CN102928377B - 一种明胶及其制品中六价铬的测定方法 - Google Patents

一种明胶及其制品中六价铬的测定方法 Download PDF

Info

Publication number
CN102928377B
CN102928377B CN201210388880.5A CN201210388880A CN102928377B CN 102928377 B CN102928377 B CN 102928377B CN 201210388880 A CN201210388880 A CN 201210388880A CN 102928377 B CN102928377 B CN 102928377B
Authority
CN
China
Prior art keywords
chromic
gelatin
goods
assay method
clears
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210388880.5A
Other languages
English (en)
Other versions
CN102928377A (zh
Inventor
宋薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PONY TESTING INTERNATIONAL GROUP SHANGHAI CO., LTD.
Original Assignee
SHANGHAI PONY TESTING TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI PONY TESTING TECHNOLOGY Co Ltd filed Critical SHANGHAI PONY TESTING TECHNOLOGY Co Ltd
Priority to CN201210388880.5A priority Critical patent/CN102928377B/zh
Publication of CN102928377A publication Critical patent/CN102928377A/zh
Application granted granted Critical
Publication of CN102928377B publication Critical patent/CN102928377B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

本发明公开了一种明胶及其制品中六价铬的测定方法。包括下列步骤:试样中加入MgCl2、磷酸盐缓冲液和Na2CO3/NaOH溶液,置于75-85℃水浴振荡消解0.5-1.5h;冷却至室温,用0.45μm滤膜抽滤;取滤液于电热板上进行酸消解;消解液稀释、定容后,用原子吸收分光光度法测定六价铬含量。本方法采用酸消解除去基质干扰,专属性强、灵敏度高、结果准确。

Description

一种明胶及其制品中六价铬的测定方法
技术领域
本发明涉及一种六价铬的测定方法,特别是涉及一种明胶及其制品中六价铬的测定方法。
背景技术
铬的毒性与其存在的价态有关。六价铬,是一种强致癌物质,比三价铬毒性高100倍,而且易被人体吸收并在体内蓄积,对人的生存环境和身体健康有着显著的危害。由于市场上发现某些不法明胶生产厂家违法使用皮革下脚料“蓝矾皮”作为原料生产的工业明胶,冒充食用明胶或药用明胶。工业明胶常含有高含量的铬,其中会含有毒性大的六价铬,引起社会的密切关注。
六价铬的测定方法有很多,如:分光光度法、离子色谱法、原子吸收光谱法、毛细管电泳、荧光分析法、化学发光法、电化学分析法等。上述方法常用于来自于制革、冶矿冶金、电镀、印染行业等样品中六价铬的测定,文献中未发现有测定明胶及其制品中六价铬的方法。SN/T2210-2008保健食品中六价铬的测定离子色谱-电感耦合等离子体质谱法采用Na2CO3/NaOH溶液同时加入MgCl2和磷酸盐缓冲液提取六价铬,提取液离心后,直接用离子色谱-电感耦合等离子体质谱测定。方法所用仪器属联用技术且电感耦合等离子体质谱仪比较昂贵,一般实验室难以普及。EPA3060A六价铬碱式消解,采用Na2CO3/NaOH溶液同时加入MgCl2和磷酸盐缓冲液提取六价铬,提取液调节pH后,采用紫外分光光度法或离子色谱法测定,方法适用于受污土壤或污泥等废弃物。本发明针对明胶及其制品,碱式消解后,明胶中的蛋白未被消解,有机物质干扰严重,容易堵塞原子吸收光谱仪燃烧器的管路。
发明内容
本发明一种明胶及其制品中六价铬的测定方法,包括以下步骤:
1.实验操作
称取试样2.0-5.0g于250mL的玻璃三角瓶中,加入400mgMgCl2、0.5mLpH=7磷酸盐缓冲液,加入消解溶液(0.28MNa2CO3/0.5MNaOH)25或50mL。用微波保鲜膜封口,置于75-85℃水浴振荡消解0.5-1.5h。消解完毕,冷却至室温,用0.45μm滤膜抽滤,取10mL滤液于50mL小烧杯中,加入10mL无机酸(无机酸为硝酸、盐酸、高氯酸、或其混合酸,优选硝酸),盖上表面皿于电热板上酸消解。消解至澄清后,浓缩至2mL左右,冷却至室温,转移至10mL容量瓶中,并用蒸馏水定容,摇匀,待测。
2.光谱测定
Cr(VI)标准储备液:准确称取0.2829g在105℃-110℃烘干的重铬酸钾标准品,用蒸馏水溶解并稀释至100mL,此溶液Cr(VI)浓度为1mg/mL。
Cr(VI)标准工作液:取5mL铬(VI)标准储备液,用蒸馏水稀释至100mL,此溶液Cr(VI)浓度为50μg/mL。
取上述工作液,然后进一步用水稀释为具有浓度梯度的标准使用液;
利用原子吸收分光光度仪对试样进行检测,外标法定量。
本发明的技术效果在于:
①建立了原子吸收分光光度法检测明胶及其制品中的六价铬的方法。该方法仪器较普遍、干扰小、专属性强、成本低、易普及推广。
②前处理方法简单有效。采用碱性消解液提取明胶及其制品,在碱性环境中Cr(III)和Cr(VI)氧化还原性都被降到最低,含有MgCl2的磷酸盐缓冲溶液可以抑制铬的氧化作用,在此碱性环境下三价铬被提取出来会以沉淀的形式被过滤除去,从而排除三价铬的干扰。
③该方法合理可行,结果准确。碱消解除去三价铬后再采用酸消解样品中的有机物,去除基质干扰,具有较好的净化效果,上机检测灵敏度高。
具体实施方式
下面结合具体实施例对本发明作进一步详细说明,但本发明并不局限于具体实施例。
实施例1
1.1样品测定
精确称取某红色明胶空心胶囊5.00g于250mL的玻璃三角瓶中,加入400mgMgCl2、0.5mL磷酸盐缓冲液,加入消解溶液至50mL。用微波保鲜膜封口,置于80℃水浴振荡消解1h。消解完毕,冷却至室温,用0.45μm滤膜抽滤,取10mL滤液置于50mL小烧杯中,加入10mL硝酸,盖上表面皿于电热板上酸消解。消解至澄清后,浓缩至2mL左右,冷却至室温,转移至10mL容量瓶中,并用蒸馏水定容,摇匀,待测。
1.2原子吸收分光光度法测定
按照光谱条件测定样品和标准工作溶液,用标准曲线对样品溶液浓度进行校正,外标法定量。光谱条件为:
原子吸收分光光度计(火焰法),铬空心阴极灯;
测定波长:357.9nm;
狭缝宽度:0.2nm;
灯电流:3.00mA
1.3线性关系
将标准工作液用12%硝酸逐级稀释,制备0.1,0.2,0.5,1.0,2.0,5.0μg/mL不同浓度的系列混合标准溶液,按照上述光谱条件由低到高浓度顺序测定标准溶液的吸光度。用吸光度与相对应的铬的浓度(μg/mL)绘制标准曲线,回归方程为Y=0.0585X+0.0055,相关系数为0.9998。
1.4空白试验
在不加试样条件下,其它步骤均同1.1,在测试样品同时进行空白试验。
1.5实际样品加标回收率
采用上述红色明胶空心胶囊阴性样品进行加标测定其回收率,加标量分别为25μg和100μg,每个浓度测定3个平行样品,按照步骤(1.1)进行提取、测定。平均回收率分别为85.6%和95.7%,相对标准偏差分别为5.7%和10.0%。
实施例2
按照实施例1所述的实验步骤,对某明胶阴性样品进行加标测定三价铬对六价铬的影响。分别称取样品5.0g各6份,其中三份添加Cr(VI)100μg,另外三份添加Cr(VI)和Cr(III)各100μg,按照步骤1.1进行提取、测定。只添加Cr(VI)的样品的平均回收率为94.6%,添加Cr(VI)和Cr(III)的样品的平均回收率为92.6%,相对标准偏差分别为9.9%和9.8%。两者回收率和相对标准偏差相差都很小。因此,三价铬对六价铬的回收率没有明显影响。
上述实施例仅供说明本发明之用,而并非是对本发明的限制,有关技术领域的普通技术人员,在不脱离本发明范围的情况下,还可以作出各种变化和变型,因此所有等同的技术方案也应属于本发明的范畴,本发明的专利保护范围应由各权利要求限定。

Claims (2)

1.一种明胶及其制品中六价铬的测定方法,包括下列步骤:
(1)试样加入Na2CO3/NaOH溶液,同时加入MgCl2和磷酸盐缓冲液,水浴振荡消解;
(2)碱消解完毕,冷却后用滤膜抽滤除去三价铬沉淀;
(3)取滤液加无机酸于电热板上进行湿法酸消解;
(4)消解液用蒸馏水稀释、定容,用原子吸收分光光度法测定六价铬含量。
2.根据权利要求1所述的一种明胶及其制品中六价铬的测定方法,其特征在于,所述的水浴振荡温度为75-85℃。
CN201210388880.5A 2012-10-15 2012-10-15 一种明胶及其制品中六价铬的测定方法 Active CN102928377B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210388880.5A CN102928377B (zh) 2012-10-15 2012-10-15 一种明胶及其制品中六价铬的测定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210388880.5A CN102928377B (zh) 2012-10-15 2012-10-15 一种明胶及其制品中六价铬的测定方法

Publications (2)

Publication Number Publication Date
CN102928377A CN102928377A (zh) 2013-02-13
CN102928377B true CN102928377B (zh) 2016-05-11

Family

ID=47643229

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210388880.5A Active CN102928377B (zh) 2012-10-15 2012-10-15 一种明胶及其制品中六价铬的测定方法

Country Status (1)

Country Link
CN (1) CN102928377B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103852434A (zh) * 2014-03-26 2014-06-11 昆山洛丹伦生物科技有限公司 聚合物及电子元器件中六价铬含量的定量分析方法
CN105021582B (zh) * 2015-07-16 2017-07-18 广西大学 用固相萃取‑原子荧光光谱法测定大米中的痕量砷的方法
CN109238997A (zh) * 2018-10-15 2019-01-18 北京泛博清洁技术研究院有限公司 一种铬鞣废液中六价铬含量的测定方法
CN111077090B (zh) * 2019-12-10 2020-09-11 中国环境科学研究院 一种含有大量还原剂的土壤中Cr6+的检测方法
CN111077094A (zh) * 2020-01-15 2020-04-28 南大盐城环境检测科技有限公司 一种土壤中六价铬的检测方法
CN113533311A (zh) * 2020-04-16 2021-10-22 内蒙古第三地质矿产勘查开发有限责任公司 一种土壤或固体废弃物中六价铬含量的测定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729546C1 (de) * 1997-07-10 1998-12-10 Karlsruhe Forschzent Verfahren zur Messung von Chrom in Gerbereilösungen und Berechnung der Chromkonzentration im Leder, sowie die Verwendung des Verfahrens
US20070087439A1 (en) * 2005-10-13 2007-04-19 Michael Riess Method of measuring hexavalent chromium in electronic components and assemblies
CN100447553C (zh) * 2005-11-03 2008-12-31 牛增元 染色皮革及其制品中六价铬的检测方法
CN100494995C (zh) * 2006-01-20 2009-06-03 四川大学 皮革中Cr6+的自动分析方法
CN102590183B (zh) * 2012-03-06 2014-01-08 浙江出入境检验检疫局检验检疫技术中心 微波消解-icp-aes法定量筛选橡胶和塑料制品中高关注物质的检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
湿法消解测定食用明胶中的微量铬;贺峥等;《分析试验室》;20090501;第28卷(第05期);第97-100页,尤其是第97页右栏第1段,右栏1.2.1至第98页左栏2.1 *

Also Published As

Publication number Publication date
CN102928377A (zh) 2013-02-13

Similar Documents

Publication Publication Date Title
CN102928377B (zh) 一种明胶及其制品中六价铬的测定方法
Zounr et al. A highly selective and sensitive ultrasonic assisted dispersive liquid phase microextraction based on deep eutectic solvent for determination of cadmium in food and water samples prior to electrothermal atomic absorption spectrometry
Matos et al. Speciation of chromium in river water samples contaminated with leather effluents by flame atomic absorption spectrometry after separation/preconcentration by cloud point extraction
Galbeiro et al. A green and efficient procedure for the preconcentration and determination of cadmium, nickel and zinc from freshwater, hemodialysis solutions and tuna fish samples by cloud point extraction and flame atomic absorption spectrometry
Krishna et al. Preconcentrative separation of chromium (VI) species from chromium (III) by coprecipitation of its ethyl xanthate complex onto naphthalene
Hamza et al. Part 1. Spectrophotometric determination of trace mercury (II) in dental-unit wastewater and fertilizer samples using the novel reagent 6-hydroxy-3-(2-oxoindolin-3-ylideneamino)-2-thioxo-2H-1, 3-thiazin-4 (3H)-one and the dual-wavelength β-correction spectrophotometry
Hosseini et al. Cr (III)/Cr (VI) speciation determination of chromium in water samples by luminescence quenching of quercetin
Peng et al. A hybrid coumarin–thiazole fluorescent sensor for selective detection of bisulfite anions in vivo and in real samples
Karak et al. 9-Acridone-4-carboxylic acid as an efficient Cr (III) fluorescent sensor: Trace level detection, estimation and speciation studies
Zhou et al. A new BODIPY-based fluorescent “turn-on” probe for highly selective and rapid detection of mercury ions
Gupta et al. Azoaniline-based rapid and selective dual sensor for copper and fluoride ions with two distinct output modes of detection
Hashemi et al. Ultrasound-assisted cloud point extraction for speciation and indirect spectrophotometric determination of chromium (III) and (VI) in water samples
Pandurangappa et al. Micellar mediated trace level mercury quantification through the rhodamine B hydrazide spirolactam ring opening process
Santarossa et al. Aluminium traces determination in biological and water samples using a novel extraction scheme combined with molecular fluorescence
JP2008157865A (ja) 六価クロムの分析方法
Khan et al. A simple separation/preconcentration method for the determination of aluminum in drinking water and biological sample
Chen et al. Miniaturized array gas membrane separation strategy for rapid analysis of complex samples by surface-enhanced Raman scattering
Shang et al. Silver nanoparticles capped with 8-hydroxyquinoline-5-sulfonate for the determination of trace aluminum in water samples and for intracellular fluorescence imaging
Li et al. Extraction spectrophotometric determination of aluminum in dialysis concentrates with 3, 5-ditertbutylsalicylfluorone and ionic liquid 1-butyl-3-trimethylsilylimidazolium hexafluorophosphate
Pourreza et al. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles
Cheng et al. A direct and rapid method for determination of total iron in environmental samples and hydrometallurgy using UV–Vis spectrophotometry
Alzahrani et al. Spectrophotometric determination of Mercury (II) ions in laboratory and Zamzam water using bis Schiff base ligand based on 1, 2, 4-Triazole-3, 5-diamine and o-Vaniline
Al-Saidi et al. Determination of bismuth in different samples by dispersive liquid–liquid microextraction coupled with microvolume β-correction spectrophotometry
Özyol et al. A new turn-on fluorimetric method for the rapid speciation of Cr (III)/Cr (VI) species in tea samples with rhodamine-based fluorescent reagent
Gitet et al. Speciation of chromium in soils near sheba leather industry, wukro Ethiopia

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
DD01 Delivery of document by public notice

Addressee: Nong Siqi

Document name: Notification that Application Deemed not to be Proposed

C14 Grant of patent or utility model
GR01 Patent grant
CP03 Change of name, title or address

Address after: 201613 2nd Floor, Building 7, 99 Wenxiang East Road, Songjiang District, Shanghai

Patentee after: PONY TESTING INTERNATIONAL GROUP SHANGHAI CO., LTD.

Address before: 2004-233 4th Floor, Building 35, 680 Guiping Road, Xuhui District, Shanghai

Patentee before: Shanghai Pony Testing Technology Co., Ltd.

CP03 Change of name, title or address