CN102937538A - Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring - Google Patents

Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring Download PDF

Info

Publication number
CN102937538A
CN102937538A CN2012104444799A CN201210444479A CN102937538A CN 102937538 A CN102937538 A CN 102937538A CN 2012104444799 A CN2012104444799 A CN 2012104444799A CN 201210444479 A CN201210444479 A CN 201210444479A CN 102937538 A CN102937538 A CN 102937538A
Authority
CN
China
Prior art keywords
central processing
sampling
processing unit
module
stepper motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2012104444799A
Other languages
Chinese (zh)
Other versions
CN102937538B (en
Inventor
张光新
鲁天龙
侯迪波
黄平捷
包莹
冯天恒
陈骁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201210444479.9A priority Critical patent/CN102937538B/en
Publication of CN102937538A publication Critical patent/CN102937538A/en
Application granted granted Critical
Publication of CN102937538B publication Critical patent/CN102937538B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention discloses a remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring. The remote-controlled three-dimensional sampling system comprises a base station monitoring terminal, a handheld remote-controlled terminal and an execute subsystem. The monitoring terminal adopts a common personal computer (PC) and performs remote-controlled monitoring on the execute subsystem; the handheld remote-controlled terminal comprises a touch display screen, a central processor, a wireless module and a secure digital (SD) card storage and performs short-distance communication with the execute subsystem; the execute subsystem comprises a control device and a sampling device, wherein the sampling device comprises a water pipe lifter, a peristaltic pump, a bypass flow connector, a turbine flowmeter, a solenoid valve and a thermal-insulation water storage tank and can sample a plurality of water samples different in height. The execute subsystem can be used in fast sampling of emergencies in water quality and regular inspections of water areas on the earth surface. Additionally, a base station monitors and supports comprehensive management when a plurality of execute subsystems operate simultaneously. The remote-controlled three-dimensional sampling system is small in size, fast and convenient to operate, practical in function, labor-saving, low in cost and capable of well helping related departments to deal with the water quality emergencies.

Description

Be applied to the three-dimensional sampling system of remote control and the method for sampling of water quality emergency monitoring
Technical field
The present invention relates to a kind of three-dimensional sampling system of remote control and method of sampling that adopts embedded technology, wireless communication technology, GPS location technology.
Background technology
In recent years, the water contamination accident occurrence frequency in China and even the whole world constantly rises, when the reply sudden water pollution accident, owing to lacking on-the-spot motor-driven monitoring equipment, can not carry out mobile monitoring to polluted water region, can't follow the tracks of in time the Pollutants Diffusion situation, be difficult to polluted water region is assessed to judgement.Traditional Man is rowed the boat to fetch water and is measured, and because water surface area is large, naked eyes judge that the accurate degree of certainty in position is low and have certain danger; Existing automatic monitor station is because position is fixed, and monitoring range is less, can not reflect water quality condition comprehensively, is difficult to find in real time and follow the tracks of and pollute; Mostly emergency monitoring means commonly used are boat-carrying professional in-site measurement, but this can bring more manufacturing cost and labour costs, once and the generation of water quality accident, the scheduling of monitoring ship also can not be at the right time.How the effective water sample of quick obtaining becomes a great problem of emergency monitoring.
In the Chinese invention patent that is 200910143532.X at application number, described water sampler can be accepted operating personnel's instruction on the bank and arrive appointed place collection water sample, by the sampling depth of previous setting, gather the different depth water sample in different location, and return to the place of setting out.But the geographic position of sampling site and the actual samples degree of depth could not records, are unfavorable for the assessment of monitoring personnel to water environment, its topworks is single simultaneously, can not meet the emergency monitoring of complex water areas; Too simple to the description of water sampling part in this invention in addition, be difficult to realize.In the Chinese invention patent that is 201110173075.6 at application number, the configuration of designed sampling monitoring boat is waterborne, underwater camera head and base station center video monitoring function, greatly strengthened the ability of regulation and control to sampling system, but the description to sampling module is only " single-chip microcomputer output termination peristaltic pump control module input end; the start and stop of control pump and sample size ", and this realization and follow-up study effect to invention is little.When running into the burst water pollution accident and need a plurality of sections to monitor simultaneously, this summary of the invention can't meet the demands.
Summary of the invention
The objective of the invention is for the deficiencies in the prior art, a kind of three-dimensional sampling system of remote control and method of sampling that is applied to the water quality emergency monitoring is provided.
The objective of the invention is by realizing by the following technical solutions: a kind of three-dimensional sampling system of remote control and the method for sampling that is applied to the water quality emergency monitoring, it comprises base station monitoring terminal, several hand-held remote control terminals and several executive subsystems, all executive subsystems are all by GPRS and base station monitoring terminal communication, each executive subsystem all with a hand-held remote terminal radio communication.Executive subsystem is connected to form by sampling apparatus and control device.Described sampling apparatus comprises water pipe lifter, peristaltic pump, tap, turbo flow meter, some solenoid valves and some insulation aqua storage tanks.The water pipe lifter is comprised of stepper motor, reel, sampling flexible pipe and support, and the sampling soft tube winding is on reel, and reel is fixed by stent support, and stepper motor is connected with reel by gear, drives reel and rotates.One end of sampling flexible pipe puts screen pack, another termination metal winding pipe.Metal winding pipe stretches in reel and with two and closely is connected to joint by the reel axis hole on reel.One end of metal tube and two other ends to joint join, and the interface cover has rubber band and bearing.The input end of another termination peristaltic pump of metal tube, peristaltic pump, turbo flow meter and tap are connected successively, and tap is connected with some insulation aqua storage tanks by pipeline respectively, and the solenoid valve of controlling this pipeline break-make is installed on each pipeline.
Control device is comprised of the first central processing unit, the first wireless module, GPRS module, GPS module, RS232 interface circuit, stepper motor driver module, direct current generator driver module, relay switching circuit, flow signal treatment circuit and power module; Described the first wireless module is connected with the first central processing unit by the RS232 interface circuit with the GPRS module, and the flow signal treatment circuit connects the first central processing unit input end.The first central processing unit output terminal connects respectively direct current generator driver module, stepper motor driver module and relay switching circuit, the direct current generator driver module connects the DC speed-reducing of peristaltic pump, the stepper motor driver module connects stepper motor, relay switching circuit module connected electromagnetic valve.
The hand-held remote control terminal is comprised of the second central processing unit, the second wireless module, TFT touch display screen, RS232 interface circuit, SD card and power module; The second wireless module is connected with the second central processing unit by the RS232 interface circuit, and the TFT touch display screen all is connected with the second central processing unit with the SD card.
The base station monitoring terminal is to have the fixedly computing machine of outer net IP, by monitoring the IP data, communicate sending controling instruction with the GPRS module on executive subsystem, receive the information such as sampling time, position, the degree of depth, sample size, and call GOOGLE MAP location and follow the tracks of.
A kind of method of sampling of applying above-mentioned sampling system, comprise the steps:
(1) some executive subsystems of sampling system are distributed in to position, waters to be measured, executive subsystem power on and initialization after, send corresponding extension set numbering by the GPRS module to the base station monitoring terminal; The first central processing unit of executive subsystem interrupts armed state in serial ports;
(2) base station monitoring terminal or hand-held remote control terminal send to executive subsystem by sample information (comprising sampling location, sampling depth, sampling quantity);
(3) after the GPRS module of executive subsystem or the first wireless module receive instruction, at first be input to the first central processing unit, whether the first central processing unit decision instruction is effective, if a upper instruction not yet is finished or instruction sequences is wrong, the first central processing unit returns to false alarm, by the GPRS module, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module; If instruction is effective, at first the first central processing unit removes the sampling apparatus state, stops all motor operations, and carries out the instruction parsing;
(4) first central processing units are exported concrete control signal according to resolved instruction and are carried out corresponding operating; Execution sequence is: (4.1) first central processing units are opened corresponding serial ports, read GPS acquisition of information sampled point longitude and latitude; (4.2) first central processing units output enabling signals are to the stepper motor driver module, and stepper motor driver module control step motor forward rotation is delivered to the sampling flexible pipe degree of depth of setting; (4.3) first central processing unit output Continuity signals, to relay switching circuit, are opened solenoid valve, the pipeline that conducting sample sequence number is corresponding; (4.4) first central processing unit output enabling signals, to the direct current generator driver module, drive the direct current generator of peristaltic pump to start to draw water; (4.5) the real-time signal piping flow signal of turbo flow meter is input to the flow signal treatment circuit, and signal is input to the first central processing unit after processing, and the first central processing unit is controlled the start and stop of peristaltic pump according to integrated flow, make sampling amount reach the setting requirement; (4.6) after primary sample finishes, the first central processing unit input control signal is to the stepper motor driver module, and stepper motor driver module control step motor rotates backward, and regains the sampling flexible pipe; Or another angle of stepper motor driver module control step motor forward rotation, the sampling flexible pipe is delivered to the degree of depth of another setting, continue to start sampling; (4.7), after end is carried out in present instruction, the first central processing unit of executive subsystem interrupts armed state in serial ports again;
(5) first central processing units are Zi receiving that instruction finishes, in whole process, every 2s, to beam back current running status and positional information to this instruction execution, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module by the GPRS module.
The present invention is with respect to prior art, and its beneficial effect is:
(1) function that the present invention possesses meets " water quality sampling Scheme design technique regulation GB12997-91 ", " water-quality sampler technical requirement and monitoring method HJ/J372-2007 " relevant regulations, guarantee the accuracy of sampled point and sampling depth, sent and preserved sample information.
(2) reply is during sudden water pollution accident, can the effective water sample of quick obtaining, for pollution level analysis, pollution source follow the tracks of, the POLLUTION SIMULATION prediction.
(3) several executive subsystems of system configuration can be used for the multibreak surface sample monitoring in large-scale waters, are convenient to BTS management and data and process.
The accompanying drawing explanation
Fig. 1 is system schematic of the present invention;
Fig. 2 is executive subsystem sampling apparatus structural drawing of the present invention;
Fig. 3 is executive subsystem control device design drawing of the present invention;
Fig. 4 is executive subsystem control device flow signal treatment circuit figure of the present invention;
Fig. 5 is executive subsystem control device RS232 interface circuit figure of the present invention;
Fig. 6 is hand-held remote control Terminal Design figure of the present invention;
Fig. 7 is hand-held remote control terminal works process flow diagram of the present invention;
Fig. 8 is base station monitoring interface figure of the present invention;
Fig. 9 is executive subsystem software control flow chart of the present invention;
In figure, sampling apparatus 1, control device 2, executive subsystem 3, hand-held remote control terminal 4, base station monitoring terminal 5, stepper motor 6, gear 7, reel 8, screen pack 9, sampling flexible pipe 10, two are to joint 11, metal winding pipe 12, bearing 13, reel axis hole 14, metal tube 15, support 16, peristaltic pump 17, tap 18, turbo flow meter 19, solenoid valve 20, insulation aqua storage tank 21.
Embodiment
As shown in Figure 1, the three-dimensional sampling system of remote control and the method for sampling that the present invention is applied to the water quality emergency monitoring comprise base station monitoring terminal 5, several hand-held remote control terminals 4 and several executive subsystems 3, all executive subsystems 3 are all by GPRS and base station monitoring terminal communication, each executive subsystem 3 all with a hand-held remote terminal radio communication.Executive subsystem 3 is connected to form by sampling apparatus 1 and control device 2.
As shown in Figure 2, sampling apparatus 1 comprises water pipe lifter, peristaltic pump 17, tap 18, turbo flow meter 19, some solenoid valves 20 and some insulation aqua storage tanks 21.The water pipe lifter is comprised of stepper motor 6, reel 8, sampling flexible pipe 10 and support 16, and sampling flexible pipe 10 is wrapped on reel 8, and reel 8 use supports 16 support fixing, and stepper motor 6 is connected with reel 8 by gear 7, drives reel 8 and rotates.One end of sampling flexible pipe 10 puts screen pack 9, another termination metal winding pipe 12.Metal winding pipe 12 stretches in reel 8 and closely is connected to joint 11 with two by the reel axis hole 14 on reel 8.One end of metal tube 15 and two other ends to joint 11 join, and the interface cover has rubber band and bearing 13.The input end of another termination peristaltic pump 17 of metal tube 15, peristaltic pump 17, turbo flow meter 19 and tap 18 are connected successively, tap 18 is connected with some insulation aqua storage tanks 21 by pipeline respectively, and the solenoid valve 20 of controlling this pipeline break-make is installed on each pipeline.
As shown in Figure 3, control device 2 is comprised of the first central processing unit, the first wireless module, GPRS module, GPS module, RS232 interface circuit, stepper motor driver module, direct current generator driver module, relay switching circuit, flow signal treatment circuit, power module.The first wireless module is connected with the first central processing unit by the RS232 interface circuit with the GPRS module, and the flow signal treatment circuit connects the first central processing unit input end.The first central processing unit output terminal connects respectively direct current generator driver module, stepper motor driver module and relay switching circuit, the direct current generator driver module connects the DC speed-reducing of peristaltic pump 17, the stepper motor driver module connects stepper motor 6, relay switching circuit connected electromagnetic valve 20.Power module is each module for power supply.
As shown in Figure 6, hand-held remote control terminal 4 is comprised of the second central processing unit, the second wireless module, TFT touch display screen, RS232 interface circuit, SD card, power module.The second wireless module is connected with the second central processing unit by the RS232 signaling conversion circuit, and the TFT touch display screen all is connected with the second central processing unit with the SD card.Power module is each module for power supply.
Base station monitoring terminal 5 can realize by having the fixedly ordinary PC of outer net IP.
Embodiment 1:
As shown in Figure 1, the three-dimensional sampling system of remote control comprises base station monitoring terminal 5, some hand-held remote control terminals 4, some executive subsystems 3 and is located at control device 2, the sampling apparatus 1 on executive subsystem 3.
As shown in Figure 2, sampling apparatus 1 comprises water pipe lifter, peristaltic pump 17, tap 18, turbo flow meter 19, some solenoid valves 20 and some insulation aqua storage tanks 21.The water pipe lifter is comprised of stepper motor 6, reel 8, flexible pipe 10 and support 16, and stepper motor 6 is connected with reel 8 by gear 7, drives reel 8 and rotates.Stepper motor 6 can adopt model 86HS9850A4, has statical moment 8.2N.m, because its rated current is larger, rated voltage is less, therefore selects the MD680 module to be driven, this module 24V power supply, while being set to 12800 step number the vibration less, meet again the accuracy requirement of depth adjustment.But the stepper motor practical function with high pulling torque.
The water pipe lifter be configured to emphasis of the present invention, an end that is specially sampling flexible pipe 10 puts screen pack 9 and immerses in waters to be measured with the 250g weight, sampling flexible pipe 10 is wound in reel 8, another termination metal winding pipe 12 of sampling flexible pipe 10.Metal winding pipe 12 stretches into reel 8 axle inside by reel axis hole 14, with two, to joint 11, closely is connected.Metal tube 15 and two other ends to joint 11 join, and the interface cover has rubber band and bearing 13, have both guaranteed the sealing of pipeline, reduce again two to the force of sliding friction between joint 11 and metal tube 15.The purpose of its design is that reel 8 drives the 10 water intake end liftings of sampling flexible pipe, guarantees that water pipe lifter endpiece metal tube 15 maintains static simultaneously, connects peristaltic pump 17.
Peristaltic pump 17 is comprised of Wriggling Pump Head and DC speed-reducing.Wriggling Pump Head can adopt model YZ2515X, and it pumpage possessed is 1.7 ~ 1740mL/min, and the flexible pipe model of joining is 24#(internal diameter 6.4mm, wall thickness 2.5mm).This configuration flow that can guarantee in 5 meters degree of depth to draw water is unattenuated, and the degree of depth of effectively drawing water reaches 10 meters.The motor that drives Wriggling Pump Head can adopt the DC speed-reducing of 600 rev/mins, and the IO mouth of available single-chip microcomputer is controlled start and stop, adjusting rotary speed, controls sampling quantity.But the equal practical function of the low-voltage water pump that possesses pumpage more than 5 meters.
Turbo flow meter 19 can adopt model LWGY-4, selects DN4(1 to be in charge of) the instrument bore, its measurement range is 600 ~ 4000mL/min, is applicable to the sampling apparatus of flow 800 ~ 1500mL/min.This flowmeter Output pulse frequency signal, the corresponding uninterrupted of frequency size.Signal by the treatment circuit step-down of Fig. 4 after the input single-chip microcomputer obtain frequency values, be converted into drawing water of feedback regulation peristaltic pump after the integrated flow value.Because the maximum output frequency of this flowmeter is no more than 4KHz, therefore selected circuit component all meets the requirements.
Tap 18 output terminals are made standard socket, and solenoid valve 20 and its place pipeline can directly plug according to the increase and decrease of concrete sample quantity.Solenoid valve 20 can adopt model 2W-06 bi-bit bi-pass Direct Action Type diaphragm electromagnetic valve, selects the instrument bore of (1 is in charge of), and required rated voltage is 12V, meets the sampling apparatus water sample and separates the demand of controlling.
Described insulation aqua storage tank 21 is handle structure, two-layer inside and outside minute.Skin plays isolation insulation left and right, and internal layer is clean glassware.The tank mouth is connected with pipeline by knob, conveniently assemble and disassemble.
As shown in Figure 3, control device 2 comprises the first central processing unit, the first wireless module, GPRS module, GPS locating module, RS232 signaling conversion circuit, stepper motor driver module, direct current generator driver module, relay switch control module, flow signal treatment circuit, power module.
The first central processing unit can adopt the STM32RBT6 single-chip microcomputer, and major function is that two kinds of communications realize data transmit-receive, resolve instruction and export control signal, read data on flows, read GPS.Described single-chip microcomputer is totally 64 pins, and three USART serial port resources connect respectively wireless module, GPRS module, GPS module, between three modules and interface microcontroller, also needs the RS232 interface circuit to carry out the signal conversion, as Fig. 5.The single-chip microcomputer that has three serial port resources substantially can practical function.Controller general I/O mouth and PWM delivery outlet are in order to control step motor drive module, DC speed-reducing driver module, motor switch control module.
The first wireless module can adopt FHL0603 series 433MHz wireless data transfer module, maximum transmission power 500mW, and the transmitting distance is greater than 2km, and actual effective communication distance is greater than 1km, meets bank remote control demand for control fully.This module can directly be interrupted reading out data by serial ports, without appendage, drives.Have that the wireless module of communication capacity can practical function in a big way.Described GPRS and GPS module can adopt the SIM908 integrated chip, write the AT instruction by single-chip microcomputer concrete function is set, and after enabling, also can directly by serial ports, interrupt reading out data.
The stepper motor driver module can adopt MD680, possesses constant current output and segmentation regulatory function, and available single-chip processor i/o mouth replaces pulse signal and controls.The DC speed-reducing driver module adopts the L298N bridge circuit, and rotating speed is controlled in available one group of SCM PWM output.The relay switch control module is controlled the break-make of solenoid valve group, adopts the assembly of 30V/10A relay with the triode buffer circuit, utilizes single-chip processor i/o mouth low and high level to control.
Power module comprises 24V accumulator and two 12V accumulators, formation 24V,
Figure 507275DEST_PATH_IMAGE001
The 12V power supply, utilize voltage stabilizing chip manufacturing 12V to turn 5V, 5V simultaneously and turn the 3.3V circuit.
Hand-held remote control terminal 4 is comprised of the second central processing unit, the second wireless module, TFT touch display screen, RS232 signaling conversion circuit, SD card, power module.Touch display screen is 2.8 cun TFTLCD, in the character string mode, shows the reception data, with the contact region recognition method, catches screen key, thereby the formation control instruction encoding sends.Described the second central processing unit adopts the STM32RBT6 single-chip microcomputer, wherein 34 pin drive display screen, and a USART serial port resource connects FHL0603 the second wireless module, with executive subsystem 3, carries out short haul connection in 1000m, a SPI resource connects the SD card, the sample information that record receives.The above single-chip microcomputer of 64 pin can be realized the function of the second central processing unit.The interface of hand-held remote control terminal 4 is divided into master menu (function selection) and submenu (setting parameter), is provided with parameter in submenu and sends hurdle and sample information reception hurdle.The power module of hand-held remote control terminal 4 is the mu balanced circuit that 5V battery and 5V turn 3.3V.The hand-held remote control terminal works as shown in Figure 7.
Described base station monitoring terminal 5 can be by having the fixedly ordinary PC realization of outer net IP, and its upper monitoring interface as shown in Figure 8, comprises the machine IP hurdle, the other side IP monitoring hurdle, instruction transmission hurdle, data receiver hurdle, GOOGLE MAP display field are set.Described upper monitoring interface utilizes C# to write, and utilizes the machine IP address and selected end slogan to create the Socket example, sets up TCPListener and connects, and with the GPRS module on executive subsystem 3, carries out telecommunication.Use the webBrowser control in C# to call access GOOGLE MAP, according to the gps data received, describe location track on map, grasp the real-time orientation of executive subsystem, carry out the integrated dispatch management.
As shown in Figure 9, sampling process of the present invention is as follows:
1, some executive subsystems of sampling system are distributed in to position, waters to be measured, executive subsystem power on and initialization after, send corresponding extension set numbering by the GPRS module to the base station monitoring terminal; The first central processing unit of executive subsystem interrupts armed state in serial ports;
2, base station monitoring terminal or hand-held remote control terminal send to executive subsystem by sample information (comprising sampling location, sampling depth, sampling quantity);
3, after the GPRS module of executive subsystem or the first wireless module receive instruction, at first be input to the first central processing unit, whether the first central processing unit decision instruction is effective, if a upper instruction not yet is finished or instruction sequences is wrong, the first central processing unit returns to false alarm, by the GPRS module, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module; If instruction is effective, at first the first central processing unit removes the sampling apparatus state, stops all motor operations, and carries out the instruction parsing;
4, the first central processing unit is exported concrete control signal according to resolved instruction and is carried out corresponding operating; Execution sequence is: 1) the first central processing unit is opened corresponding serial ports, reads GPS acquisition of information sampled point longitude and latitude; 2) the first central processing unit output enabling signal is to the stepper motor driver module, and stepper motor driver module control step motor forward rotation is delivered to the sampling flexible pipe degree of depth of setting; 3) the first central processing unit output Continuity signal, to relay switching circuit, is opened solenoid valve, the pipeline that conducting sample sequence number is corresponding; 4) the first central processing unit output enabling signal, to the direct current generator driver module, drives the direct current generator of peristaltic pump to start to draw water; 5) the real-time signal piping flow signal of turbo flow meter is input to the flow signal treatment circuit, and signal is input to the first central processing unit after processing, and the first central processing unit is controlled the start and stop of peristaltic pump according to integrated flow, make sampling amount reach the setting requirement; 6) after primary sample finishes, the first central processing unit input control signal is to the stepper motor driver module, and stepper motor driver module control step motor rotates backward, and regains the sampling flexible pipe; Or another angle of stepper motor driver module control step motor forward rotation, the sampling flexible pipe is delivered to the degree of depth of another setting, continue to start sampling.7), after end is carried out in present instruction, the first central processing unit of executive subsystem interrupts armed state in serial ports again.
5, the first central processing unit is Zi receiving that instruction finishes, in whole process, every 2s, to beam back current running status and positional information to this instruction execution, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module by the GPRS module.

Claims (5)

1. the three-dimensional sampling system of the remote control that is applied to the water quality emergency monitoring, it is characterized in that, it comprises base station monitoring terminal (5), several hand-held remote control terminals (4) and several executive subsystems (3) etc., all executive subsystems (3) are all by GPRS and base station monitoring terminal communication, each executive subsystem (3) all with a hand-held remote terminal radio communication; Executive subsystem (3) is connected to form by sampling apparatus (1) and control device (2); Described sampling apparatus (1) comprises water pipe lifter, peristaltic pump (17), tap (18), turbo flow meter (19), some solenoid valves (20) and some insulation aqua storage tanks (21); The water pipe lifter is comprised of stepper motor (6), reel (8), sampling flexible pipe (10) and support (16), sampling flexible pipe (10) is wrapped on reel (8), reel (8) supports fixing with support (16), stepper motor (6) is connected with reel (8) by gear (7), drives reel (8) and rotates; One end of sampling flexible pipe (10) puts screen pack (9), another termination metal winding pipe (12); Metal winding pipe (12) stretches in reel (8) and closely is connected to joint (11) with two by the reel axis hole (14) on reel (8); One end of metal tube (15) and two other ends to joint (11) join, and the interface cover has rubber band and bearing (13); The input end of another termination peristaltic pump (17) of metal tube (15), peristaltic pump (17), turbo flow meter (19) and tap (18) are connected successively, tap (18) is connected with some insulation aqua storage tanks (21) by pipeline respectively, and the solenoid valve (20) of controlling this pipeline break-make is installed on each pipeline.
2. be applied to according to claim 1 the three-dimensional sampling system of remote control of water quality emergency monitoring, it is characterized in that, described control device (2) is comprised of the first central processing unit, the first wireless module, GPRS module, GPS module, RS232 interface circuit, stepper motor driver module, direct current generator driver module, relay switching circuit, flow signal treatment circuit and power module; Described the first wireless module is connected with the first central processing unit by the RS232 interface circuit with the GPRS module, and the flow signal treatment circuit connects the first central processing unit input end; The first central processing unit output terminal connects respectively direct current generator driver module, stepper motor driver module and relay switching circuit, the direct current generator driver module connects the DC speed-reducing of peristaltic pump (17), the stepper motor driver module connects stepper motor (6), relay switching circuit connected electromagnetic valve (20).
3. be applied to according to claim 1 the three-dimensional sampling system of remote control of water quality emergency monitoring, it is characterized in that, described hand-held remote control terminal (4) is comprised of the second central processing unit, the second wireless module, TFT touch display screen, RS232 interface circuit, SD card and power module; Described the second wireless module is connected with the second central processing unit by the RS232 interface circuit, and the TFT touch display screen all is connected with the second central processing unit with the SD card.
4. be applied to according to claim 1 the three-dimensional sampling system of remote control of water quality emergency monitoring, it is characterized in that, base station monitoring terminal (5) can realize by having the fixedly ordinary PC of outer net IP.
5. the method for sampling that application rights requires 1 described sampling system to carry out, is characterized in that, comprises the steps:
(1) some executive subsystems of sampling system are distributed in to position, waters to be measured, executive subsystem power on and initialization after, send corresponding extension set numbering by the GPRS module to the base station monitoring terminal; The first central processing unit of executive subsystem interrupts armed state in serial ports;
(2) base station monitoring terminal or hand-held remote control terminal send to executive subsystem by sample information (comprising sampling location, sampling depth, sampling quantity);
(3) after the GPRS module of executive subsystem or the first wireless module receive instruction, at first be input to the first central processing unit, whether the first central processing unit decision instruction is effective, if a upper instruction not yet is finished or instruction sequences is wrong, the first central processing unit returns to false alarm, by the GPRS module, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module; If instruction is effective, at first the first central processing unit removes the sampling apparatus state, stops all motor operations, and carries out the instruction parsing;
(4) first central processing units are exported concrete control signal according to resolved instruction and are carried out corresponding operating; Execution sequence is: (4.1) first central processing units are opened corresponding serial ports, read GPS acquisition of information sampled point longitude and latitude; (4.2) first central processing units output enabling signals are to the stepper motor driver module, and stepper motor driver module control step motor forward rotation is delivered to the sampling flexible pipe degree of depth of setting; (4.3) first central processing unit output Continuity signals, to relay switching circuit, are opened solenoid valve, the pipeline that conducting sample sequence number is corresponding; (4.4) first central processing unit output enabling signals, to the direct current generator driver module, drive the direct current generator of peristaltic pump to start to draw water; (4.5) the real-time signal piping flow signal of turbo flow meter is input to the flow signal treatment circuit, and signal is input to the first central processing unit after processing, and the first central processing unit is controlled the start and stop of peristaltic pump according to integrated flow, make sampling amount reach the setting requirement; (4.6) after primary sample finishes, the first central processing unit input control signal is to the stepper motor driver module, and stepper motor driver module control step motor rotates backward, and regains the sampling flexible pipe; Or another angle of stepper motor driver module control step motor forward rotation, the sampling flexible pipe is delivered to the degree of depth of another setting, continue to start sampling; (4.7), after end is carried out in present instruction, the first central processing unit of executive subsystem interrupts armed state in serial ports again;
(5) first central processing units are Zi receiving that instruction finishes, in whole process, every 2s, to beam back current running status and positional information to this instruction execution, is beamed back the base station monitoring terminal or is beamed back the hand-held remote control terminal by the first wireless module by the GPRS module.
CN201210444479.9A 2012-11-08 2012-11-08 Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring Active CN102937538B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210444479.9A CN102937538B (en) 2012-11-08 2012-11-08 Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210444479.9A CN102937538B (en) 2012-11-08 2012-11-08 Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring

Publications (2)

Publication Number Publication Date
CN102937538A true CN102937538A (en) 2013-02-20
CN102937538B CN102937538B (en) 2014-12-03

Family

ID=47696449

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210444479.9A Active CN102937538B (en) 2012-11-08 2012-11-08 Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring

Country Status (1)

Country Link
CN (1) CN102937538B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605308A (en) * 2013-11-20 2014-02-26 北京工商大学 River and lake water quality information remote monitoring main controller based on embedded type technology
CN105158431A (en) * 2015-09-22 2015-12-16 浙江大学 Unmanned pollutant tracing system and method
WO2016082218A1 (en) * 2014-11-28 2016-06-02 深圳市大疆创新科技有限公司 Unmanned aerial vehicle and water sample collection method thereof
CN108072545A (en) * 2016-11-17 2018-05-25 广州市德弛科技有限公司 External hanging type water body collecting device based on unmanned plane
CN108240919A (en) * 2016-12-26 2018-07-03 中国科学院宁波城市环境观测研究站 A kind of river water multidraw detecting system and method
CN108240920A (en) * 2016-12-26 2018-07-03 中国科学院宁波城市环境观测研究站 A kind of river water multidraw detecting and controlling system
CN112326342A (en) * 2020-09-22 2021-02-05 江苏瑞澜给排水成套设备有限公司 Sewage river is administered with offeing medicine sampling pontoon pump station
CN113607493A (en) * 2021-07-30 2021-11-05 广西壮族自治区辐射环境监督管理站 Online automatic sampling method and device for ocean buoy
WO2022021539A1 (en) * 2020-07-27 2022-02-03 安徽华速达电子科技有限公司 Intelligent control methods for solution microparticle signal collection, device and server
CN114323797A (en) * 2022-01-07 2022-04-12 北京市生态环境保护科学研究院 Intelligent positioning and depth-fixing sampling device, system and method for river and lake plankton
CN115452484A (en) * 2022-09-13 2022-12-09 中国科学院地理科学与资源研究所 Automatic collection system for high-concentration runoff sediment sample
CN116539372A (en) * 2023-07-04 2023-08-04 上海科泽智慧环境科技有限公司 Water quality monitoring device suitable for different environments and use method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536272B1 (en) * 1999-08-06 2003-03-25 University Of Miami Water monitoring, data collection, and transmission module
CN101434286A (en) * 2007-11-13 2009-05-20 沈阳航天新光集团有限公司 Unmanned controlled waterborne environment-protective inspect sampling boat
CN101561367A (en) * 2009-06-04 2009-10-21 北京师范大学 Floating automatic water sampler
US20100095789A1 (en) * 2007-09-14 2010-04-22 Lange Carl J Boat including automated water sampling device and method of using the same
CN101806811A (en) * 2010-05-10 2010-08-18 珠海云洲智能科技有限公司 Water quality sampling robot for full-automatic surface water
CN202084165U (en) * 2011-06-01 2011-12-21 王丹净 Remote water quality monitoring system
CN102306025A (en) * 2011-06-24 2012-01-04 石家庄环祥科技有限公司 Wireless remote-control automatic sampling monitoring ship

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536272B1 (en) * 1999-08-06 2003-03-25 University Of Miami Water monitoring, data collection, and transmission module
US20100095789A1 (en) * 2007-09-14 2010-04-22 Lange Carl J Boat including automated water sampling device and method of using the same
CN101434286A (en) * 2007-11-13 2009-05-20 沈阳航天新光集团有限公司 Unmanned controlled waterborne environment-protective inspect sampling boat
CN101561367A (en) * 2009-06-04 2009-10-21 北京师范大学 Floating automatic water sampler
CN101806811A (en) * 2010-05-10 2010-08-18 珠海云洲智能科技有限公司 Water quality sampling robot for full-automatic surface water
CN202084165U (en) * 2011-06-01 2011-12-21 王丹净 Remote water quality monitoring system
CN102306025A (en) * 2011-06-24 2012-01-04 石家庄环祥科技有限公司 Wireless remote-control automatic sampling monitoring ship

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张龙: "小型移动在线水质监测系统的研究", 《浙江大学硕士论文集》, 31 May 2012 (2012-05-31) *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103605308A (en) * 2013-11-20 2014-02-26 北京工商大学 River and lake water quality information remote monitoring main controller based on embedded type technology
WO2016082218A1 (en) * 2014-11-28 2016-06-02 深圳市大疆创新科技有限公司 Unmanned aerial vehicle and water sample collection method thereof
CN105158431A (en) * 2015-09-22 2015-12-16 浙江大学 Unmanned pollutant tracing system and method
CN108072545A (en) * 2016-11-17 2018-05-25 广州市德弛科技有限公司 External hanging type water body collecting device based on unmanned plane
CN108240919A (en) * 2016-12-26 2018-07-03 中国科学院宁波城市环境观测研究站 A kind of river water multidraw detecting system and method
CN108240920A (en) * 2016-12-26 2018-07-03 中国科学院宁波城市环境观测研究站 A kind of river water multidraw detecting and controlling system
WO2022021539A1 (en) * 2020-07-27 2022-02-03 安徽华速达电子科技有限公司 Intelligent control methods for solution microparticle signal collection, device and server
CN112326342A (en) * 2020-09-22 2021-02-05 江苏瑞澜给排水成套设备有限公司 Sewage river is administered with offeing medicine sampling pontoon pump station
CN112326342B (en) * 2020-09-22 2023-02-10 江苏瑞澜给排水成套设备有限公司 Sewage river is administered with offeing medicine sampling pontoon pump station
CN113607493A (en) * 2021-07-30 2021-11-05 广西壮族自治区辐射环境监督管理站 Online automatic sampling method and device for ocean buoy
CN113607493B (en) * 2021-07-30 2024-04-02 广西壮族自治区辐射环境监督管理站 Ocean buoy on-line automatic sampling method and device
CN114323797A (en) * 2022-01-07 2022-04-12 北京市生态环境保护科学研究院 Intelligent positioning and depth-fixing sampling device, system and method for river and lake plankton
CN115452484A (en) * 2022-09-13 2022-12-09 中国科学院地理科学与资源研究所 Automatic collection system for high-concentration runoff sediment sample
CN115452484B (en) * 2022-09-13 2023-09-12 中国科学院地理科学与资源研究所 Automatic collection system for high-concentration runoff sediment sample
CN116539372A (en) * 2023-07-04 2023-08-04 上海科泽智慧环境科技有限公司 Water quality monitoring device suitable for different environments and use method
CN116539372B (en) * 2023-07-04 2023-09-01 上海科泽智慧环境科技有限公司 Water quality monitoring device suitable for different environments and use method

Also Published As

Publication number Publication date
CN102937538B (en) 2014-12-03

Similar Documents

Publication Publication Date Title
CN102937538B (en) Remote-controlled three-dimensional sampling system and method applied to water quality emergency monitoring
CN101386340B (en) Underwater robot for ship hull detection
CN107192583A (en) A kind of intelligent water quality sampling method of water quality sampling unmanned plane
CN104615141A (en) Control system of small autonomous underwater vehicle
CN107310738A (en) A kind of UAS of the intellectuality based on water quality sampling
CN108692981A (en) Water quality monitoring bar and its monitoring system
CN203588074U (en) Control system of small-scale autonomous underwater robot
CN210691100U (en) Intelligent pump room comprehensive monitoring cabinet
CN204375148U (en) Boat-carrying ocean water quality online auto monitoring system
CN105702003A (en) Portable remote terminal for rural drinking water safety monitoring and method
CN203929800U (en) ADCP flow velocity telemonitoring system
CN206431124U (en) Water quality intellectual monitoring transmitter based on Internet of Things
CN203502401U (en) Remote interactive water quality measurement system
CN111551213A (en) Automatic monitoring and sampling system for urban river water environment and working method thereof
CN103063248A (en) Hydropower station grouting centralized intelligent monitoring system
CN208297489U (en) One kind being based on LoRa detector
CN107014642A (en) A kind of water sampling system and method
CN109587273A (en) A kind of water quality monitoring system under the framework based on B/S
CN107998579A (en) Fire water-supply and fire-extinguishing apparatus monitoring system
CN203232314U (en) Solar remote control system for rural people and livestock drinking water project
CN106705751B (en) A kind of simulation system and method for portable fire control/tank fire system
CN203259526U (en) Ocean parameter measurement system
CN201633898U (en) Embedded type marine depth sounder display system
CN207886561U (en) Fire water-supply and fire-extinguishing apparatus monitoring system
CN103235097A (en) Oceanic parameter measurement system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant