reduces the forbidden band width of TiO 2 and enhances its response to visible light.
4)真空活化过程还可以有效去除催化剂表面的羟基,从而提高氧化石墨烯的被还原程度,使其导电性更接近完全还原态的石墨烯。4) The vacuum activation process can also effectively remove the hydroxyl groups on the surface of the catalyst, thereby increasing the degree of reduction of graphene oxide and making its conductivity closer to that of graphene in a completely reduced state.
5)真空活化过程还能促进TiO2表面晶格氧及表面羟基的脱离,有利于石墨烯中的C原子与TiO2的表面Ti结合,增强光生电子从TiO2到石墨烯的传输效率。5) The vacuum activation process can also promote the detachment of lattice oxygen and surface hydroxyl groups on the surface of TiO 2 , which is beneficial to the combination of C atoms in graphene and Ti on the surface of TiO 2 , and enhances the transmission efficiency of photogenerated electrons from TiO 2 to graphene.
6)制备的石墨烯负载TiO2光催化剂既具有高的紫外及可见光活性,又具有高的可见光解水制氢的能力。6) The prepared graphene-supported TiO 2 photocatalyst not only has high ultraviolet and visible light activity, but also has high visible light water splitting ability to produce hydrogen.
附图说明 Description of drawings
图1为实施例2制备的氧化石墨烯的TEM照片;Fig. 1 is the TEM photo of the graphene oxide prepared by
图2为氧化石墨烯及实施例2制备的还原石墨烯的XRD谱图;Fig. 2 is the XRD spectrogram of graphene oxide and the reduced graphene prepared by
图3为实施例8制备得到催化剂还原前后的拉曼光谱;Fig. 3 is the Raman spectrum before and after catalyst reduction prepared by embodiment 8;
图4为制备得到的催化剂及对比样品的UV-DRS谱图;Fig. 4 is the UV-DRS spectrogram of prepared catalyst and comparative sample;
图5为制备得到的催化剂及对比样品对MO(10mg/L)的吸附柱状图(A)及其在可见光下降解的MO降解曲线(B);Fig. 5 is the adsorption column diagram (A) of prepared catalyst and comparative sample to MO (10mg/L) and its MO degradation curve (B) degraded under visible light;
图6为制备得到的催化剂及对比样品在紫外光下降解MO的光催化活性图;Figure 6 is a graph of the photocatalytic activity of the prepared catalyst and comparative samples degrading MO under ultraviolet light;
图7为制备得到的催化剂及对比样品的可见光活性图;Fig. 7 is the visible light activity figure of prepared catalyst and comparative sample;
图8为制备得到的催化剂及对比样品在可见光下光解水制氢的活性图。Fig. 8 is a graph showing the activity of the prepared catalyst and the comparative sample for hydrogen production by photolysis of water under visible light.
具体实施方式 Detailed ways
下面结合附图和具体实施例对本发明进行详细说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
实施例1Example 1
氧化石墨烯(GO)的制备Preparation of Graphene Oxide (GO)
采用“Hummer”方法制备GO,具体方法如下:将3g石墨分散于12ml含有2.5g过硫酸钾和2.5g五氧化二磷的浓硫酸中,80℃搅拌4.5h,然后冷却至室温并常温放置12h。所得混合物过滤洗涤并自然干燥12h。预处理后的石墨加入120ml浓硫酸中,保持温度在20℃以下边搅拌边加入15g高锰酸钾,35℃下搅拌2h。混合物用250ml去离子水稀释,冰水浴保持温度低于50℃。搅拌2h后,加入0.7L的去离子水,随后缓慢加入20ml 30%的双氧水。混合溶液呈现亮黄色,并且冒泡。静置,除去上层清液,加入10%盐酸洗涤数次,用去离子水洗涤数次直至静置不容易沉降为止,透析10-15天。所得样品超声分散得到均匀分散的氧化石墨烯水溶液。The "Hummer" method was used to prepare GO, and the specific method was as follows: 3 g of graphite was dispersed in 12 ml of concentrated sulfuric acid containing 2.5 g of potassium persulfate and 2.5 g of phosphorus pentoxide, stirred at 80 °C for 4.5 h, then cooled to room temperature and placed at room temperature for 12 h . The resulting mixture was filtered, washed and naturally dried for 12 h. The pretreated graphite was added to 120ml of concentrated sulfuric acid, and 15g of potassium permanganate was added while stirring while keeping the temperature below 20°C, and stirred at 35°C for 2h. The mixture was diluted with 250 mL of deionized water, and the temperature was kept below 50°C in an ice-water bath. After stirring for 2 h, 0.7 L of deionized water was added, followed by the slow addition of 20 ml of 30% hydrogen peroxide. The mixed solution was bright yellow and bubbling. Stand still, remove the supernatant, add 10% hydrochloric acid to wash several times, wash several times with deionized water until it is not easy to settle, and dialyze for 10-15 days. The obtained sample was ultrasonically dispersed to obtain a uniformly dispersed graphene oxide aqueous solution.
实施例2Example 2
石墨烯(GR)复合P25光催化剂的制备Preparation of Graphene (GR) Composite P25 Photocatalyst
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)0.02ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-0.02GR。The graduated cylinder measures the graphene oxide (GO) 0.02ml of 2.1mg/ml concentration prepared in Example 1, and is dispersed in 40ml ultrapure water. After ultrasonic dispersion for 1h, 0.5g P25 is added, and after magnetic stirring for 1h, then After ultrasonication for 1h, drying at 100°C, and vacuum activation at 300°C for 3h, a P25 supported graphene (GR) catalyst was obtained, marked as: V-P25-0.02GR.
实施例3Example 3
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)0.05ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-0.05GR。The graduated cylinder measures 0.05ml of graphene oxide (GO) with a concentration of 2.1mg/ml prepared in Example 1, and is dispersed in 40ml of ultrapure water. After ultrasonic dispersion for 1h, 0.5g of P25 is added, and after magnetic stirring for 1h, then After ultrasonication for 1h, drying at 100°C, and vacuum activation at 300°C for 3h, a P25 supported graphene (GR) catalyst was obtained, marked as: V-P25-0.05GR.
实施例4Example 4
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)0.10ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-0.10GR。Measure the graphene oxide (GO) 0.10ml that the concentration that
实施例5Example 5
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)0.20ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-0.20GR。Measure the graphene oxide (GO) 0.20ml that the concentration that
实施例6Example 6
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)0.50ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-0.50GR。The graduated cylinder measures the graphene oxide (GO) 0.50ml of 2.1mg/ml concentration prepared in Example 1, disperses it in 40ml ultrapure water, after ultrasonic dispersion for 1h, then adds 0.5g P25, after magnetic stirring for 1h, then After ultrasonication for 1h, drying at 100°C, and vacuum activation at 300°C for 3h, a P25 supported graphene (GR) catalyst was obtained, marked as: V-P25-0.50GR.
实施例7Example 7
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)1.0ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-1.0GR。Measure the graphene oxide (GO) 1.0ml that the concentration that
实施例8Example 8
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)2.0ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-2.0GR。Measure the graphene oxide (GO) 2.0ml that the concentration that
实施例9Example 9
量筒量取实施例1制备得到的浓度为2.1mg/ml的氧化石墨烯(GO)4.0ml,分散于40ml超纯水中,超声分散1h后,再加入0.5g P25,磁力搅拌1h后,再超声1h,100℃干燥后,再在300℃下真空活化3h,得P25负载石墨烯(GR)催化剂,标记为:V-P25-4.0GR。Measure the graphene oxide (GO) 4.0ml that the concentration that
对比例comparative example
将经过300℃真空活化后的P25与经过300℃真空活化后的GO直接进行机械混合后,得到的样品标记为:mixture of V-P25 and GR。After mechanically mixing P25 after vacuum activation at 300°C with GO after vacuum activation at 300°C, the resulting sample is labeled: mixture of V-P25 and GR.
本发明提供的光催化活性评价方法如下:The photocatalytic activity evaluation method provided by the invention is as follows:
通过在可见光下降解甲基橙(MO,10mg/L)来评价所制备催化剂的可见光催化活性。光催化降解实验在自制的装置上进行。称取0.0700g催化剂样品放入石英反应管中,加入70mL的MO溶液。在无光照的条件下磁力搅拌30min,以使MO分子在催化剂的表面达到吸附-脱附平衡;再用带有滤光片的卤钨灯(1000W,λ)420nm的光)进行照射,光照的过程中持续搅拌,光源与石英管中心的距离为10cm。The visible light catalytic activity of the prepared catalyst was evaluated by degrading methyl orange (MO, 10 mg/L) under visible light. The photocatalytic degradation experiment was carried out on a self-made device. Weigh 0.0700g catalyst sample into a quartz reaction tube, add 70mL of MO solution. Stir magnetically for 30min under the condition of no light, so that the MO molecules reach the adsorption-desorption equilibrium on the surface of the catalyst; Stirring was continued during the process, and the distance between the light source and the center of the quartz tube was 10 cm.
通过在紫外光下降解甲基橙(MO,20mg/L)来评价所制备催化剂的紫外光催化活性。除了光源之外,样品在紫外下光催化活性的测试和可见光活性测试步骤相同。用300W的高压汞灯作为紫外光照射光源(光源最大发射波长为365nm),灯到石英管的中心的距离为24cm,用紫外辐射仪UV-A(365nm单通道探头,测量范围:320-400nm)测得照射到催化剂表面的平均光强为1230μW/cm-2。The ultraviolet photocatalytic activity of the prepared catalyst was evaluated by degrading methyl orange (MO, 20 mg/L) under ultraviolet light. In addition to the light source, the photocatalytic activity of the sample under ultraviolet light is tested in the same steps as the visible light activity test. Use a 300W high-pressure mercury lamp as the ultraviolet light source (the maximum emission wavelength of the light source is 365nm), the distance from the lamp to the center of the quartz tube is 24cm, and use an ultraviolet radiation meter UV-A (365nm single-channel probe, measuring range: 320-400nm ) measured that the average light intensity irradiated on the surface of the catalyst was 1230 μW/cm -2 .
在上述可见和紫外光催化活性测试过程中,每间隔一定的时间,取出一定量的反应溶液,离心分离,然后用过滤头滤除催化剂,将清液注射入到比色皿中,用Cary100紫外-可见分光光度计测定降解物溶液的在最大吸收波长下的吸光度值(A)。降解物分子的吸光度A与浓度之间复合朗伯-比尔定律,所以可用公式(1)来计算其降解率。During the above-mentioned visible and ultraviolet photocatalytic activity test process, a certain amount of reaction solution was taken out at regular intervals, centrifuged, and then the catalyst was filtered out with a filter head, and the clear liquid was injected into a cuvette, and the Cary100 ultraviolet light was used to - Determination of the absorbance value (A) of the degradant solution at the maximum absorption wavelength by a visible spectrophotometer. Lambert-Beer law is compounded between absorbance A and concentration of degradant molecules, so the degradation rate can be calculated by formula (1).
光解水制氢的实验是在一个密闭的循环系统中进行的。具体过程如下:称取0.05g的催化剂分散于60ml 25%的甲醇水溶液中,再加入0.5ml的H2PtCl6(1g/L),磁力搅拌5min。然后将溶液在300W的高压汞灯下照射120min,以便将Pt负载在催化剂的表面。将整个循环系统抽真空后,还是以氙灯的可见光作为光源(用420nm滤光片滤掉<420nm的紫外光)。光解水产生的H2用气相色谱仪(TechompGC-7890II,热导检测器(TCD))进行分析。The experiment of hydrogen production by photolysis of water is carried out in a closed circulation system. The specific process is as follows: Weigh 0.05g of the catalyst and disperse it in 60ml of 25% methanol aqueous solution, then add 0.5ml of H 2 PtCl 6 (1g/L), and stir magnetically for 5min. Then the solution was irradiated under a 300W high-pressure mercury lamp for 120min to load Pt on the surface of the catalyst. After the whole circulation system is evacuated, the visible light of the xenon lamp is still used as the light source (the ultraviolet light <420nm is filtered out with a 420nm filter). H2 produced by photolysis of water was analyzed by gas chromatography (TechompGC-7890II, thermal conductivity detector (TCD)).
说明书附图中的说明:V-P25-0.02GR、V-P25-0.05GR、V-P25-0.10GR、V-P25-0.20GR、V-P25-0.50GR、V-P25-1.0GR、V-P25-2.0GR、V-P25-4.0GR分别对应实施例2-9中制备得到的催化剂产品,mixture of V-P25 and GR为对比例制备得到的对比样品,P25为空白二氧化钛、V-P25为直接对没有负载石墨烯的P25进行真空活化改性后的催化剂,GO为氧化石墨烯,GR为经过真空还原后的石墨烯。Instructions in the accompanying drawings: V-P25-0.02GR, V-P25-0.05GR, V-P25-0.10GR, V-P25-0.20GR, V-P25-0.50GR, V-P25-1.0GR, V -P25-2.0GR, V-P25-4.0GR correspond to the catalyst products prepared in Examples 2-9 respectively, mixture of V-P25 and GR is the comparative sample prepared in the comparative example, P25 is blank titanium dioxide, V-P25 GO is graphene oxide, and GR is graphene after vacuum reduction.
图1是实施例2制备的氧化石墨烯的TEM照片。图1表明采用“Hummers”方法制备的氧化石墨烯表面虽然有褶皱出现,但仍较为光滑。Fig. 1 is the TEM photo of the graphene oxide prepared in
图2为氧化石墨烯及实施例2制备的还原石墨烯的XRD谱图,图3为V-P25/2.0GR还原前后的拉曼光谱。图2表明,与空白P25相比,只经过300℃真空活化而没有负载石墨烯的催化剂V-P25晶型和结晶度基本不没有发生改变。这说明我们采用的真空活化法,不仅操作简单,煅烧温度相对较低,可以较好的保持TiO2的晶型。而经过负载石墨烯后,催化剂的晶型和结晶度也没有发生明显变化,负载前后都表现为良好的锐钛矿和金红石混晶。此外,对于负载石墨烯的光催化剂的XRD谱图中,在2θ=18.0°左右处出现了一个还原石墨烯的特征峰。与空白的氧化石墨烯(GO)相比,经过真空还原后的石墨烯(GR)的XRD出峰发生了明显的变化。GO在10.2°处的特征峰在经过真空还原处理后,角度增加到16.6°,这说明氧化石墨烯被还原成了石墨烯。负载石墨烯的P25的XRD在18.0°处的出峰也说明真空活化过程成功将氧化石墨烯还原成石墨烯。图3中a表示还原前;b表示还原后,负载P25的GO经过300℃的真空还原后,G带的出峰位置从1610.7cm-1转移到1598.7cm-1,而石墨烯的G带特征峰就在1598cm-1处,这说明真空还原可以将部分氧化石墨烯还原成石墨烯。同时,D/G的比值在经过还原后明显增大,说明经过真空活化后的氧化石墨烯表面缺陷含量增加,也间接证明氧化石墨烯确实在真空活化过程中发生了还原反应。Figure 2 is the XRD spectrum of graphene oxide and the reduced graphene prepared in Example 2, and Figure 3 is the Raman spectrum of V-P25/2.0GR before and after reduction. Figure 2 shows that, compared with the blank P25, the crystal form and crystallinity of the catalyst V-P25, which has only been vacuum activated at 300°C without graphene, have basically not changed. This shows that the vacuum activation method we adopt is not only simple to operate, but also has a relatively low calcination temperature, and can better maintain the crystal form of TiO 2 . After loading graphene, the crystal form and crystallinity of the catalyst did not change significantly, and both before and after loading showed good mixed crystals of anatase and rutile. In addition, in the XRD spectrum of the graphene-loaded photocatalyst, a characteristic peak of reduced graphene appeared at around 2θ=18.0°. Compared with the blank graphene oxide (GO), the XRD peaks of the vacuum-reduced graphene (GR) changed significantly. The characteristic peak of GO at 10.2° increased to 16.6° after vacuum reduction treatment, which indicated that graphene oxide was reduced to graphene. The XRD peak at 18.0° of the graphene-loaded P25 also indicates that the vacuum activation process successfully reduced graphene oxide to graphene. In Figure 3, a represents before reduction; b represents after reduction. After 300°C vacuum reduction of GO loaded with P25, the peak position of the G band shifts from 1610.7 cm -1 to 1598.7 cm -1 , while the G band characteristic of graphene The peak is at 1598cm -1 , which indicates that vacuum reduction can partially reduce graphene oxide to graphene. At the same time, the ratio of D/G increases significantly after reduction, indicating that the surface defect content of graphene oxide after vacuum activation increases, and indirectly proves that graphene oxide does undergo a reduction reaction during vacuum activation.
图4是实施实例1制备的催化剂的UV-DRS谱图。图4表明,随着GO加入量的增加,催化剂在可见光区的吸收逐渐增强。值得注意的是,真空活化法制备的样品与机械研磨法制得的样品在可见光区的吸收有着明显的区别。经过真空活化法处理的样品在可见光区的吸收带与P25相比发生了明显的红移,尤其是石墨烯的负载量大于0.50mL时,其在可见光区的吸收明显增强。Fig. 4 is the UV-DRS spectrogram of the catalyst prepared in Example 1. Figure 4 shows that with the increase of GO addition, the absorption of the catalyst in the visible region is gradually enhanced. It is worth noting that the absorption of the samples prepared by the vacuum activation method and the samples prepared by the mechanical grinding method is obviously different in the visible light region. Compared with P25, the absorption band in the visible light region of the sample treated by vacuum activation has a significant red shift, especially when the loading amount of graphene is greater than 0.50mL, its absorption in the visible light region is significantly enhanced.
图5是为制备得到的催化剂及对比样品对MO(10mg/L)的吸附柱状图(A)及其在可见光下降解的MO降解曲线(B)。图5(A)表明,P25负载石墨烯后制得的催化剂对MO有很好的吸附效果。图5(B)表明,随着GO加入量的增加,催化剂对MO的吸附逐渐增强,且其可见光的活性也是逐渐升高的。Fig. 5 is the adsorption histogram (A) of the prepared catalyst and comparative sample to MO (10mg/L) and its degradation curve (B) of MO under visible light degradation. Figure 5(A) shows that the catalyst prepared after loading graphene on P25 has a good adsorption effect on MO. Figure 5(B) shows that with the increase of GO addition, the adsorption of MO by the catalyst is gradually enhanced, and its visible light activity is also gradually increased.
图6为制备得到的催化剂及对比样品在紫外光下降解MO的光催化活性图。图6表明,P25负载石墨烯后制得的催化剂对20mg/L的MO同样具有很好的吸附效果,且随着GR负载量的增加,催化剂的紫外光活性也是逐渐升高。Fig. 6 is a diagram of the photocatalytic activity of the prepared catalyst and the comparative sample for degrading MO under ultraviolet light. Figure 6 shows that the catalyst prepared by loading graphene on P25 also has a good adsorption effect on 20 mg/L MO, and with the increase of GR loading, the ultraviolet light activity of the catalyst also gradually increases.
图7为制备得到的催化剂及对比样品的可见光活性图。图7表明,机械混合法制得的催化剂虽然对MO也有很好的吸附效果,但其紫外光活性比真空活化法制得的催化剂的活性要差的多,这说明真空活化法制得的催化剂中P25与GR之间存在相互作用,这主要表现为Ti-O-C键的生成,而机械混合法制得的催化剂只是简单的物理混合,P25与GR之间并没有化学键的生成。低温真空活化法不仅可以一步实现将GO还原成GR,还可以实现P25在GR表面的真正复合。TiO2与GR之间Ti-O-C键的形成将有利于光生电子的转移,从而促进光生电子与空穴的分离,并最终提高石墨烯负载TiO2光催化剂的紫外光活性。Fig. 7 is the visible light activity diagram of the prepared catalyst and comparative samples. Figure 7 shows that although the catalyst prepared by the mechanical mixing method also has a good adsorption effect on MO, its ultraviolet light activity is much worse than that of the catalyst prepared by the vacuum activation method, which shows that P25 and There is an interaction between GR, which is mainly manifested in the formation of Ti-OC bonds, while the catalyst prepared by the mechanical mixing method is only a simple physical mixing, and there is no chemical bond formation between P25 and GR. The low-temperature vacuum activation method can not only realize the reduction of GO to GR in one step, but also realize the true recombination of P25 on the surface of GR. The formation of Ti-OC bonds between TiO2 and GR will facilitate the transfer of photogenerated electrons, thereby promoting the separation of photogenerated electrons and holes, and finally enhancing the UV photoactivity of graphene-supported TiO2 photocatalysts.
图8为制备得到的催化剂及对比样品在可见光下光解水制氢的活性图。图8表明,P25和石墨烯复合后,在可见光下的制氢能力与空白P25相比明显变强,说明采用真空活化法制备的催化剂具有很好的光解水制氢的能力。Fig. 8 is a graph showing the activity of the prepared catalyst and the comparative sample for hydrogen production by photolysis of water under visible light. Figure 8 shows that after P25 and graphene are combined, the hydrogen production ability under visible light is significantly stronger than that of the blank P25, indicating that the catalyst prepared by the vacuum activation method has a good ability to photolyze water to produce hydrogen.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105373521A CN103007913A (en) | 2012-12-12 | 2012-12-12 | Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2012105373521A CN103007913A (en) | 2012-12-12 | 2012-12-12 | Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst |
Publications (1)
Publication Number | Publication Date |
---|---|
CN103007913A true CN103007913A (en) | 2013-04-03 |
Family
ID=47957345
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2012105373521A Pending CN103007913A (en) | 2012-12-12 | 2012-12-12 | Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN103007913A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140131192A1 (en) * | 2012-11-09 | 2014-05-15 | Jean Andino | Ionic Liquid Functionalized Reduced Graphite Oxide / TiO2 Nanocomposite for Conversion of CO2 to CH4 |
CN103816888A (en) * | 2014-03-14 | 2014-05-28 | 中国科学院理化技术研究所 | Preparation method of visible light response type quadrivalent niobium self-doping niobate photocatalyst |
CN104741104A (en) * | 2015-03-26 | 2015-07-01 | 中国科学院新疆理化技术研究所 | Preparation method of titanous auto-doping anatase titanium dioxide monocrystalline |
CN105195123A (en) * | 2015-07-20 | 2015-12-30 | 黑龙江大学 | A method for preparing graphene/titanium dioxide composite photocatalyst by ultrasonic exfoliation |
CN107051418A (en) * | 2017-06-14 | 2017-08-18 | 海南师范大学 | A kind of method that utilization ball-milling method prepares rare earth metal doping TiO2 photochemical catalysts |
CN107824173A (en) * | 2017-11-01 | 2018-03-23 | 南通纺织丝绸产业技术研究院 | A kind of titanous auto-dope titania nanoparticles partial reduction stannic oxide/graphene nano piece composite and preparation method thereof |
CN108275675A (en) * | 2018-03-23 | 2018-07-13 | 绍兴文理学院 | A kind of preparation method of titanium doped grapheme material |
TWI641553B (en) * | 2017-04-13 | 2018-11-21 | 國立宜蘭大學 | A material preparation method for photocatalytic hydrogen production via wastewater splitting |
CN109338738A (en) * | 2018-10-18 | 2019-02-15 | 安徽紫荆花壁纸股份有限公司 | A kind of preparation method of multi-functional composite material for decoration |
CN109731566A (en) * | 2019-01-15 | 2019-05-10 | 宁波石墨烯创新中心有限公司 | The preparation method of graphene composite photocatalyst |
CN111167455A (en) * | 2020-02-12 | 2020-05-19 | 上海第二工业大学 | Graphene-loaded cobalt-doped titanium dioxide photocatalyst and preparation method thereof |
CN113000043A (en) * | 2021-02-21 | 2021-06-22 | 兰州大学 | Regulating and controlling process of crystal face structure exposed on surface of titanium dioxide quantum dot and composite photocatalyst constructed by regulating and controlling process and two-dimensional material |
CN114082412A (en) * | 2021-12-07 | 2022-02-25 | 温州大学 | A method to improve the photocatalytic activity of calcium titanate by using pulsed laser |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004322045A (en) * | 2003-04-28 | 2004-11-18 | Kagawa Industry Support Foundation | Novel visible light excited type photocatalyst and its manufacturing method |
CN1608727A (en) * | 2003-10-17 | 2005-04-27 | 中国科学院过程工程研究所 | A kind of loaded TiO2 photocatalyst and preparation method thereof |
CN102658105A (en) * | 2012-05-17 | 2012-09-12 | 华东理工大学 | Continuous preparation method of titanium dioxide with high visible light absorptivity |
-
2012
- 2012-12-12 CN CN2012105373521A patent/CN103007913A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004322045A (en) * | 2003-04-28 | 2004-11-18 | Kagawa Industry Support Foundation | Novel visible light excited type photocatalyst and its manufacturing method |
CN1608727A (en) * | 2003-10-17 | 2005-04-27 | 中国科学院过程工程研究所 | A kind of loaded TiO2 photocatalyst and preparation method thereof |
CN102658105A (en) * | 2012-05-17 | 2012-09-12 | 华东理工大学 | Continuous preparation method of titanium dioxide with high visible light absorptivity |
Non-Patent Citations (2)
Title |
---|
PING CHENG等: "TiO2-graphene nanocomposites for photocatalytic hydrogen production from splitting water", 《INTERNATIONAL JOURNAL OF HYDROGEN ENERGY》, vol. 37, 26 November 2011 (2011-11-26), pages 2224 - 2230, XP028441434, DOI: doi:10.1016/j.ijhydene.2011.11.004 * |
邢明阳: "新型高效改性纳米二氧化钛光催化剂的制备、表征及其降解污染物的研究", 《中国博士学位论文全文数据库》, no. 7, 15 July 2012 (2012-07-15), pages 128 - 130 * |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9545625B2 (en) * | 2012-11-09 | 2017-01-17 | Arizona Board Of Regents On Behalf Of Arizona State University | Ionic liquid functionalized reduced graphite oxide / TiO2 nanocomposite for conversion of CO2 to CH4 |
US20140131192A1 (en) * | 2012-11-09 | 2014-05-15 | Jean Andino | Ionic Liquid Functionalized Reduced Graphite Oxide / TiO2 Nanocomposite for Conversion of CO2 to CH4 |
CN103816888A (en) * | 2014-03-14 | 2014-05-28 | 中国科学院理化技术研究所 | Preparation method of visible light response type quadrivalent niobium self-doping niobate photocatalyst |
CN103816888B (en) * | 2014-03-14 | 2016-02-03 | 中国科学院理化技术研究所 | Preparation method of visible light response type quadrivalent niobium self-doping niobate photocatalyst |
CN104741104A (en) * | 2015-03-26 | 2015-07-01 | 中国科学院新疆理化技术研究所 | Preparation method of titanous auto-doping anatase titanium dioxide monocrystalline |
CN105195123B (en) * | 2015-07-20 | 2017-12-26 | 黑龙江大学 | A kind of method that graphene/titanium dioxide composite photocatalyst is prepared using ultrasonic stripping |
CN105195123A (en) * | 2015-07-20 | 2015-12-30 | 黑龙江大学 | A method for preparing graphene/titanium dioxide composite photocatalyst by ultrasonic exfoliation |
TWI641553B (en) * | 2017-04-13 | 2018-11-21 | 國立宜蘭大學 | A material preparation method for photocatalytic hydrogen production via wastewater splitting |
CN107051418A (en) * | 2017-06-14 | 2017-08-18 | 海南师范大学 | A kind of method that utilization ball-milling method prepares rare earth metal doping TiO2 photochemical catalysts |
CN107824173A (en) * | 2017-11-01 | 2018-03-23 | 南通纺织丝绸产业技术研究院 | A kind of titanous auto-dope titania nanoparticles partial reduction stannic oxide/graphene nano piece composite and preparation method thereof |
CN108275675A (en) * | 2018-03-23 | 2018-07-13 | 绍兴文理学院 | A kind of preparation method of titanium doped grapheme material |
CN109338738A (en) * | 2018-10-18 | 2019-02-15 | 安徽紫荆花壁纸股份有限公司 | A kind of preparation method of multi-functional composite material for decoration |
CN109338738B (en) * | 2018-10-18 | 2021-08-13 | 安徽紫荆花壁纸股份有限公司 | Preparation method of multifunctional composite decorative material |
CN109731566A (en) * | 2019-01-15 | 2019-05-10 | 宁波石墨烯创新中心有限公司 | The preparation method of graphene composite photocatalyst |
CN111167455A (en) * | 2020-02-12 | 2020-05-19 | 上海第二工业大学 | Graphene-loaded cobalt-doped titanium dioxide photocatalyst and preparation method thereof |
CN111167455B (en) * | 2020-02-12 | 2022-12-13 | 上海第二工业大学 | Graphene-loaded cobalt-doped titanium dioxide photocatalyst and preparation method thereof |
CN113000043A (en) * | 2021-02-21 | 2021-06-22 | 兰州大学 | Regulating and controlling process of crystal face structure exposed on surface of titanium dioxide quantum dot and composite photocatalyst constructed by regulating and controlling process and two-dimensional material |
CN113000043B (en) * | 2021-02-21 | 2022-02-11 | 兰州大学 | A control process for the surface-exposed crystal plane structure of TiO2 quantum dots and its composite photocatalyst constructed with two-dimensional materials |
CN114082412A (en) * | 2021-12-07 | 2022-02-25 | 温州大学 | A method to improve the photocatalytic activity of calcium titanate by using pulsed laser |
CN114082412B (en) * | 2021-12-07 | 2023-07-21 | 温州大学 | A Method of Improving the Photocatalytic Activity of Calcium Titanate Using Pulsed Laser |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103007913A (en) | Preparation method of Ti3+ doped TiO2 composite graphene photocatalyst | |
Liu et al. | Template-free preparation of non-metal (B, P, S) doped g-C3N4 tubes with enhanced photocatalytic H2O2 generation | |
Li et al. | Self-assembled synthesis of benzene-ring-grafted g-C3N4 nanotubes for enhanced photocatalytic H2 evolution | |
Zhang et al. | Fabrication of carbon quantum dots/TiO2/Fe2O3 composites and enhancement of photocatalytic activity under visible light | |
Liu et al. | Ultrastable metal-free near-infrared-driven photocatalysts for H2 production based on protonated 2D g-C3N4 sensitized with Chlorin e6 | |
Kooshki et al. | Eco-friendly synthesis of PbTiO3 nanoparticles and PbTiO3/carbon quantum dots binary nano-hybrids for enhanced photocatalytic performance under visible light | |
An et al. | Hierarchical nanotubular anatase/rutile/TiO2 (B) heterophase junction with oxygen vacancies for enhanced photocatalytic H2 production | |
Tian et al. | N, S co-doped graphene quantum dots-graphene-TiO2 nanotubes composite with enhanced photocatalytic activity | |
Sun et al. | N-doped TiO2 nanobelts with coexposed (001) and (101) facets and their highly efficient visible-light-driven photocatalytic hydrogen production | |
Yu et al. | Non-noble metal Bi deposition by utilizing Bi2WO6 as the self-sacrificing template for enhancing visible light photocatalytic activity | |
Li et al. | Templateless infrared heating process for fabricating carbon nitride nanorods with efficient photocatalytic H2 evolution | |
Cheng et al. | TiO2–graphene nanocomposites for photocatalytic hydrogen production from splitting water | |
Wang et al. | Oxygen-Defective Bi2MoO6/g-C3N4 hollow tubulars S-scheme heterojunctions toward optimized photocatalytic performance | |
He et al. | Facile approach to synthesize g-PAN/g-C3N4 composites with enhanced photocatalytic H2 evolution activity | |
Yang et al. | A comparative study on the photocatalytic behavior of graphene-TiO2 nanostructures: Effect of TiO2 dimensionality on interfacial charge transfer | |
Fu et al. | Construction of three-dimensional g-C3N4/Gr-CNTs/TiO2 Z-scheme catalyst with enhanced photocatalytic activity | |
Yu et al. | Preparation and characterization of sphere-shaped BiVO4/reduced graphene oxide photocatalyst for an augmented natural sunlight photocatalytic activity | |
Luo et al. | Enhanced photocatalytic activity of sulfur-doped graphene quantum dots decorated with TiO2 nanocomposites | |
Li et al. | Construction of layered h-BN/TiO2 hetero-structure and probing of the synergetic photocatalytic effect | |
Wu et al. | TiO2 (B) nanotubes with ultrathin shell for highly efficient photocatalytic fixation of nitrogen | |
She et al. | Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation | |
CN102489285A (en) | Preparation method of graphene-titanium dioxide composite photocatalyst | |
Yang et al. | Ascorbic acid-assisted hydrothermal route to create mesopores in polymeric carbon nitride for increased photocatalytic hydrogen generation | |
CN103769072B (en) | Titania nanotube-carbon composite and its production and use | |
Li et al. | Hollow cadmium sulfide tubes with novel morphologies for enhanced stability of the photocatalytic hydrogen evolution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20130403 |