CN102980930B - Preparation method of electric wettability electrode - Google Patents

Preparation method of electric wettability electrode Download PDF

Info

Publication number
CN102980930B
CN102980930B CN 201210548719 CN201210548719A CN102980930B CN 102980930 B CN102980930 B CN 102980930B CN 201210548719 CN201210548719 CN 201210548719 CN 201210548719 A CN201210548719 A CN 201210548719A CN 102980930 B CN102980930 B CN 102980930B
Authority
CN
China
Prior art keywords
electrode
dried
washed
nitrogen
time
Prior art date
Application number
CN 201210548719
Other languages
Chinese (zh)
Other versions
CN102980930A (en
Inventor
颜辉
江明珠
贾俊强
吴琼英
Original Assignee
江苏科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏科技大学 filed Critical 江苏科技大学
Priority to CN 201210548719 priority Critical patent/CN102980930B/en
Publication of CN102980930A publication Critical patent/CN102980930A/en
Application granted granted Critical
Publication of CN102980930B publication Critical patent/CN102980930B/en

Links

Abstract

一种电润湿性电极的制备方法,步骤为:1)装载导电银墨水,用打印机在聚对苯二甲酸乙二醇酯(PET)膜上打印出银电极;2)打印后,将印制电极烧结,温度120~200℃,时间3min~30min;3)用紫外/臭氧处理:20~40mW/cm2,时间3~10min,然后双蒸水清洗,氮气干燥;4)将步骤3所得电极置于1~3mM 1H,1H,2H,2H-全氟癸硫醇的乙醇溶液,振荡,1.5~5小时,取出,乙醇清洗,氮气干燥后得电润湿性电极。 Preparation method of electrowetting electrode, the steps of: 1) loading a conductive silver ink, with the printer in a polyethylene terephthalate (PET) film print out silver electrode; 2) After printing, the printing preparing electrodes sintering temperature of 120 ~ 200 ℃, time 3min ~ 30min; 3) UV / ozone treatment with: 20 ~ 40mW / cm2, time 3 ~ 10min, and then double distilled water washed, dried with nitrogen; 4) step 3 the resulting electrode placed in 1 ~ 3mM 1H, 1H, 2H, 2H- perfluorodecyl ethanol solution of thiol, shaking, 1.5 to 5 hours, taken out, washed with ethanol, to give electrowetting electrode and dried with nitrogen. 本发明制备的电润湿电极,具有制作方便、成本低、保持亲水性时间长的特点,可用于制作微流体装置中的电控阀门,对于便捷式微流体分析方法的推广使用有积极作用。 Electrodeposition of the present invention the wetting electrode having a production, low cost, characteristics remain hydrophilic for a long time, the electric control valve may be used to produce the microfluidic device, for convenient analysis method to promote the use microfluidic has a positive effect.

Description

—种电润湿性电极的制备方法 - The method of producing the electrode electrowetting

技术领域 FIELD

[0001] 本发明涉及分析测试领域,特别涉及一种用于便捷式微流分析装置中的电润湿电极的制备方法。 [0001] The present invention relates to analytical testing, and more particularly relates to a method for preparing electrical convenient microfluidic analysis device for wetting the electrodes.

背景技术 Background technique

[0002] 基于微流体的生物分析装置,具有特异性强和敏感性高的优点,因而越越受到人们的欢迎。 [0002] The bio-based microfluidic analysis device having high specificity and high sensitivity advantages, the more so the more welcomed by people. 目前,用于临床疾病诊断的微流体存在结构复杂、价格昂贵等缺点,不宜移动,因而不适合农场等一些需要实地检测的地点使用。 Currently, microfluidic used for clinical diagnosis of the disease there is a complex structure, expensive and other shortcomings, not moving, and therefore not suitable for some sites require field testing of farms use. 微流体内液体的流动需要特殊的装置驱动,通常是采用外源性泵(如微量注射泵、蠕动泵和或气动泵)为其提供动力。 Flow of fluid within a microfluidic device requires a special driver, usually by pumping an exogenous (e.g., syringe pump, or a peristaltic pump and a pneumatic pump) to provide power. 由于使用了泵,检测设备的体积大大增加。 Due to the use of the pump, a volume detection apparatus is greatly increased. 因此,科研人员一直在从事无泵型微流体的设计与研制。 Therefore, researchers have been engaged in the design and development of non-pump-type micro fluid.

[0003] 采用电渗驱动是解决问题的一个方法。 [0003] using electro-osmosis drive is a solution to the problem. 然而,电渗流要求的电压非常高,因此,这种方法在便携式、低成本的移动检测设中的已经很少采用。 However, the electroosmotic flow is very high voltage is required, therefore, this method in a portable, low-cost mobile has been detected provided in rarely used.

[0004] 在微流体中使用毛细管流具有很多优点,其中最突出的是在无泵的情况下液体能够流动,非常有利于系统的简化和微型化。 [0004] Using the capillary flow in the microfluidic has many advantages, the most prominent is no liquid can flow in case the pump, is very conducive to miniaturization and simplification of the system. 这也是测向流分析方法能够被广泛应用于检测、诊断的重要原因。 This is the finding flow analysis method can be widely used in the detection, diagnosis of important reasons. 毛细管流体在微流体装置中流动受几个因素影响,包括管道的设计、液体粘度和固液接触角。 Capillary fluid flow in a microfluidic device depends on several factors, including the design of the pipeline, the viscosity of the liquid and solid-liquid contact angle. 通常分析过程中使用的液体是亲水性的,而用于制作微流体装置的多聚物材料是疏水性,如何应用表面修饰技术降低两者的接触角是本领域的研究热点之一。 Analysis of the liquid used in the process typically is hydrophilic, while polymer materials used for making microfluidic devices are hydrophobic, how to apply surface modification technology to reduce the contact angle between the two is one of the hotspots in the art. 表面被涂是最常用的获得亲水性的方法,例如,在聚氯乙烯表面涂上醋酸纤维素,能增加毛细管流动。 The coated surface is the most common method of obtaining a hydrophilic, e.g., cellulose acetate, polyvinyl chloride coated surface can increase the capillary flow.

[0005] 此外,增强通道中部分区域的疏水性,能够减慢液体的流动,达到增加孵育(如抗原与抗体的结合)时间。 [0005] In addition, to enhance the hydrophobic portion of the channel region, capable of slowing the flow of liquid, to increase incubation (e.g., antigen and antibody binding) time. 目前,增加通道表面疏水性已经被用于微流体通道内的样品混合。 Currently, to increase the surface hydrophobicity channels have been used to mix the sample within the microfluidic channel.

[0006] 介质上电润湿(EWOD)是一种特殊的现象,疏水性介质的极性在加电压时会被改变。 [0006] on-dielectric (the EWOD) is a special phenomenon, the polarity of the hydrophobic medium is changed when voltage is applied. 聚四氟乙烯是一种疏水性介质,当加电时,能够改变极性,转化为亲水性,表现为接触角变小。 PTFE is a hydrophobic medium, when energized, capable of changing the polarity, hydrophilic conversion, expressed as the contact angle becomes smaller. 液体在毛细管内流动,除受自身的性质影响外,还受管道内表面的接触角的影响。 Capillary liquid flow, in addition to impact properties by itself, but also affected by the contact angle of the inner surface of the pipe. 所以管道中的疏水性聚四氟乙烯门可以阻断毛细管内液体的流动。 Therefore conduit hydrophobic polytetrafluoroethylene door may block the liquid flow in the capillary. 如果聚四氟乙烯被转化为亲水性,毛细管液体恢复流动。 If polytetrafluoroethylene is converted to a hydrophilic capillary flow of the liquid recovery. 因此,在不需要移动性部件的情况下,这种电润湿性聚四氟乙烯可以做成电控性的阀。 Thus, without the need of moving parts, which can be made electrically polytetrafluoroethylene wettability of electrically controlled valves. 有学者已经研究表明,利用电润湿现象可以制作成阀门,用于控制毛细虹吸驱动的液体。 Some scholars have studied show that using electrowetting phenomenon can be made into a valve for controlling fluid capillary siphon driven. 试验中,当玻璃上的弹性聚二甲基硅氧烷被诱导成亲水性时,毛细管内液体才能流动。 Test, when the elastic polydimethylsiloxane is induced on the glass hydrophilic, capillary liquid to flow. 然而,这种表面修饰不适合制备成商用材料。 However, this is not suitable for surface modification of commercially available materials prepared.

[0007] 据此,本发明公开一种电湿阀及制备的方法。 [0007] Accordingly, the present invention discloses an electric valve and a wet method of preparation. 与弹性聚二甲基硅氧相比,本方法具有制备容易、低成本、高效益的特点,能保持很长时间的亲水性。 Compared with the elastic polydimethyl silicone, the present method is easily produced, low cost, high efficiency characteristics, can maintain hydrophilicity for a long time.

发明内容 SUMMARY

[0008] 解决的技术问题:本发明的目的是制备适合于微流体装置上使用的电润湿性电极,加载电压后,电极的极性由疏水转为亲水,达到控制微流体内液体的流动与阻断。 [0008] Technical problem: The purpose of the present invention to prepare suitable electrowetting electrode used in the microfluidic device, the applied voltage, the polarity of the electrodes is a hydrophobic into a hydrophilic, to control the fluid within the microfluidic and blocking the flow.

[0009] 技术方案:一种电润湿性电极的制备方法,步骤为:1).装载导电银墨水,用打印机在聚对苯二甲酸乙二醇酯(PET)膜上打印出银电极;2).打印后10〜90分钟,将印制电极烧结,温度120〜200°C,时间3min〜30min ;3).用紫外/臭氧处理:20〜40mW/cm2,时间3〜lOmin,然后双蒸水清洗,氮气干燥;4).将步骤3所得电极置于I〜3mM1H, 1H, 2H, 2H-全氟癸硫醇的乙醇溶液,振荡,1.5〜5小时,取出,乙醇清洗,氮气干燥后得电润湿性电极。 [0009] The technical solution: A method for preparing electrowetting electrode, the steps of: 1) loading a conductive silver ink, with the printer in a polyethylene terephthalate (PET) film print out silver electrode;. 2) 10 ~ 90 minutes after printing, the printed electrode sintering temperature of 120~200 ° C, time 3min~30min; 3) with UV / ozone treatment: 20~40mW / cm2, time 3~lOmin, then double. washed with distilled water, dried with nitrogen; 4) step 3 the resulting electrode was placed I~3mM1H, 1H, 2H, 2H- perfluorodecyl ethanol solution of thiol, shaken, 1.5~5 hours, taken out, washed with ethanol, dried with nitrogen. after the obtained electrowetting electrode.

[0010] 有益效果:现有的微流体装置通常采用机械性阀门,体积较大,携带困难,不便于实地检测。 [0010] Advantageous Effects: conventional microfluidic devices commonly used mechanical valves, bulky, difficult to carry, not easy to detect the field. 本发明制备的电润湿电极,具有制作方便、成本低、保持亲水性时间长的特点,可用于制作微流体装置中的电控阀门,对于便捷式微流体分析方法的推广使用有积极作用。 Electrodeposition of the present invention the wetting electrode having a production, low cost, characteristics remain hydrophilic for a long time, the electric control valve may be used to produce the microfluidic device, for convenient analysis method to promote the use microfluidic has a positive effect.

附图说明 BRIEF DESCRIPTION

[0011] 图1为打印于PET膜上的银电极; [0011] FIG. 1 is a silver electrode printed on the PET film;

[0012] 图2为利用本发明制得的电极制备电控阀示意图,图中A为微流体内毛细管流,B为普通银电极,C为电润湿性电极。 [0012] FIG. 2 is a schematic view showing the electrically controlled valve of the present invention made using the electrode produced, in FIG. A micro fluid capillary flow, B is a normal silver electrodes, C is the electrowetting electrode.

具体实施方式 Detailed ways

[0013] 采用测量接触角来评价本发明制备的电润湿性电极的性能。 [0013] The contact angle was measured to evaluate the electrowetting electrode of the present invention is prepared performance.

[0014] 电极的接触角:在测角仪上检测电极与纯水的接触角。 [0014] The electrode in contact angle: a detection electrode with pure water contact angle on a goniometer.

[0015] 电润湿下的电极接触角:采用的液体是3 μ L IM KCl溶液,在KCl液滴中放置直径25 μ m金线,加载4V电压,测量接触角与时间的变化关系。 [0015] electrowetting electrode in contact angle: liquid used is 3 μ L IM KCl solution, 25 μ m of diameter gold wire in KCl droplets, the voltage 4V load, measuring a change in the relationship between the contact angle with time.

[0016] 以下具体实施方式不以任何形式限制本发明的技术方案,凡是采用等同替换或等效变换的方式所获得的技术方案均落在本发明的保护范围。 [0016] The following detailed description does not limit the technical solution of the present invention in any form, all using equivalent substitutions or equivalent manner transform technical solutions are obtained fall within the scope of the present invention.

[0017] 实施例1 [0017] Example 1

[0018] 米用HP Photosmart C-4580喷墨打印机,去除墨盒中的墨水,清洗干净,干燥。 [0018] m with the HP Photosmart C-4580 ink jet printer, the ink cartridge is removed, cleaned, and dried. 导电银墨水((Sigma-Aldrich Corp., St.Louis, MO, USA)装进墨盒。采用AutoCAD 软件设计电极,并打印。在打印前,用70% wt的乙醇喷雾到PET (3M,St.Paul,MN,USA)膜上,然后用双蒸水清洗,氮气干燥。采用高质量(1200Dpi)打印,得到银电极,如图1所示。 Conductive silver ink ((Sigma-Aldrich Corp., St.Louis, MO, USA) packed cartridges. AutoCAD software design using an electrode, and printing Before printing, spray with ethanol to 70% wt of PET (3M, St. paul, MN, USA) membrane, then washed with distilled water, dried with nitrogen. with high quality (1200dpi) print obtained silver electrode, as shown in FIG.

[0019] 实施例2 [0019] Example 2

[0020] I)将实施例1所打印电极1min后,将印制电极烧结,温度190°C,时间3min ; After [0020] I) Example 1 will be printed electrode 1min embodiment, the printed electrode sintering temperature of 190 ° C, time 3min;

[0021] 2)用紫外/臭氧处理:20mW/cm2,时间5min。 [0021] 2) with UV / ozone treatment: 20mW / cm2, time 5min. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0022] 3)将电极置于3mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡4h,取出,乙醇清洗。 [0022] 3) The electrodes were placed 3mM 1H, 1H, 2H, 2H_ perfluorodecyl ethanol solution of thiol, oscillation 4h, extracted, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0023] 所获电极对于纯水的接触角为140°。 [0023] The obtained electrode contact angle to pure water of 140 °. 对KCl的接触角为106°,加载4V电压,15s后,接触角为28°,60s后,接触角为22°。 KCl contact angle of 106 °, load voltage 4V, after 15s, a contact angle of 28 °, after 60s, a contact angle of 22 °.

[0024] 实施例3 [0024] Example 3

[0025] I)将实施例1所打印电极15min后,将印制电极烧结,温度175°C,时间5min ; After [0025] I) Example 1 will be printed electrode 15min embodiment, the printed electrode sintering temperature of 175 ° C, 5min time;

[0026] 2)用紫外/臭氧处理:28mW/cm2,时间6min。 [0026] 2) treated with UV / ozone: 28mW / cm2, time 6min. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0027] 3)将电极置于2mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡3h,取出,乙醇清洗。 [0027] 3) The electrodes were placed 2mM 1H, 1H, 2H, 2H_ perfluorodecyl ethanol solution of thiol, shaken 3h, taken out, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0028] 所获电极对于纯水的接触角为148°。 [0028] The obtained electrode contact angle to pure water of 148 °. 对KCl的接触角为112°,加载4V电压,15s后,接触角为29°,60s后,接触角为23°。 KCl contact angle of 112 °, load voltage 4V, after 15s, a contact angle of 29 °, after 60s, a contact angle of 23 °.

[0029] 实施例4 [0029] Example 4

[0030] I)将实施例1所打印电极90min后,将印制电极烧结,温度150°C,时间30 ; After [0030] I) Example 1 will be printed electrode 90min embodiment, the printed electrode sintering temperature of 150 ° C, time 30;

[0031] 2)用紫外/臭氧处理:40mW/cm2,时间lOmin。 [0031] 2) treated with UV / ozone: 40mW / cm2, time lOmin. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0032] 3)将电极置于2mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡1.5h,取出,乙醇清洗。 [0032] 3) The electrodes were placed 2mM 1H, 1H, 2H, 2H_ perfluorodecyl ethanol solution of thiol, oscillation 1.5h, removed, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0033] 所获电极对于纯水的接触角为142°。 [0033] The obtained electrode contact angle to pure water of 142 °. 对KCl的接触角为108°,加载4V电压,15s后,接触角为26°,60s后,接触角为21°。 KCl contact angle of 108 °, load voltage 4V, after 15s, a contact angle of 26 °, after 60s, a contact angle of 21 °.

[0034] 实施例5 [0034] Example 5

[0035] I)将实施例1所打印电极75min后,将印制电极烧结,温度160°C,时间20 ; After [0035] I) Example 1 will be printed electrode 75min embodiment, the printed electrode sintering temperature of 160 ° C, time 20;

[0036] 2)用紫外/臭氧处理:28mW/cm2,时间4min。 [0036] 2) treated with UV / ozone: 28mW / cm2, time 4min. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0037] 3)将电极置于4mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡此,取出,乙醇清洗。 [0037] 3) The electrodes were placed 4mM 1H, 1H, 2H, 2H_ ethanol solution of perfluoro decyl mercaptan, this oscillation, removed, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0038] 所获电极对于纯水的接触角为139°。 [0038] The obtained electrode contact angle to pure water of 139 °. 对KCl的接触角为105°,加载4V电压,15s后,接触角为27°,60s后,接触角为25°。 KCl contact angle of 105 °, load voltage 4V, after 15s, a contact angle of 27 °, after 60s, a contact angle of 25 °.

[0039] 实施例6 [0039] Example 6

[0040] I)将实施例1所打印电极30min后,将印制电极烧结,温度120°C,时间5 ; After [0040] I) Example 1 will be printed electrode 30min embodiment, the printed electrode sintering temperature of 120 ° C, time 5;

[0041] 2)用紫外/臭氧处理:28mW/cm2,时间7min。 [0041] 2) treated with UV / ozone: 28mW / cm2, time of 7min. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0042] 3)将电极置于2.5mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡5h,取出,乙醇清洗。 [0042] 3) The electrodes were placed 2.5mM 1H, 1H, 2H, 2H_ perfluorodecyl ethanol solution of thiol, oscillation 5h, taken out, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0043] 所获电极对于纯水的接触角为145°。 [0043] The obtained electrode contact angle to pure water of 145 °. 对KCl的接触角为111°,加载4V电压,15s后,接触角为26°,60s后,接触角为22°。 KCl contact angle of 111 °, load voltage 4V, after 15s, a contact angle of 26 °, after 60s, a contact angle of 22 °.

[0044] 实施例7 [0044] Example 7

[0045] I)将实施例1所打印电极60min后,将印制电极烧结,温度130°C,时间10 ; After [0045] I) Example 1 will be printed electrode 60min embodiment, the printed electrode sintering temperature of 130 ° C, time 10;

[0046] 2)用紫外/臭氧处理:20mW/cm2,时间3min。 [0046] 2) treated with UV / ozone: 20mW / cm2, time 3min. 然后双蒸水清洗,氮气干燥; Double distilled water was then washed, dried with nitrogen gas;

[0047] 3)将电极置于1.5mM 1H, 1H, 2H, 2H_全氟癸硫醇的乙醇溶液,振荡3h,取出,乙醇清洗。 [0047] 3) The electrodes were placed 1.5mM 1H, 1H, 2H, 2H_ perfluorodecyl ethanol solution of thiol, shaken 3h, taken out, washed with ethanol. 氮气干燥。 Dried with nitrogen.

[0048] 所获电极对于纯水的接触角为150°。 [0048] The obtained electrode contact angle to pure water of 150 °. 对KCl的接触角为115°,加载4V电压,15s后,接触角为29°,60s后,接触角为23°。 KCl contact angle of 115 °, load voltage 4V, after 15s, a contact angle of 29 °, after 60s, a contact angle of 23 °.

[0049] 应用所得电极制备电控阀,用于微流体分析装置,通过改变电压,实现毛细管的流动和阻断。 [0049] Application of the resulting electrode was electrically controlled valve, for micro-fluid analysis device, by varying the voltage, to achieve capillary flow and blocking. 如图2所示。 as shown in picture 2. 微流体装置有两个银电极,左侧(上层)为普通银电极,呈亲水性,右侧(下层)为本发明所制备的电润湿性电极。 The microfluidic device has two silver electrodes, on the left side (upper layer) as an ordinary silver electrode was prepared electrowetting electrode hydrophilic, right side (lower layer) of the present invention. 未加载电压时,毛细管内液体阻断。 When voltage is not loaded, the capillary fluid blocking. 当加载4V电压时,微流体管道内液体流动通畅。 When the load voltage is 4V, the microfluidic unobstructed fluid flow within the conduit.

Claims (1)

1.一种电润湿性电极的制备方法,其特征在于步骤为:采用HP Photosmart C-4580喷墨打印机,去除墨盒中的墨水,清洗干净,干燥;导电银墨水装进墨盒;采用AutoCAD软件设计电极,并打印;在打印前,用70wt%的乙醇喷雾到PET膜上,然后用双蒸水清洗,氮气干燥;采用1200Dpi高质量打印,得到银电极;将所打印电极75 min后,将印制电极烧结,温度.160 °C ,时间20min ;用紫外/臭氧处理:28 mW/cm2,时间4 min ;然后双蒸水清洗,氮气干燥;将电极置于4 mM 1民1!1,2!1,2!1-全氟癸硫醇的乙醇溶液,振荡211,取出,乙醇清洗,氮气干燥后得电润湿性电极。 1. A method for preparing the electrowetting electrode, characterized by the steps of: using the HP Photosmart C-4580 ink jet printer, the ink cartridge is removed, cleaned, and dried; put into conductive silver ink cartridge; using AutoCAD software design of the electrodes, and printing; before printing, using 70wt% ethanol is sprayed onto a PET film, and then washed with distilled water, dried with nitrogen; 1200Dpi using high-quality printing, to obtain a silver electrode; printed electrode after 75 min, the printing electrodes sintering temperature of .160 ° C, time 20min; UV / ozone treatment: 28 mW / cm2, time 4 min; then washed with double distilled water, dried with nitrogen gas; the electrode is placed 4 mM 1 min 11,! 2! 2! perfluorodecyl ethanol solution of 1- thiol, oscillation 211, removed, washed with ethanol, to give electrowetting electrode and dried with nitrogen.
CN 201210548719 2012-12-17 2012-12-17 Preparation method of electric wettability electrode CN102980930B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210548719 CN102980930B (en) 2012-12-17 2012-12-17 Preparation method of electric wettability electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210548719 CN102980930B (en) 2012-12-17 2012-12-17 Preparation method of electric wettability electrode

Publications (2)

Publication Number Publication Date
CN102980930A CN102980930A (en) 2013-03-20
CN102980930B true CN102980930B (en) 2014-11-05

Family

ID=47855148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210548719 CN102980930B (en) 2012-12-17 2012-12-17 Preparation method of electric wettability electrode

Country Status (1)

Country Link
CN (1) CN102980930B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587023A (en) * 2004-09-30 2005-03-02 清华大学 Micro liquid drop driver based on power-on wetting of medium layer
CN101287845A (en) * 2005-05-11 2008-10-15 先进液体逻辑公司;杜克大学 Method and device for conducting biochemical or chemical reactions at multiple temperatures
CN102500436A (en) * 2011-09-28 2012-06-20 复旦大学 Single-sided two-dimensional driving digital microfluidic chip based on electrowetting
CN102698822A (en) * 2012-06-11 2012-10-03 复旦大学 Universal electrode structure based on digital microfluidic chip

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1587023A (en) * 2004-09-30 2005-03-02 清华大学 Micro liquid drop driver based on power-on wetting of medium layer
CN101287845A (en) * 2005-05-11 2008-10-15 先进液体逻辑公司;杜克大学 Method and device for conducting biochemical or chemical reactions at multiple temperatures
CN102500436A (en) * 2011-09-28 2012-06-20 复旦大学 Single-sided two-dimensional driving digital microfluidic chip based on electrowetting
CN102698822A (en) * 2012-06-11 2012-10-03 复旦大学 Universal electrode structure based on digital microfluidic chip

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李伟,李梅,路庆华.离子液体在超疏水银膜表面的电润湿性能.《上海交通大学学报》.2011,第45卷(第12期),1879-1884. *

Also Published As

Publication number Publication date
CN102980930A (en) 2013-03-20

Similar Documents

Publication Publication Date Title
Zhang et al. Optically-and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites
CN1668527B (en) Actuator in a microfluidic system for inducing electroosmotic liquid movement in a micro channel
Weng et al. A microfluidic system utilizing molecularly imprinted polymer films for amperometric detection of morphine
Döring et al. Responsive hydrogels–structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science
WO2010009307A3 (en) Organ mimic device with microchannels and methods of use and manufacturing thereof
JP4253028B2 (en) Liquid actuator
JPWO2007094254A1 (en) Microchannel chip and a manufacturing method thereof
CN103706264B (en) Alkenyl nanofiltration membrane layer self-assembly method for preparing graphite oxide and
CN103080197B (en) A polymer substrate having a glass-like surface of the chip and the substrate made from the polymer
Jeon et al. Hot embossing for fabrication of a microfluidic 3D cell culture platform
Zhang et al. Smart Homopolymer Modification to Single Glass Conical Nanopore Channels: Dual‐Stimuli‐Actuated Highly Efficient Ion Gating
Chiu et al. An air-bubble-actuated micropump for on-chip blood transportation
CN101510518A (en) Method for sealing micro-fluidic chip and use thereof
US20170266623A1 (en) Method for preparing tubular graphene composite membrane
CN101906378A (en) Bubble micro valve and bubble micro valve-based micro-fluidic chip
US20150321193A1 (en) Low elasticity films for microfluidic use
Cheng et al. An electrolysis-bubble-actuated micropump based on the roughness gradient design of hydrophobic surface
Branagan et al. Enhanced mass transport of electroactive species to annular nanoband electrodes embedded in nanocapillary array membranes
CN101264429B (en) Preparation of osmotic vaporizing alcohol permselective zeolite filling silicon rubber compound film
JP4881115B2 (en) Microreactor and microreactor system
CN101294971A (en) Digital microcurrent-controlled device and control method based on electrowetting effect on dielectric
US20070028668A1 (en) Molecule detection sensor, detection sensor, and gas transferring pump
Moghaddam et al. A self-regulating hydrogen generator for micro fuel cells
CN101520960B (en) Experimental device for in-vitro simulated blood vessel microenvironment
SG186604A1 (en) Separation membrane elements, separation membrane module, and process for producing separation membrane element

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted