CN103006356B - Bionic type hydraulic movable artificial vertebral body - Google Patents

Bionic type hydraulic movable artificial vertebral body Download PDF


Publication number
CN103006356B CN201310003964.7A CN201310003964A CN103006356B CN 103006356 B CN103006356 B CN 103006356B CN 201310003964 A CN201310003964 A CN 201310003964A CN 103006356 B CN103006356 B CN 103006356B
Prior art keywords
vertebral body
Prior art date
Application number
Other languages
Chinese (zh)
Other versions
CN103006356A (en
Original Assignee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘小勇 filed Critical 刘小勇
Priority to CN201310003964.7A priority Critical patent/CN103006356B/en
Publication of CN103006356A publication Critical patent/CN103006356A/en
Application granted granted Critical
Publication of CN103006356B publication Critical patent/CN103006356B/en



    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof


本发明公开一种脊柱生理功能重建的仿生型液压式人工椎体设计,其包括内含活塞(13,14)液压囊(10‑11)核心结构的柱形人工椎体主体,活塞两端为半椭(球)形运动轴(21,22)结构相匹配的上下终板(24,25),人工椎体终板与正常邻接椎体终板平板(骨水泥固定)或带有金属微孔及生物材料涂层微孔(生物型固定)的固定钉刺(31,32)结构,椎体后缘可进一步以椎弓根卡钉(45)固定结构的卡槽(40,41)固定于椎弓根;本人工椎体设计可进一步微缩化为液压式人工椎间盘设计(60)。 The present invention discloses a functional reconstruction of spinal hydraulic bionic artificial vertebral body design, artificial vertebral body comprising a cylindrical body (10-11) of the core structure (13, 14) containing hydraulic bladder piston, as the piston ends upper and lower (21, 22) semi-elliptical configuration (sphere) shaped to match the movement of the shaft end plate (24, 25), with artificial vertebral endplate adjacent normal flat endplate (cemented) or a metal having pores and a microporous coating of biological materials (biological fixation) of the fixing nail (31, 32) structure, in the pedicle may be further edge clip (45) of the fixed structure posterior slot (40, 41) is fixed to the pedicle; artificial vertebral body according to the present design may further into miniature hydraulic design artificial intervertebral disk (60).


一种仿生型液压式可活动人工椎体 Bionic type hydraulic movable artificial vertebral body

技术领域 FIELD

[0001] 本发明涉及一种医疗器件,特别是一种脊柱缺损病变后重建脊柱生理功能的仿生型液压式可活动人工椎体。 [0001] The present invention relates to a medical device, in particular a defect physiological function of the spine after the reconstruction of spinal lesions bionic artificial vertebral body hydraulically movable.

背景技术 Background technique

[0002] 脊柱融合技术是现代脊柱外科的主流观念,在治疗脊柱缺损病变中起到良好的临床效果。 [0002] Spinal fusion technology is the mainstream concept of modern spine surgery, played good clinical results in the treatment of spinal defects lesions.

[0003] 临床上对于爆裂粉碎性椎体骨折和椎体肿瘤多采用融合型人工椎体,重建缺失的椎体部分,而临床上一节椎体的病变施行椎体摘除融合术后要丢失两个椎间盘功能,即融合至少三个节段的椎体,牺牲了原有脊柱椎体椎间盘的运动功能。 [0003] For patients with vertebral fractures and comminuted burst tumors vertebral fusion using the artificial vertebral body, the vertebral body reconstruction of the missing portion, and a clinically diseased vertebral fusion surgery for removal purposes vertebral lost two a disc function, that is, at least three segments fused vertebrae, the spinal vertebrae at the expense of the original disc motor function.

[0004] 随着脊柱融合术的广泛临床应用,融合后的并发症和脊柱功能的丧失带来的新的问题日益显现,使得临床医生逐步认识到脊柱原有功能重建的可能性和必要性:多节段椎体融合容易产生直背畸形,因椎间盘功能的丢失,使得脊柱原有力学性能的改变,在融合椎体两端的椎间盘可产生加速退变,颈椎融合后颈椎运动功能的丢失以及手术本身带来的技术问题。 [0004] As complications after extensive clinical application of spinal fusion, integration and new problems caused by loss of function of the spine becomes increasingly obvious that the clinician gradually realized the possibility and necessity of reconstruction of the original function of the spine: multi-segmental spinal fusion prone straight back deformity, due to loss of function of the disc, so as to change the mechanical properties of the original spine, can produce accelerated disc degeneration at both ends of the fusion of vertebrae, cervical spine motor function after cervical fusion surgery and lost bring their own technical problems.

[0005] 人工椎体的发明与应用与人们认识脊柱的结构与力学特性和当时所处的社会环境与生产制造水平相关。 [0005] The invention and application of artificial vertebral body with people understanding the structure and mechanical properties of the spine and social environment and manufacturing level which was related. 最初的人工椎体应用于颈椎,为一个金属球,置于切除的颈椎间盘处,但随即置换的患者出现置换部位球形颈椎间盘陷入椎体,脊椎高度丢失,脊髓受压。 The original artificial cervical vertebrae applied, a metal ball, placed at the cervical disc excision, but the patient then replaced with the emergence of replacement parts spherical cervical disc into the vertebral body, vertebral height loss, spinal cord compression. 其后,各国临床医生都对椎间盘置换手术做过努力与尝试,包括Bryand颈椎间盘在内,设计出各种试样人工椎体或椎间盘,但因为对脊柱结构认识的局限,均存在其缺点。 Thereafter, countries clinicians to disc replacement surgery done with the effort to try, including Bryand cervical disc into account, design a variety of sample or artificial vertebral disc, but because of the limitations of understanding the structure of the spine, its shortcomings are present.

[0006] 回顾融合与脊柱功能重建手术历史与临床得失,当我们在进行椎间盘及脊柱相关手术的时候,有必要进一步认识椎体椎间盘的结构与力学性能。 [0006] Review fused with functional spinal reconstruction surgery history and clinical gains and losses, when we conduct the relevant disc and spinal surgery, there is a need for further understanding of the structure and mechanical properties of vertebral disc. 怎样才能较为科学的认识脊柱椎体与椎间盘的结构与力学特性呢? How can a more scientific understanding of the structure and mechanical properties of spinal vertebrae and intervertebral disc do?

[0007] 临床上可以见到很多现象:为什么脊柱骨折多见于上终板骨折塌陷而少见下终板骨折塌陷? [0007] can see a lot of clinical phenomena: Why spine fracture is more common in the lower end plate fracture collapse and rare endplate fracture collapse? 急性暴力作用脊柱多见椎体骨折而少见椎间盘髓核突出(原有椎间盘退变除外, 颈椎可合并颈椎间盘撕脱突出)? Acute effect of violence prevalent vertebral fractures and spinal nucleus pulposus rare (except for the original disc degeneration, cervical cervical disc can be combined avulsion outstanding)? 椎间盘退变突出见于劳损而少见于外伤性暴力(常是有慢性腰痛后一次突然的扭伤或持重物导致椎间盘突出)? Disc degeneration outstanding and rare strain found in traumatic violence (often there is a sudden sprain or hold heavy objects lead to chronic low back pain after the first disc)? 椎间盘退变是先出现纤维环退变还是髓核退变?Shumor结节多见于胸腰椎椎间盘?下腰椎多见腰椎间盘退变,发病年龄群多见于青壮年?人体年龄增大后椎间盘突出发病率有减少趋势?在老年患者中,椎体出现鱼口状楔形变,而椎间盘成为椭球形?椎间盘退变多发生于下腰椎间隙,而上腰椎少见?椎间盘退变后出现BIack椎间盘现象,椎间盘后缘MRI可出现高亮的信号征? Disc degeneration is a degenerative annulus or nucleus degeneration occurs first? Shumor nodules common in the thoracic and lumbar intervertebral disc? More common in the lower lumbar lumbar disc degeneration, age group more common in young adults? Increased disc onset after the age of the human body rate was decreasing? in elderly patients, vertebral body wedging appears fish-like mouth, and intervertebral disc become ellipsoidal? disc degeneration occurred in the lower lumbar intervertebral space, while the lumbar rare? BIack phenomenon disc after disc degeneration, disc MRI highlight the trailing edge of signal characteristics may occur? 腰椎不稳的椎体出现Modic征象?老年患者椎体骨折容易发生而神经症状不如青壮年患者多见。 Lumbar vertebral instability appears Modic signs? Vertebral fractures in elderly patients prone to neurological symptoms and not as common in young patients.

[0008] 为什么? [0008] Why? 可以有统一的认识吗? You can have a unified understanding of it?

[0009] 所有这些病变或现象是否有其内在的本质联系?这些病变规律是否有其结构上的内因? [0009] All of these lesions or whether the phenomenon has its inherent nature of contact? Are these lesions have the law on their internal structure? 怎样揭示和认识这些现象?医学方法?生物学方法? How revealing and understanding of these phenomena? Medicalization? Biology?

[0010] 在此,借助粗浅的几何学原理与物理学原理予以分析。 [0010] In this case, to be analyzed by means of rudimentary principles of geometry and physics.

[0011] 人体是自然界的进化体,受重力作用。 [0011] The human body is the evolutionary nature of the body, by gravity. 人体产生良好的运动功能依赖于人体的两大结构:骨结构平衡与肌肉的协调运动平衡,在神经系统支配下产生人体的复杂机体运动, 如劳动、武术、体操等等。 The human body to produce good motor function depends on two major structures of the human body: the movement balance and muscle coordination bone structural balance, resulting in a complex body movements of the human body, such as labor, martial arts, gymnastics and so on in the nervous system dominance. 人体结构有物理学特性的一面,人体运动同样遵循自然科学原理。 There are the physical characteristics of the human body structure side, natural human motion also follow scientific principles.

[0012] 观察10具完整华人干燥无缺损脊柱椎体标本(男6,女4),最小刻度为0.5毫米钢制刻度尺,测量椎体截面最宽横径L和最长矢径H。 [0012] 10 was observed no impairment complete Chinese dried specimens vertebral bodies (6 male, 4 female), minimum scale of 0.5 mm steel scale, the widest cross-sectional diameter measured vertebrae L and maximum radius vector H.

[0013] 脊柱椎体截面结构:C2下截面到51上截面,颈椎11、胸椎24、腰椎11共46个截面。 [0013] spinal vertebrae sectional structure: C2-section to the cross-section 51, 11 cervical, thoracic 24, 11 of 46 lumbar section. C2 到T3截面近似豆瓣状椭圆形,T4到T12近似桃形,面近似马蹄形,这些截面相邻的几何学相似且延续。 C2 to T3 bean cross-sectional shape is approximately elliptical, T4 to T12 approximately peach, approximately horseshoe-shaped face, geometrically similar to the cross-section adjacent and continue. 由此,可以利用数学与物理学原理予以解释。 This can be explained by mathematical and physical principles.

[0014] 在此,引入第1个几何学数学原理:相似面积比等于任意对应交叉线乘积之比。 [0014] Here, the introduction of a mathematical theory of geometry: Similar cross-line area ratio is equal to the product of any corresponding ratio.

[0015] 脊柱椎体截面的结构基础:椎间盘相邻椎体水平截面结构相似性符合平面几何相似学原理,即:椭圆面积S = 3i*a*b(a,b分别为椭圆的两半径),由此估算椎体截面面积为S = 3i*L/2*H/2(L*H为面积指数,π为圆周率,为一常数,各椎体截面近似为椭圆形,在此, 以椎体截面的横径矢径为参数做一标准椭圆,标准椭圆几何图形与实际椎体截面图形间面积可用面积近似割补法进行转换:即椭圆前方划出椎体部分的面积可用椎体截面后方与被椭圆相截部分相填充抵消,由此得到近似的椎体截面积)。 [0015] The basic structure of the spinal vertebrae sections: a horizontal cross-sectional configuration adjacent vertebral disc similarity planar meet similar principles, namely: ellipse area S = 3i * a * b (a, b are two radii of the ellipse) , whereby the cross-sectional area of ​​the vertebral body to estimate S = 3i * L / 2 * H / 2 (L * H is the area index, [pi] is pi, a constant, vertebrae approximately elliptical cross-section, here, to the vertebral vector diameter body section diameter is the parameter to make a standard oval, elliptical standard geometric pattern area and the actual cross-sectional area available vertebral cut and complement approximation conversion: i.e. front elliptical can be used to draw the vertebral body portion rearward vertebral sectional area filled with the phase offset relative to the elliptical cross section, whereby the approximate cross-sectional area of ​​the vertebral body).

[0016] π为圆周率,为一常数,由此可进一步简化相互间各椎体截面间面积关系,即面积指数Ks =横径(L) X矢径⑻。 [0016] π is pi, a constant, whereby further simplified sectional area relationship between the vertebrae to each other, i.e. Ks = diameter area index (L) X radius vector ⑻.

[0017] 椎间盘结构外周为纤维环封闭,内部为含80 %左右水分的髓核胶原组织,近椎体终板处为软骨终板,并与皮质终板紧密相接。 [0017] The disc structure is the outer periphery of a closed annulus, the inside nucleus pulposus tissue containing collagen of about 80% moisture, is at a nearly endplate cartilage end plate, and in close contact with the cortical endplates. 整个椎间盘结构为一封闭状态的含水丰富又具有一定空间弹性的高分子髓核组织。 Rich entire disc structure and a closed state of an aqueous polymer having a certain elasticity nucleus pulposus space. 液体水分子有其自身的物理学特性:在密闭条件下又符合流体静力学作用原理;髓核胶原组织具有弹性的物理学性能,即物理学上的胡克定律,对外力有时间缓冲作用。 Liquid water molecule has its own physical characteristics: In the confined conditions consistent with the principles and hydrostatic effect; Physical properties of tissue collagen nucleus having elasticity, Hooke's law of physics i.e., external force time buffer.

[0018] 由此,引入第2个物理学原理:液体静力学压强传递规律:密闭液体受外力作用后转换为压强,密闭液体内部对外的作用力大小与密闭液体接触的对外作用面积大小有关, 艮P :P = F/S = Fi/Si = F2/S2。 [0018] Thus, the introduction of the two principles of physics: hydrostatic liquid pressure transfer law: a sealed liquid pressure is converted by external force, the liquid inside the closed external force action area size of the external size of the liquid contact related closed, Burgundy P: P = F / S = Fi / Si = F2 / S2.

[0019] 密闭流体内部压强的变化在正压、负压下均起作用,负压作用如同马德堡半球,即正压下密闭液体与负压下密闭液体均需克服同等大小作用力。 [0019] The pressure variation inside the sealed fluid acting on both at positive, negative, negative pressure as Magdeburg hemispheres, i.e. hermetic seal of the liquid under positive pressure required to overcome the biasing force of the same size with the negative pressure fluid. 含水丰富的完整密闭椎间盘内压力波动使得脊柱成为一个续贯的力学作用体,即脊柱一端的受力将按密闭液体的力学规律延着脊柱向受力的另一端传递,且传递过程椎间盘内压符合流体静力液压变化。 The aqueous rich complete hermetic intradiscal pressure fluctuation such that the spine into a continuous consistent mechanical effect, i.e. the force of the spine end will be sealed mechanical laws liquid Along the spine is transmitted to the other end of the force, and transmitting over the course of intradiscal pressure in line with hydrostatic fluid pressure variation.

[0020] 在同一椎间盘内部,压强P相等,其上下椎体受力大小为:Fi = P* Si (Si = JT * Li/ 2 *出/2),F2 = P* S2 (S2 = Ji *L2/2 *H2/2)。 [0020] In the same inside the disc, is equal to the pressure P, which is the size of the force and inferior vertebral bodies: Fi = P * Si (Si = JT * Li / 2 * a / 2), F2 = P * S2 (S2 = Ji * L2 / 2 * H2 / 2). 由此,椎体受力与椎体和椎间盘接触面积大小即椎体截面面积大小相一致,即:椎体-椎间盘截面受力指数简化为Kf,Kf = L*H,即与面积指数数值上相等,与测量中椎体横径矢径乘积大小相关。 Accordingly, vertebral discs and vertebral force and contact area size i.e. the size of the vertebral body cross-sectional area is consistent, namely: vertebral - disc index simplified sectional Kf of force, the Kf = L * H, i.e., the area index value equal to, associated with measurement of the radius vector product of the diameter size of the vertebral body. 在此,得出一个推理设想:人体脊柱椎间盘的静态压强相等(若不等必然出现压强差导致椎体向压强低一侧移动)。 Here, we draw an inference idea: human spinal disc is equal to the static pressure (such as if the inevitable pressure difference causes the vertebrae to move to a low-pressure side).

[0021] 综上,由上述两个数学-几何学、数学-物理学原理推理,在认识脊柱力学规律上, 力的作用核心在于密闭的椎间盘,而并非是通常手术病损部位的椎体。 [0021] In summary, the above two mathematics - geometry, mathematics - the role of physics reasoning, understanding of the law on the mechanics of the spine, the core force of the disc is closed, but not usually vertebral lesion site of surgery. 由此建立以椎间盘为中心,相邻椎体构成脊柱的运动结构单元,进行结构和运动力学的分析,椎间盘为“脊柱的受力枢纽”,其结构面积S= (Ji/4) *L*H,jt/4为一常数,与受力F = P*S = P* (Ji/4) H,椎间盘内P相等,V4为常数,存在一个变量,可以用截面面积-受力指数K表达,K = L*H。 Thereby establishing in the disc as the center, adjacent vertebral bodies of the spine of the structural units constituting the motion, motion analysis and structural mechanics, the disc is a "force hub spine", the area of ​​the structure S = (Ji / 4) * L * H, jt / 4 is a constant, the force F = P * S = P * (Ji / 4) H, intradiscal P equal, V4 is constant, there is a variable that can cross-sectional area - the force index K expression , K = L * H.

[0022] 由上述方法测量的结果,脊柱椎体上下截面面积指数从C2下截面-L4下截面呈递增的曲线变化,至L4椎体下截面面积达到最大;L4下截面到51上截面积递减。 [0022] From the results of the method described above, the vertical sectional area of ​​the spinal vertebrae was exponential curve increasing from the cross-sectional -L4 C2-section, the cross-sectional area of ​​the vertebrae L4 to the maximum; L4-section to the cross-sectional area decreasing 51 . 女性各对应椎体截面面积略小于男性,变化趋势相同。 F-sectional area of ​​each corresponding vertebrae slightly less than men, the same trend.

[0023] 椎体-椎间盘面积指数Ks = L*H;椎体-椎间盘截面受力指数Kf = L*H。 [0023] vertebral - disc area index Ks = L * H; vertebral - disc flexural mechanical index Kf = L * H. 椎体截面横径矢径可计算各截面的面积指数大小变化(结果见表1)。 Area index changes in the size of each section (results shown in Table 1) a cross-sectional diameter of vertebral radius vector can be calculated.

[0024] 表1椎体各截面面积-受力指数结果 Each cross-sectional area [0024] Table 1 vertebral - Force index results

[0025] [0025]

Figure CN103006356BD00051

[0026] [0026]

Figure CN103006356BD00061

[0027] 椎体内松质骨为空间网状分部的骨小梁结构,椎体周缘为含皮质骨的结构(这种网状空间结构是脊柱力学上的适应结果:最大的力学分散作用与最轻巧的自身重量结构相统一;内部空间结构富含液体血液又是最佳的储藏室,进行生物再生与新陈代谢功能等等, 同时,相对的封闭状态的血液流体又产生液压的物理学性能),近椎体终板处为终板皮质, 椎体周缘的硬质皮质骨对椎体起到支撑于固定保护作用;椎间盘内近终板处为终板软骨, 外周为纤维环,中心为髓核组织。 [0027] vertebral cancellous bone trabecular structure is reticulate division, the peripheral edge of the vertebral body having cortical bone structure (reticular spatial structure is adapted such results on the mechanics of the spine: the maximum mechanical dispersion most compact with their own weight of restructuring; internal space structure of the liquid-enriched blood is the best storage compartment, biological regeneration and metabolism, etc., while blood fluid and a closed state opposite to produce hydraulic pressure physics properties ), near the endplate to endplate cortical, hard cortical bone of the vertebral body to vertebral body periphery play a supporting role in fixing the protective; near the endplate of the intervertebral disc endplate cartilage, the outer periphery of the annulus, the center of nucleus pulposus. 完整椎体结构的对外力学性能接近机械刚体;椎间盘为近似密闭又具有一定弹性作用的水压结构。 External mechanical properties of intact vertebral structure close to the mechanical rigid body; disc approximately sealed structure but also has a certain elasticity effect of water pressure.

[0028] 根据上述椎体上下终板横径矢径的测量与分析与几何物理学原理,可以从中得出以下规律或者解释相关的临床现象: [0028] According to the above-described measurement principle and analysis vertebral endplates diameter vertical radius vector physics and geometry, we may draw the following rules or interpreted clinically relevant phenomena:

[0029] 1、人体脊柱椎体终板截面面积从(:2下截面到L4下截面逐渐增大,L4下截面到S1I 截面又出现递减,纠正以往解剖学上认为脊柱椎体截面积S1为最大面积的错误认识;L4下截面最大有其解剖学依据,解剖学上大多数人L4、5椎间隙与髂嵴相平行,髂嵴分解与承担人体躯干的一部分力量,即应力遮挡作用,客观上减少了对椎间盘椎体的压力应力。 [0029] 1, the human spine from the endplate cross-sectional area (: 2 the cross-section is gradually increased to the cross section L4, L4-section to the cross-sectional S1I and diminishing, anatomically correct past that S1 is the cross-sectional area of ​​Vertebral misconceptions maximum area; L4 and has its largest cross-sectional anatomical basis, most anatomically L4,5 intervertebral space parallel to the iliac crest, bear a portion of the iliac crest decomposition and torso strength, i.e. the stress shielding effect, the objective reducing the pressure on the vertebral body stress on the intervertebral disc.

[0030] 2、人体脊柱的这一结构规律也有其生物学进化的特殊意义。 [0030] 2, the structure of the human spine law also has special significance biological evolution. 人体是直立行走的生物体。 The human body is upright walking organisms. 在运动过程中,产生动量MV,延骨骼传递的垂直分动量mv作用于脊柱上,此动量转换为冲量fT。 During movement, the momentum generated MV, bone extension Vertical transfer momentum mv is applied to the spine, this is converted to the momentum impulse fT. 脊柱各截面与椎间盘的粘弹性结构相间隔,截面积S的大小决定椎间盘受力大小,人体脊柱椎体截面由腰椎到颈椎递减,地面对人体头颅的反冲作用力也随之递减,有利于保护大脑免受行走时沿骨骼上传的冲击力。 Each section of the spine and intervertebral disc structure viscoelastic phase spacing, the size of the cross-sectional area S determines disc size of the force, the human spine vertebrae section decreasing from the lumbar to the cervical spine, skull face the recoil force of the human body also will decline, in favor of the impact of bones along when uploading protect the brain from walking. 当受极端暴力作用导致椎体骨折,爆裂或压缩的骨折椎体失去了原有力学的延续传导功能;另一方面,因椎体骨折导致的力的瞬间中断,保护了生命中枢大脑,防止更大暴力直接传递作用于脑而致命。 When the action by the extreme violence resulting in vertebral fractures, compression fractures of vertebral burst or lose a continuation of the original mechanics of conduction; on the other hand, due to the force of vertebral fractures due to instantaneous interruption, to protect the life center in the brain, preventing more large violence passed directly act on the brain and deadly.

[0031] 3、以椎间盘为脊柱力学研究中心,“脊柱的受力枢纽”,椎间盘上位终板面积小于其下位终板面积;建立以椎间盘为力学研究中心可以揭示脊柱力学规律和大多数的临床医学现象。 [0031] 3, to the disc Research Center spinal mechanics, "force hub spine", the disc upper endplate area less than the lower endplate area; establishment of the disc as the Mechanics Research Center can reveal mechanical laws spine most clinical and medical phenomenon. 脊柱骨折在相对垂直脊柱的作用力下,椎间盘受到上下椎体的作用力,内部压强瞬间增大,但椎间盘内髓核胶原、结合水、软骨及纤维环之间产生弹性势能转换作用得到缓冲,椎间盘可承受巨大的冲击力,髓核瞬间的势能和静水压释放产生的对椎体终板的压强, 反作用于邻近的椎体终板,终板将所受力作用于椎体内的松质骨骨小梁,局部骨小梁不足以承受瞬间巨大的作用力产生局部骨折,这种局部骨折在巨大的椎间盘压应力作用下产生瞬间的多米诺骨牌效应,在椎体内部瞬间爆裂,与椎间盘邻接的上下椎体终板,受力较大的椎间盘下位椎体必然先发生爆裂性的塌陷,自然界力的优势作用原理:力总是向最小抵抗部位发生破坏作用,最终导致脊柱的椎体爆裂。 In spinal fractures of the spine relative to the vertical force, by the biasing force of the upper and lower vertebral disc, internal pressure increases instantaneously, but the nucleus pulposus collagen, elastic potential energy binding interaction between water, buffered cartilage and annulus, disc can withstand huge impact, potential and pressure in nucleus pulposus instantaneous hydrostatic pressure generated by release of the vertebral endplates adjacent counteracts the endplate, suffered force to the end plate of the vertebral body Songnae trabecular bone, trabecular bone is insufficient to withstand the local great moment force generated local fractures, fractures at such a local compressive stress great disc domino effect instantaneous moment burst vertebral body with the intervertebral disc adjacent upper and lower vertebral end plates, disc larger force lower vertebral burst inevitable collapse, force of nature occurs first advantage principle: force damaging effects always occur to minimize resistance area, eventually leading to vertebral spine burst . 这就是临床上脊柱骨折多见于椎体上终板骨折的脊柱力学结构基础。 This is more common in clinical fractures spine on the basis of structural mechanics on spinal vertebral endplate fractures.

[0032] 4、椎间盘的结构与退变 [0032] 4, and the structure of the disc degeneration

[0033] Lu和L5SUlM为主占临床椎间盘突出症的96%以上,C5、6,C4、5在颈椎上是颈椎间盘退变的主要节段,在相应节段的运动上是主要的运动节段,而其结构又为人体生理前凸的顶点,自然也就是应力的顶点,成为受力劳损的部位。 [0033] Lu and L5SUlM mainly accounted for more than 96% of clinical disc herniation, C5,6, C4,5 major segmental cervical disc degeneration in the cervical spine, the main movement of the respective motion segment in the segment section, but also for the body structure and its lordosis vertices, the vertex is a natural stress, become the site of stress strain.

[0034] 髂嵴与L4、5椎间盘相平行,在L4、5形成人体躯干骨骼三角与下肢骨骼三角形成力学转切点,人体腰部的旋转与活动最终在L4、5汇集;!^巧:退变与人体腰椎生理前曲的力学切点相关,同时人体躯干的重力作用最终在L5S1B成里的转切点。 [0034] iliac crest and L4,5 disc parallel to form a human torso skeleton form a triangle with lower limb bone triangle mechanical transfer point cut in L4,5, the human waist rotation and final collection activities in L4,5; ^ Qiao:! Back variable cut-off point related to the mechanics of human physiology before the song of the lumbar spine, while the gravity of the human torso in L5S1B into the final turn in the cut-off point. 因L4、5椎间隙在髂嵴平面之上, 承受着躯体上半部分的旋转和屈伸的主要功能活动,L4、5最容易在临床上出现退变,与L5S1 因髂嵴应力遮挡后主要由于脊柱自身轴向作用力的剪切应力退变不同,L5S1椎间盘的退变影像学观察上并无1^、5间隙破坏的严重。 L4, 5 due to the intervertebral space above the plane of the iliac crest, and flexion rotation suffer major functional activity of the upper half of the body, L4, 5 most prone to degeneration clinically, due to the iliac crest and L5S1 mainly due to stress shielding after axial forces itself spine degeneration different shear stresses, no ^ 1, the gap 5 in the disruption of the degeneration of the intervertebral disc L5S1 radiological observation. 旋转力的作用对椎间盘纤维环产生牵拉扭转的破坏作用,导致椎间盘纤维环在椎体后缘(椎体后缘纤维环薄弱)的微小撕脱骨折撕裂,纤维环微小撕脱骨折导致椎间盘原有的密闭性能破坏。 Rotational force pulling the damaging effects of torsional intervertebral disc, intervertebral disc resulting in fracture tearing the posterior edge (posterior annulus weak edge) avulsion minute, resulting in an intervertebral disc annulus minute avulsion fracture Tightness original damage. 这种性能在工业千斤顶中可以得到很好解释,千斤顶久用后出现漏油现象导致的千斤顶机械性能下降或丢失。 This performance in the industry can be well explained jack, jack oil leakage caused by mechanical performance degradation or loss after a long time with the jack. 椎间盘体积增大后原有的机械性能随之下降,造成相邻椎体对椎间盘髓核原有的静水压作用降低,机械挤压作用加大,髓核内的结合水变为游离水,髓核的失水变性导致Black椎间盘现象,可同时在MRI上,椎间盘后方出现高信号的“水滴”影像;局部应力作用使得椎间盘软骨及周缘因原有的供养通道的破坏,无氧条件下产生无菌性化学致炎因子,进入局部组织刺激局部神经,产生临床腰痛症状。 After the increase in volume of the original disc of the mechanical properties fall, causing the adjacent vertebral bodies hydrostatic pressure acting to reduce the original nucleus pulposus, mechanical pressing action to increase, bound water becomes free water in the nucleus pulposus, Black water loss causes degeneration of the intervertebral disc nucleus pulposus phenomenon, may be simultaneously in MRI, the rear disc a "drop" of the video signal high; local stress cartilage and intervertebral disc periphery so that no generated due to the destruction of the original support channel, anaerobic conditions bacteria chemical proinflammatory cytokines, into the local tissue stimulate local nerve, lumbago produce clinical symptoms. 当退变继续,髓核失水进一步加重,椎间盘内的空间增加,邻近椎体的冲击作用力增加,可发生两种途径的临床退变症状:纤维环撕裂加重,髓核因躯干屈曲受力向椎间盘后方突出,临床产生髓核突出压迫椎间孔神经产生坐骨神经症状,这种症状最常见是慢性腰部劳损后一次重体力劳动后出现;椎间隙因髓核受挤压作用,水分进一步丢失,椎间盘间隙进一步扩大,临床产生退变性腰椎不稳,导致椎间盘邻近椎体相互产生撞击作用, 椎体终板发生退变,导致退变椎间盘邻接椎体的直接碰撞作用,椎体内部的微骨折水肿产生临床上的Modic征象。 When the degeneration continues, further aggravating the nucleus pulposus dehydration, increased space within the disc, adjacent vertebrae to increase the force of impact, the clinical symptoms of degeneration that can occur in two ways: increase the annulus tears, because the nucleus by trunk flexion projecting rearward force disc, herniated nucleus generation clinical produced sciatic nerve compression foramen symptoms, such symptoms are most common chronic lumbar strain after a heavy labor occurs; intervertebral nucleus pulposus by squeezing effect due to moisture loss further , to further expand the disc space, generating clinical lumbar degenerative instability, leading to vertebral body adjacent the disc iMPACT each other, endplate degeneration occurs, resulting in the direct collision of disc degeneration adjacent vertebral body, the interior of the vertebral body microfracture Modic edema produced clinical signs. 椎间盘结构的损坏导致椎体间结构破坏,即相邻椎体的关节突之间结构异常,由此产生局部力学结构的变化,导致关节突软骨和韧带的退变增生。 Damaged disc structure results in destruction of the structure of the interbody, i.e. adjacent structural abnormalities, thereby creating local variations of the mechanical structure between the articular processes of vertebrae, ligaments and articular cartilage leading to joint degeneration hyperplasia.

[0035] 在椎弓崩裂腰椎滑脱的病例,椎间盘韧带失去了骨性的稳定结构,遭受外力作用退变更为明显。 [0035] In cases of spondylolisthesis spondylolysis, disc ligament lost the bony structure of stable, subject to external force changes the apparent retreat. 椎间盘退变进一步加重髓核水分丢失和椎间盘体积进一步减少,原有的力学结构基础破坏,临床产生退变性滑脱。 Further aggravate the nucleus pulposus of intervertebral disc degeneration water loss and further reduce the volume of the disc, the original structure basic mechanics damage, clinical produce degenerative spondylolisthesis.

[0036] 在胸腰段,脊柱椎间盘以垂直方向的受力为主,当椎体自身结构异常,如椎体内血管异常造成椎体松质骨结构异常,在脊柱垂直方向受力作用下,椎体终板力量不能提供椎间盘支撑压力,出现髓核向椎体内突入,即Shumor结节的力学基础,因此,Shumor结节被认为是塌陷的椎体终板软骨或部分纤维环的钙化。 [0036] In the thoracolumbar spine to the disc mainly by the vertical force, when the vertebral body itself structural abnormalities, such as abnormal blood vessels within the vertebral body causing abnormal vertebral cancellous bone structure, by the force in the vertical direction of the spine, endplate pressure forces do not provide support disc, the nucleus protrudes into the vertebral body appears, i.e. mechanical basis Shumor nodules, therefore, is considered to be nodules Shumor collapsed vertebral endplate cartilage or partially calcified annulus.

[0037] 5、椎体终板形变与老年性椎体退变 [0037] 5, endplate deformation and senile degenerative vertebral

[0038] MRI、X片等的影像检查观察到椎体终板随年龄而逐渐出现形变。 [0038] MRI, X imaging sheet or the like was observed endplate deformation occurs progressively with age. 多数老年人的椎体终板呈弧形,且弧形向着椎体方向,在骨质疏松的人群中表现更为明显,严重者椎体终板可呈双鱼口状。 Most elderly vertebral endplate arcuate and curved toward the direction of the vertebral body, is more obvious in the population of osteoporosis, severe Pisces endplate may be in the mouthpiece. 几何学中,球面物体具有最大表面积。 Geometry, has a maximum surface area of ​​the spherical object. 在物理学原理中,面积增大,增加了物体间的作用面积。 In physics, the area increases, increasing the role of the area between objects. 这一规律在椎间盘与椎体结构中则增加了对椎体的作用力。 The law in the intervertebral disc and vertebral structure increased by the force of the vertebral body. 椎体骨小梁的结构提供椎体的机械支撑力。 Structure vertebral trabecular bone of the vertebral body to provide mechanical support. 当老年机体退化等因素使椎体内骨小梁骨量丢失、骨质退变骨小梁机械性能降低,导致骨小梁对椎体终板的支撑作用下降,机体的退化造成松质骨内造血功能下降,椎体内的血液产生的液压性能也随之下降,S卩椎体完整的对外力学性能随着机体的老化而降低;椎间盘因原有的终板结构的改变,水分进入椎间盘增加,椎间盘水分增加直接导致椎间盘的刚度增加,使椎间盘产生球形变,球形变的椎间盘终板表面积增大,对椎体终板作用力也增大,即:F=P* S,由此破坏了椎体终板界面椎间盘内的静水压与椎体骨质支撑作用力的平衡。 When factors such as aged degradation of the inner body Vertebral trabecular bone loss, bone degeneration mechanical properties of trabecular bone is reduced, resulting in trabecular vertebral endplate supporting role to decrease, resulting in degradation of the body within the cancellous bone decreased hematopoietic function, the hydraulic performance of blood in the vertebral body can be decreased, the mechanical properties of the complete external Jie S vertebral body decreases with age; disc by changing the original structure of the endplates, increasing the water to the disc, water leads to increase in direct disc to increase the rigidity of the disc, making the disc becomes to produce spherical, disc endplate becomes spherical surface area is increased, the biasing force on the endplate increases, i.e.: F = P * S, thereby breaking the vertebral hydrostatic balance and support force in vertebral bone endplates of the intervertebral disc interface. 在椎体结构中,椎体周缘为皮质骨,内部为松质骨,力学结构基础为椎体周缘力学支撑好于椎体中间,老年椎体松质骨骨量丢失,造成椎体力学性能下降,椎体内部松质骨的微骨折不能及时得到修复,在椎间盘压力于椎体终板作用力下,椎体内部出现骨折,最终椎体终板退变为凹面弧形。 Structure in the vertebral body, the peripheral edge of vertebral cortical bone, the interior cancellous bone, the mechanical structural basis for the vertebral support better mechanical periphery of the intermediate vertebrae, senile vertebral cancellous bone mass loss, resulting in decreased mechanical properties vertebral , cancellous bone inside the vertebral body microfracture not be repaired in time, the disc pressure to force the endplate, vertebral body fracture occurs, eventually degenerate into endplate concave arcuate. 影像学MRI中,可见到椎间盘呈球形变,水分含量增加。 MRI imaging, the spherical disc becomes visible, the water content increases. 在老年人群中,因椎间盘水分改变,体积增加,椎体终板对椎间盘的挤压作用力下降,临床上椎间盘退变髓核突出症的患者反而较青壮年减少。 In the elderly population, changes due to moisture disc, increases in volume of the disc endplate pressing force decreases disc degeneration patients nucleus herniation has decreased compared to young adults clinically.

[0039] 6、正常椎间盘内水分变化与压力调节 [0039] 6, within the normal variation of water pressure regulating disc

[0040] 人体椎间盘为纤维环封闭内富含水分的髓核胶原结构,椎体上下为终板软骨。 [0040] The human intervertebral disc annulus is enclosed within a moisture-laden collagen nucleus structure, the upper and lower vertebral end plate of cartilage. 椎间盘内水分子出入具体途径目前尚不太清楚,推测在不同受力条件下,水分子在椎间盘内通过椎体终板软骨间隙或水分子的极性与有机高分子的结合与分离进出椎间盘,少量水分子椎间盘内的出入,不仅完成生理物质交换的需要,更为重要的是水分进出椎间盘,以及纤维环结构柔性,可使椎间盘体积发生少微量变化,对于在瞬间受外力高压状态下的椎间盘尤为重要,一方面对椎间盘体积进行调节,另一方面也对脊柱椎间盘内压力进行调节,使髓核与水完成弹性-液压缓冲变化,释放瞬间的爆力作用;另一方面,与椎体终板软骨一起作用,缓冲极限压力对椎体终板的破坏。 DETAILED water molecules out of the disc is still not clear pathways, presumably in different loading conditions, water molecules out of the polarity of the disc within the disc space or vertebral endplate cartilage molecules of water with an organic polymer or separation within the disc out of a small amount of water molecules, not only the need to complete physical material exchange, more important is the moisture out of the disc, the annulus fibrosus and a flexible structure, small changes in the intervertebral disc little volume can occur, for the disc at a high pressure state by an external force moment particularly important, on the one hand to adjust the volume of the disc, on the other hand to adjust the pressure within the spinal disc, complete with water so that the resilient nucleus - hydraulic damping change, explosive force is released instantaneously; the other hand, with the vertebral end act together plate cartilage, destruction limit pressure cushion vertebral endplates. 这也就是临床上在暴力作用下多见椎体骨折,而少见椎间盘突出(已有椎间盘纤维环髓核退变除外)。 This is a common clinical vertebral fractures in violent action, while rare disc (except for the existing disc degeneration nucleus pulposus annulus). 由此推理,椎间盘的破坏是椎间盘退变的结构基础,对于椎间盘突出症患者的手术,椎间盘的部分摘除破坏的椎间盘后纤维环结构必然会造成椎间盘的再突出。 This reasoning suggests that the structural basis for the destruction disc disc degeneration, disc herniation for after surgery, removal of damaged disc portion and then cause herniated disc annulus structure is bound.

[0041] 7、椎体自身结构 [0041] 7, the structure of the vertebral body itself

[0042] 完整椎体可作为刚体实现对椎间盘的力学延续,但椎体内部自身的空间立体网状结构,一方面顺应各方力量并分解各方力量,内部充满的血窦不仅提供椎体松质骨的代谢, 血液的液体物理学特性也提供力学上的液压减压功能;另一方面,这一结构在极端的外力作用下,椎体骨的空间立体网状结构因椎体骨小梁的局部断裂可出现多米诺效应,出现瞬间爆裂,椎体内部液体(主要是血液)爆裂的冲击力是脊柱骨折神经损伤的力学基础(神经损伤多由椎体内部液体的冲击力所致,骨块的压迫多为骨折后的后继损伤,青壮年的椎体爆裂骨折受力大,脊髓损伤的几率远大于老年患者的脊柱骨折,老年患者的骨质疏松骨折后出现骨块椎管占位时相对的神经症状反而轻或少)。 [0042] complete vertebral body can be realized as a rigid body mechanics of the intervertebral disc continues, but the internal space of the vertebral body's own three-dimensional network structure, on the one hand and to comply with all forces to break down all forces, internal sinus not only provide full vertebral cancellous metabolic bone, blood fluid physical characteristics of the hydraulic pressure also provides a mechanical function; on the other hand, the structure under extreme external force, the vertebral bone structures because of the spatial three-dimensional network of vertebral trabecular bone the partial rupture can occur domino effect, momentary burst inside the vertebral body fluid (mainly blood) burst impact is the basis of spinal fracture mechanics nerve injury (nerve damage caused by the impact of multi-vertebral internal fluid, bone pressure has mostly successor damage after fracture, young adults vertebral burst fracture large force, much greater than the chance of spinal cord injury in elderly patients with spinal fractures, bone spinal canal after osteoporotic fractures in elderly patients relative but mild neurological symptoms or less).


[0043] 根据上述的认识推理,在此提出以椎间盘为“受力枢纽”的脊柱椎间盘-椎体力学复合体结构模型。 [0043] According to the understanding of reasoning presented here to the disc as a "force hub" of the spinal disc - vertebral mechanics complex structural model.

[0044] 本发明的目的是:针对临床脊柱椎体骨折造成的节段性缺失问题,为肿瘤所致的病理性全椎体骨折塌陷及严重的椎体爆裂性骨折的临床脊柱重建治疗提供一种重建脊柱生理功能的仿生型液压式可活动人工椎体,重建脊柱生理功能。 [0044] The present invention is: for segmental spinal Lack of clinical vertebral fractures caused by tumor-induced pathologic vertebral fractures full collapse and severe spinal reconstruction for the treatment of clinical vertebral burst fracture provides a kind of reconstruction of spinal physiological function of bionic artificial hydraulic moveable vertebrae, spinal reconstruction physiological functions.

[0045] 本发明的技术方案是:结构包括两端可活动的关节样结构(20-21)、液压式柱形主体(12),其中液压式柱形主体为椎体柱状形状,为本活塞式仿生人工椎体结构的核心构造, 两侧活塞间为密闭的高分子生物胶;两端活塞为一椭球形凹槽,凹槽内有一防滑移的小球形柱(20,23),椭球形凹槽与终板连接板凸形椭球相匹配,构成本椎体设计的可活动结构, 终板部位为平面(骨水泥固定)或微孔(生物型固定)带刺的固定结构,与邻近正常椎体终板达到一体固定。 [0045] The aspect of the present invention is: a joint-like structure comprises a structure (20-21) movable ends, hydraulic cylindrical body (12), wherein the cylindrical body is a hydraulic vertebral column shape, oriented piston bionic artificial vertebral body core building structure, between the sides of the piston in a sealed biological glue polymer; an ellipsoidal recess at both ends of the piston, the groove has a small spherical column of anti-slip (20, 23), ellipsoidal groove and webs convex ellipsoidal endplate matches the configuration of the present design of the movable structure vertebral endplate flat portion (cemented) or microporous (biotype fixed) barbed fixing structure, and adjacent normal integrally fixed endplate reached.

[0046] 本发明的重建脊柱生理功能的仿生型液压式可活动人工椎体的制造材料为复合型,与椎体终板衔接的界板及人工椎体柱可采用临床常用的生物相容性材料,如钴铬钼合金,钛合金,钽,生物陶瓷,聚乙烯等,如同人工髋关节、膝关节结构相互组合组成;核心部件液压装置为高聚酯生物材料密闭囊与内部的生物相容高分子生物溶胶构成。 [0046] hydraulically movable bionic artificial vertebral body reconstruction of spinal functional materials of manufacture of the present invention is a composite type, and vertebral endplate and the adapter plate of the artificial vertebral column boundary can be commonly used in clinical biocompatible materials, such as cobalt-chromium-molybdenum alloy, titanium alloy, tantalum, bioceramics, polyethylene, etc., as an artificial hip, knee, another structural combination thereof; core components of the hydraulic device is a high-polyester biomaterial confined inside the balloon and biological compatible sol comprising Biopolymer.

[0047] 本发明重建脊柱生理功能的仿生型液压式可活动人工椎体主要应用于脊柱骨折椎体缺失的重建手术。 Reconstruction of spinal physiological functions bionic artificial vertebral body moveable hydraulic [0047] The present invention is mainly applied to reconstructive surgery of spinal vertebral missing. 手术步骤同临床现有脊柱融合型人工椎体置入术大致相同。 Clinical conventional surgical procedures with artificial vertebral spinal fusion implantation is substantially the same.

[0048] 本发明的重建脊柱生理功能的仿生型液压式可活动人工椎体的椎弓根卡钉可通过经皮椎弓根螺钉技术固定于椎弓根上固定本发明的人工椎体本身,防止本设计人工椎体滑移。 [0048] The physiologically functional reconstruction of spinal hydraulic bionic artificial vertebral pedicle movable staple of the present invention may be secured to the artificial vertebral body itself fixed on the pedicle of the present invention by percutaneous pedicle screw technique to prevent The design of artificial vertebral slip.

[0049] 本发明的液压复合结构为本设计的技术核心,也是本设计的工艺难点。 [0049] The core technology of the present invention, hydraulic composite structure of the present design, the process is also the difficulty of the design. 机械工业的名言:“得液压者得天下”,液压在工业、军事工业等各领域都是机械工业的技术重点,用于各种机械的缓冲和机械作用力的传导(飞机的起落架,航母的阻拦索,坦克的缓冲床等等)。 Machinery industry saying: "Hydraulic get the world", in the areas of hydraulic industry, military industry and other technologies are focused on industrial machinery, machinery for conducting cushion and a variety of mechanical forces (aircraft landing gear, aircraft carrier the arresting cable, bed buffer tanks, etc.). 在人体,脊柱椎体-椎间盘的液压功能无法用后天工业水平达到完全的功能取代,强健的筋骨是生物体适应大自然进化与后天锻炼(人体在20岁前的机体发育成熟期)的结果,韧带起源于骨而强于骨,具有强大的力学作用,这就是筋可断骨而筋不断。 In the human body, spinal vertebrae - intervertebral disc hydraulic functions can not achieve full functionality replaced with acquired industrial level, strong bones and muscles organisms to adapt to the evolution of nature and nurture exercise (human body's mature period before the age of 20) results, It originated in the bone and ligament is stronger than bone, with a strong mechanical action, which is reinforced broken bones and tendons can continue. 现代工业仍不能实现柔韧密闭的耐水压结构与刚性物体间的剪切力的持久应用。 Modern industry is still not achieve permanent application of shearing force between the flexible structure and the closed pressure-resistant rigid object. 正确的姿势是减少机体退变的最佳养生之道。 Correct posture of the body is to reduce the best regimen degeneration channel. 自然的椎间盘在人体内力学性能上是一个终生的、有液压功能的、有弹性缓冲功能的结构。 NATURAL disc on the mechanical properties of the human body is a lifetime, a hydraulic function, the structure of an elastic buffering function. 本发明旨在理念上认识脊柱的生物力学构造,沿用自然状态的椎间盘功能:密闭的液压结构可以将力量转换为压强,与固体接触时按照其接触面积传导力量,达到仿生生物型结构。 The present invention recognizes the mechanical configuration of the spinal column intended to conceptually biological, functional disc follows the natural state: closed hydraulic structure can be converted power to conduct when the pressure force, according to its contact with the solid contact area to achieve Biomimetic structure.

[0050] 本发明重建脊柱生理功能的仿生型液压式可活动人工椎体,与椎体终板接触面采用两椭球形(或球形)结构匹配,目的是还原椎体间椎间盘的微动结构。 [0050] The physiologically functional reconstruction of spinal hydraulic bionic artificial vertebral body according to the present invention may be movable with the vertebral endplate contacting surface with two ellipsoidal (or spherical) configuration matching the purpose of reducing the interbody disc micro structure.

[0051] 本发明的优点: [0051] The advantages of the present invention:

[0052] 本发明重建脊柱生理功能的仿生型液压式可活动人工椎体,由有生物相容性的材料组合制成,在重建对脊柱的支撑时,恢复脊柱的生理运动功能,减少融合型人工椎体的远期椎间盘退变和医源性脊柱僵直和邻近椎间盘的远期退变;在理念上寻找了一条认识脊柱生物力学性能的思路。 [0052] The present invention reconstruction of spinal physiologically functional biomimetic hydraulic moveable artificial vertebral body, made of a biocompatible composite material, the support in the reconstruction of the spine, to restore the physiological function of the spine motion, reduction converged Long-term iatrogenic spinal disc degeneration and stiffness and long-term artificial vertebrae adjacent disc degeneration; the idea of ​​looking for a biological understanding of the mechanical properties of the spine at the idea.

[0053] 在相比现有技术优势的同时,也具有其自身的缺点: [0053] While the advantages over the prior art, also has its own drawbacks:

[0054] 1、本发明仅仅在理念上提出脊柱技术的革新,在现有的工业工艺上远不能达到自然脊柱的生理功能; [0054] 1, the present invention proposes only on the innovative concept of the spine art, in the conventional industrial process falls far short of the natural physiological function of the spine;

[0055] 2、本发明仅仅在力学结构上提出对人体脊柱力学功能重建的设想,并没有椎体完全生物功能(新陈代谢、造血功能等等)的重现。 [0055] 2, the present invention is only an idea for reconstitution of the human spine mechanics in the mechanical structure and biological function is not fully vertebral body (metabolism, hematopoietic function, etc.) reproduction.

[0056] 完美的脊柱功能重建技术是进行生物异体的椎体-椎间盘复合体异体置换,但即便如此,仍然存在生物抗原性、疾病传播、原有脊柱完整性的破坏、初始不稳定等等因素的缺陷。 [0056] perfect functional spinal vertebral reconstruction technique is bio allogeneic - disc complex allograft replacement, but even so, there are still biological antigenicity, the spread of disease, destruction of the integrity of the original spine, the initial instability, have Defects.


[0057]图1、人体椎体横径、矢径测量图示; [0057] FIG. 1, the vertebral body diameter, measured moving radius icon;

[0058] 图2、样本椎体横径、矢径测量结果; [0058] FIG. 2, the sample diameter vertebrae, a radius vector measurement;

[0059] 图3、样本椎体面积-压力指数; [0059] FIG. 3, the area of ​​the sample vertebral - pressure index;

[0060] 图4、椎体面积-压力指数统计图; [0060] FIG. 4, the area of ​​the vertebral body - Pressure Index Statistics;

[0061] 图5、本设计人工椎体整体侧面观(携带椎弓根螺钉); [0061] FIG. 5, the design of the overall lateral view artificial vertebral body (carry pedicle screws);

[0062] 图6、本设计人工液压椎体俯视,正位、侧位透视,椎弓根螺钉结构图示; [0062] FIG 6, the hydraulic design of the artificial vertebral body plan, anteroposterior, lateral perspective view, illustrating the structure of a pedicle screw;

[0063] 图7、本设计人工椎体与椎弓根螺钉衔接结构图示; [0063] FIG. 7, the design of artificial vertebral body and the pedicle screw adapter illustrated structure;

[0064] 图8、本设计椎弓根螺钉结构; [0064] FIG 8, the pedicle screw structure design;

[0005]图9、本设计人工液压椎体正面结构图示; [0005] FIG. 9, the hydraulic design of artificial vertebral body illustrating a front structure;

[0066] 图10、本设计人工液压椎体侧面结构图示; [0066] FIG. 10, the design of the artificial vertebral body side surface of the hydraulic structure illustrated;

[0067] 图11、本设计人工液压椎间盘结构图示; [0067] FIG. 11, the design of an artificial hydraulic disc structure shown;

[0068] 图12、本设计实施例图示。 [0068] FIG. 12, the present design illustrated embodiment.

[0069] 附:结构示意图示: [0069] Appendix: a schematic structural diagram:

[0070] ίο一一高分子生物胶液压囊; [0070] ίο eleven molecular biological glue hydraulic bladder;

[0071] 11——囊壁; [0071] 11-- wall;

[0072] 12--椎体外柱; [0072] 12-- vertebral outer column;

[0073] 13、14--活塞; [0073] 13,14-- piston;

[0074] 20、23——防滑柱; [0074] 20,23-- slip column;

[0075] 21、22——轴动半球; [0075] 21,22-- hemisphere movable shaft;

[0076] 24、25、26、27—一人工椎体上、下终板(不同部位前后缘高度差异,可等高); [0076] a 24,25,26,27- the artificial vertebral body, the lower end plate (edge ​​height difference before and after the different parts, can be high);

[0077] 31、32—一人工椎体上、下终板钉刺; [0077] 31,32- on an artificial vertebral body, the lower endplate nail;

[0078] 40、41——椎弓根椎体卡槽结构; [0078] 40,41-- pedicle slot structure;

[0079] 42--椎弓根卡钉头;42-1--椎弓根卡钉头在椎体卡槽旋转90 °图不; [0079] 42-- card pedicle screw head; 42-1-- card pedicle screw head is not rotated by 90 ° in FIG vertebral body slot;

[0080] 43一一椎弓根卡钉尾部固定螺帽; [0080] 43 pedicle eleven tail clip retaining nut;

[0081] 44 椎弓根卡钉尾部螺纹; [0081] The tail clip 44 pedicle screw;

[0082] 45--椎弓根卡钉外筒; [0082] 45-- pedicle staple outer cylinder;

[0083] 46 椎弓根卡钉如端螺纹; [0083] The clip end 46 of the pedicle screw;

[0084] 47--椎弓根卡钉尾端螺检; [0084] 47-- subject pedicle screw staple the trailing end;

[0085] 60——液压式人工椎间盘; [0085] 60-- hydraulic artificial disc;

[0086] 61一一高分子生物胶;62—一活塞板;63,64—一活动轴复合结构。 [0086] 61 molecular biological glue eleven; 62- a piston plate; a movable shaft 63,64- composite structure.

具体实施方式 Detailed ways

[0087] 病变椎体切除后,将本实例人工椎体置入,经皮将椎弓根螺钉置入并固定本实例人工椎体。 [0087] After removal of the vertebra, into the artificial vertebral body according to the present example, the percutaneous pedicle screw fixation and artificial vertebral body according to the present example. 术毕。 Surgery.

Claims (7)

1. 一种用于椎体病变缺损重建脊柱生理功能的仿生型液压式可活动人工椎体,其特征在于,其为包括内含活塞及高分子生物相容液体的液压囊核心结构的柱形人工椎体主体, 活塞两端为半椭球形或半球形轴动结构相连接的人工椎体上下终板,后缘可辅以固定人工椎体的椎弓根固定卡钉; 人工椎体的椎弓根卡钉顶端为扁球形或扁方形光滑棱角几何设计,与椎体后缘衔接卡槽扁形入口相一致;卡钉前端和尾端为双螺旋推入式设计,卡钉顶端进入卡槽旋转90 °后即固定椎弓根螺钉于椎体内,旋转外筒螺旋可将外筒卡入人工椎体后缘衔接槽;尾部螺旋可将卡钉尾部固定在椎弓根椎板处,固定本设计人工椎体在脊柱空缺椎体位上。 A reconstruction of spinal defects vertebral lesions physiologically functional biomimetic hydraulic moveable artificial vertebral body, characterized in that the cylindrical core of the balloon structure which is compatible liquid contents comprises a hydraulic piston and Biopolymer artificial vertebral body, upper and lower end of the piston artificial vertebral body is semi-elliptical or semi-spherical movable shaft structure is connected to the end plates of the trailing edge may be supplemented by artificial vertebral pedicle fixation fixation staple; artificial vertebrae vertebral pedicle top staple is flat and smooth spherical or angular flat square geometric design consistent with the flat edge of the inlet slot adapter posterior; staple leading and trailing ends of the dual auger type design, the staple into the top slot of rotation 90 ° after the pedicle screws fixed to the vertebral body, rotating the outer cylinder coil can snap into the outer cylinder artificial vertebral engagement groove; tail rotor can be fixed to staple the tail of the pedicle lamina, this fixed design of artificial vertebrae in the spinal vertebrae on vacant position.
2. 根据权利要求1所述的仿生型液压式可活动人工椎体,其特征在于,仿生型液压式可活动人工椎体为柱形主体水平截面形状,根据脊柱不同部位椎体水平截面设计为相适应的不同形状,颈椎为豆瓣状椭圆形,胸椎为桃状椭圆形,腰椎为马蹄状椭圆形;与邻接椎体终板相衔接人工椎体终板为平板骨水泥固定或金属微孔及生物材料涂层微孔生物型固定,其表面有固定作用的钉刺结构。 The moveable hydraulic bionic artificial vertebral body according to claim 1, characterized in that the movable hydraulic bionic artificial vertebral body horizontal sectional shape as the cylindrical body, a horizontal section according vertebral spine design different parts of adapted to different shapes, bean oval shape as cervical, thoracic, peach oval shape, a horseshoe shape lumbar elliptical; adjacent vertebral endplate convergence artificial endplate flat plate or a metal porous bone cement fixation and coating a microporous biomaterial biological fixation, which surface has a fixation nail structure.
3. 根据权利要求1所述的仿生型液压式可活动人工椎体,其特征在于,两端的活塞轴动结构,为半椭球形或球形与人工椎体上下终板一体,轴动活塞有防止滑移的小球形柱共同稳定轴动结构。 The moveable hydraulic bionic artificial vertebral body according to claim 1, characterized in that the piston shaft ends of the movable structure, a semi-ellipsoidal or spherical inferior endplate with artificial vertebral body integrally, preventing piston shaft small spherical slip joint stable pivotal pillar structure.
4. 根据权利要求1所述的仿生型液压式可活动人工椎体,其特征在于,所述后端的椎弓根固定卡钉固定人工椎体后缘卡槽结构,固定本设计人工椎体。 4. The hydraulic movably bionic artificial vertebral body according to claim 1, characterized in that, after the rear end of the pedicle fixation stapling artificial vertebral slot structure, the design of an artificial vertebral body fixing.
5. 根据权利要求1或3所述的仿生型液压式可活动人工椎体,其特征在于,终板与活塞构成的运动轴为一略椭球形或球形或椭球形与球形相互组合的结构,构成人工椎体运动轴主体。 The moveable hydraulic bionic artificial vertebral body of claim 1 or claim 3, characterized in that the movement axis of the piston end plate is made of a slightly ellipsoid or spherical or ellipsoidal and the spherical structure combined with each other, movement of the shaft body constituting the artificial vertebral body.
6. 根据权利要求1所述的仿生型液压式可活动人工椎体,其特征在于,所述仿生型液压式可活动人工椎体可进一步微缩化设计为人工椎间盘,将人工椎体液压囊活塞结构简化为一封闭液压囊环绕活动轴复合体结构,适合于颈椎及腰椎间盘病变的生理功能重建。 The moveable hydraulic bionic artificial vertebral body according to claim 1, wherein said hydraulically movable bionic artificial vertebral body may further miniaturization design artificial disc, the artificial vertebral body balloon hydraulic piston a simplified structure around the movable shaft closed hydraulic bladder composite structure, suitable for the cervical and lumbar disc disease reconstruction of physiological functions.
7. 根据权利要求1、2、6中任一项所述的仿生型液压式可活动人工椎体,其特征在于,所述仿生型液压式可活动人工椎体与人工椎间盘终板与对应节段椎体终板截面横径L矢径H 相适应;人工椎体与人工椎间盘终板截面面积和受力关系与对应节段椎体截面的横径L矢径H相关,存在一近似的数学关系,其面积-压力指数K = L * H。 According to claim 1,2,6 hydraulically movable bionic artificial vertebral body according to any one, characterized in that the hydraulically movable bionic artificial artificial intervertebral disk and vertebral body endplate 8254 segment endplate cross-sectional diameter L H to adapt to the radius vector; artificial disc and artificial vertebral body endplate cross-sectional area and diameter relationship with the force corresponding to the cross section of the vertebral segment L H associated radius vector, there is a mathematical approximation relationship, the area - the pressure index K = L * H.
CN201310003964.7A 2013-01-07 2013-01-07 Bionic type hydraulic movable artificial vertebral body CN103006356B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310003964.7A CN103006356B (en) 2013-01-07 2013-01-07 Bionic type hydraulic movable artificial vertebral body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310003964.7A CN103006356B (en) 2013-01-07 2013-01-07 Bionic type hydraulic movable artificial vertebral body

Publications (2)

Publication Number Publication Date
CN103006356A CN103006356A (en) 2013-04-03
CN103006356B true CN103006356B (en) 2018-03-16



Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310003964.7A CN103006356B (en) 2013-01-07 2013-01-07 Bionic type hydraulic movable artificial vertebral body

Country Status (1)

Country Link
CN (1) CN103006356B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106491249B (en) * 2017-01-11 2017-11-21 南京市第医院 Simulating artificial spine

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5827328A (en) * 1996-11-22 1998-10-27 Buttermann; Glenn R. Intervertebral prosthetic device
US6893465B2 (en) * 2003-03-31 2005-05-17 Shi, Tain-Yew Vividly simulated prosthetic intervertebral disc
WO2004089240A2 (en) * 2003-04-04 2004-10-21 Theken Disc, Llc Artificial disc prosthesis
US6966931B2 (en) * 2003-05-21 2005-11-22 Tain-Yew Shi Artificial intervertebral disc with reliable maneuverability
US20040243238A1 (en) * 2003-06-02 2004-12-02 Uri Arnin Spinal disc prosthesis
US7819922B2 (en) * 2003-10-16 2010-10-26 Spinal Generations, Llc Vertebral prosthesis
JP2008505708A (en) * 2004-07-09 2008-02-28 パイオニア ラボラトリーズ インコーポレイテッド Skeletal reconstruction device
US7883543B2 (en) * 2004-10-01 2011-02-08 Spinal Generations, Llc Vertebral prosthesis and spinal fixation system
US8070813B2 (en) * 2005-09-26 2011-12-06 Coalign Innovations, Inc. Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement
US20100145455A1 (en) * 2008-12-10 2010-06-10 Innvotec Surgical, Inc. Lockable spinal implant

Also Published As

Publication number Publication date
CN103006356A (en) 2013-04-03

Similar Documents

Publication Publication Date Title
Cummins et al. Surgical experience with an implanted artificial cervical joint
Rohlmann et al. Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis
US7594932B2 (en) Apparatus for anterior intervertebral spinal fixation and fusion
ES2248068T3 (en) Prosthetic intervertebral disc nucleus with a characteristic shape change.
Chang et al. Changes in adjacent-level disc pressure and facet joint force after cervical arthroplasty compared with cervical discectomy and fusion
US9844443B2 (en) Interbody implantation system and method
Bastian et al. Evaluation of the mobility of adjacent segments after posterior thoracolumbar fixation: a biomechanical study
US9295563B2 (en) Dynamic spinal implants incorporating cartilage bearing graft material
US9433510B2 (en) Expandable intervertebral implant and associated method of manufacturing the same
US8012211B2 (en) Semi-biological intervertebral disc replacement system
US6723097B2 (en) Surgical trial implant
US7147665B1 (en) Threaded cylindrical multidiscoid single or multiple array disc prosthesis
JP4920602B2 (en) Shock-absorbing intervertebral prosthesis plate
US20030176921A1 (en) Two-part prosthetic nucleus replacement for surgical reconstruction of intervertebral discs
Ashkenazi et al. Anterior decompression combined with corpectomies and discectomies in the management of multilevel cervical myelopathy: a hybrid decompression and fixation technique
Panjabi et al. Basic biomechanics of the spine
CA2352862C (en) Prosthetic nucleus replacement for surgical reconstruction of intervertebral discs and treatment method
JP3909049B2 (en) Radiation visible hydrogel intervertebral disc nucleus
KR101190761B1 (en) Systems and techniques for restoring and maintaining intervertebral anatomy
Rohlmann et al. Applying a follower load delivers realistic results for simulating standing
US6852127B2 (en) Method of implanting an intervertebral spacer
US20020045942A1 (en) Procedure for repairing damaged discs
KR100984627B1 (en) Intervertebral disc implant
US7201776B2 (en) Artificial intervertebral disc replacements with endplates
Wilke et al. Is a collagen scaffold for a tissue engineered nucleus replacement capable of restoring disc height and stability in an animal model?

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
GR01 Patent grant
TR01 Transfer of patent right