CN102925851B - Two-section gas nitridation method for surfaces of aluminum and aluminum alloy - Google Patents

Two-section gas nitridation method for surfaces of aluminum and aluminum alloy Download PDF

Info

Publication number
CN102925851B
CN102925851B CN201210423467.8A CN201210423467A CN102925851B CN 102925851 B CN102925851 B CN 102925851B CN 201210423467 A CN201210423467 A CN 201210423467A CN 102925851 B CN102925851 B CN 102925851B
Authority
CN
China
Prior art keywords
zinc
ammonia
time
furnace
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201210423467.8A
Other languages
Chinese (zh)
Other versions
CN102925851A (en
Inventor
纪嘉明
卢章平
吴晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201210423467.8A priority Critical patent/CN102925851B/en
Publication of CN102925851A publication Critical patent/CN102925851A/en
Application granted granted Critical
Publication of CN102925851B publication Critical patent/CN102925851B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

The invention relates to a two-section gas nitridation method for the surfaces of aluminum and aluminum alloy. The method comprises a surface oxidation film removing step and a surface nitridation treatment step. The step 1 comprises the following steps of: pre-treating; primarily galvanizing zinc; washing by water; removing zinc; secondarily galvanizing zinc; and drying after water washing. The step 2 comprises the following steps of: exhausting in a furnace, wherein the ammonia resolution ratio is less than 10%; primarily heating to 570-590 DEG C, wherein the ammonia resolution ratio is 15-25%; carrying out one-section nitridation, wherein the furnace temperature is 580-640DEG C, and the ammonia resolution ratio is kept at 15-25%; secondarily heating to 620-640 DEG C, wherein the ammonia resolution ratio is 40-55%; carrying out two-section nitridation, wherein the temperature is 620-640DEG C, and the ammonia resolution ratio is 40-55%; and denitriding, wherein the furnace temperature is 580-640DEG C, and the ammonia resolution ratio is controlled at 70-80%. The two-section gas nitridation method has the advantages that compact oxidation films on the surfaces of aluminum and the aluminum alloy can be effectively eliminated, the nitrogen atom can be preferably infiltrated, the nitridation treatment can be carried out by a common gas nitridation furnace, and the two-section gas nitridation method is low in production cost, simple and easy to operate, wide in adaptability, and good in infiltration layer quality.

Description

The two sections of gas nitriding methods in Al and Alalloy surface
Technical field
The present invention relates to a kind of thermal treatment process of aluminium alloy, particularly relate to a kind of two sections, surface gas nitriding method of Al and Alalloy.
Background technology
Al and Alalloy is very extensive in the application of engineering structure and manufacture particularly automobile industry, because it is high that they have specific tenacity, proportion is little, under the prerequisite not reducing safety and stability, can alleviate the weight of engineering structure and machine, Al and Alalloy also has good machinability simultaneously.But along with the development of industrial technology, the hardness that Al and Alalloy is lower, lower wear resistance and solidity to corrosion make the requirement of the harsh service conditions such as its high between not competent component relative movement, high-quality stream and high corrosion.
Al and Alalloy surface strengthening means conventional at present have: anodic oxidation (hard anodizing, differential arc oxidation), laser and electron beam alloyage, ion sputtering, the methods such as plating hard chromium on surface and some Combined Processing.But the oxide film that anodic oxidation (hard anodizing) is formed easily produces thermal crack, reduces anticorrosion ability, between Al and Alalloy zone of oxidation, difference of hardness is comparatively large simultaneously, has ready conditions, there will be zone of oxidation obscission in heavily stressed load operation.And other enhancement methods are all costly, inadaptable batch production.
In recent years by carrying out nitriding treatment to Al and Alalloy, forming high hardness aluminium nitride layer on aluminium surface and improving the interest that the hardness of Aluminum-aluminum alloy and wear resistance have more and more caused people.
But because the chemical property of aluminium is very active, fine aluminium and aluminum alloy surface be the good natural oxide film of existence and stability all.Environmentally middle moisture content, the thickness of oxide film is the thickest reaches about 0.1 μm, seriously hinder nitrogen-atoms to the diffusion in aluminum substrate, this is also the difficult point that Al and Alalloy realizes surface carburization, so it is generally acknowledged that traditional nitridation process is difficult to realize nitriding on Al and Alalloy surface.
Main research at present and the Al and Alalloy nitridation process adopted are glow discharge plasma nitriding.
Conventional direct current glow discharge plasma nitriding process generally adopts bipolar DC system, workpiece is negative electrode, vacuum vessel is anode, volts DS is added between cathode and anode, gas glow discharge is made to produce plasma body, to cathode-workpiece accelerated motion under positive ion biased effect outside, collide with workpiece surface and infiltrate surface, completing the process of nitriding.
But this method usually needs to carry out pre-sputtering before nitriding to eliminate oxide film.Simultaneous temperature is higher, and what have even reaches 650 DEG C, cause aluminium alloy local melting and due to the resistance of AlN very high, when common direct current glow discharge nitriding, with thickening of AlN layer, it is sustain discharge process, must processing parameter be changed, thus add nitriding difficulty etc.
In order to obtain better nitriding result, a lot of research worker improves technique and device, successively propose and strengthen plasma ion nitriding, laser induced plasma nitriding, ECR(electron cyclotron resonance) microwave plasma nitriding, radio frequency (high frequency) plasma nitridation etc., but the common ground of the nitriding process of above-mentioned aluminium and aluminium alloy thereof is: equipment requirements and production cost is high, the difficult control of complicated operation, the nitride layer obtaining desired homogeneous is difficult to for large size and baroque workpiece.
Summary of the invention
The object of the invention is to the deficiency overcoming prior art, provide a kind of nitride layer uniform, controllable, cost is low, and Al and Alalloy nitriding method simple for process.The two sections of gas nitriding method concrete steps in described Al and Alalloy surface are as follows:
1) surface film oxide is removed
A. pre-treatment clean Al and Alalloy workpiece;
B. first time soaks zinc, under room temperature environment, soak zinc, time 50 ~ 70s by carrying out first time in the described workpiece immersion zinc dipping solution of cleaning;
C. wash, with the described workpiece of water cleaning after first time leaching zinc;
D. move back zinc, the described workpiece after washing is at room temperature immersed nitric acid HNO 3zinc is moved back in the aqueous solution;
E. second time soaks zinc, under room temperature environment, soak zinc, time 25 ~ 35s by carrying out second time in the described workpiece immersion zinc dipping solution through moving back zinc;
F. washing dries up, and cleans the described workpiece after second time leaching zinc and dry up or dry with water;
2) surfaces nitrided
A. be vented: the described workpiece through above-mentioned removal surface film oxide is placed in after in nitriding furnace, starts to pass into ammonia to get rid of furnace air, until ammonia dissociation rate is less than 10%;
B. first time heats up: make furnace temperature rise to 570 ~ 590 DEG C, in temperature-rise period, reduce ammonia flow gradually, until ammonia dissociation rate reaches 30 ~ 45%;
C. first paragraph nitriding: keep furnace temperature 570 ~ 590 DEG C, 5 ~ 20 hours, this process keeps ammonia dissociation rate 15 ~ 25%;
D. second time heats up, and after single-stage nitriding completes, makes furnace temperature rise to 620 ~ 640 DEG C, reduces ammonia flow simultaneously, make the ammonia dissociation rate at this temperature reach 40 ~ 55%;
E. second segment nitriding: keep furnace temperature 620 ~ 640 DEG C, 5 ~ 30 hours, this process keeps ammonia dissociation rate 40 ~ 55%;
F. move back nitrogen, keep furnace temperature 620 ~ 640 DEG C, reduce ammonia flow, cause ammonia dissociation rate to 70 ~ 80%, this state keeps 1 ~ 2 hour.
Described zinc dipping solution is the proportion relation gained solution by 1 liter of water following masses compound:
Zinc oxide ZnO 10 ~ 30 g,
Sodium hydroxide NaOH 50 ~ 70g,
Seignette salt KNaC 4h 4o 650 ~ 90g.
Zinc process of moving back nitric acid HNO used in described removal surface film oxide step 3the aqueous solution is water and the nitric acid HNO of 1: 0.8 ~ 1: 1.1 volumetric ratios 3mixing solutions, the described workpiece time of immersing in this solution is 6 ~ 12s.
Pre-treatment in described removal surface film oxide step cleaning workpiece surface comprise carry out successively electrochemical deoiling, hot water wash, cold wash, acid etch and washing step by step.
In described surfaces nitrided steps of exhausting, be placed in after in nitriding furnace at described workpiece, stove heated up, starts to pass into ammonia when furnace temperature rises to 300 DEG C.
Above-mentioned technical solution of the present invention produces following beneficial effect:
1) after the process of leaching zinc, can effectively eliminate Al and Alalloy surface compact oxide film and stop it to be formed once again, being conducive to the infiltration of nitrogen-atoms;
2) gas carbruizing furance adopting ordinary gas nitridation stove maybe can carry out Nitrizing Treatment just can realize Al and Alalloy nitriding, and nitriding equipment requirements is not high, and production cost is low, and operation is simple;
3) wide adaptability, can process the workpiece of different shape and size;
4) quality layer is good, and workpiece all surface can obtain the uniform aluminum nitride compound layer of thickness.
Embodiment
Below in conjunction with specific embodiment, the invention will be further described.
Following embodiment is all carried out at RQ3-35-9 gas carbruizing furance.
Embodiment 1
Workpiece material is 1050 fine aluminiums, and its chemical composition is aluminium Al 99.50%, Si0.25%, Cu0.05%, Mg0.05%, separately has minute quantity Zn, Mn etc.First the process of removal surface film oxide is carried out to this fine aluminium workpiece, is specifically completed by following step:
1) pre-treatment, carries out electrochemical deoiling, hot water wash, cold wash, acid etch and washing successively to fine aluminium workpiece surface, and wherein electrochemical deoiling, acid etch process according to existing general industry surface of pure aluminum treatment process, repeat no more.
2) first time soaks zinc, first prepares zinc dipping solution, prepares by the proportion relation of 1 liter of water following masses compound:
Zinc oxide ZnO 10 g,
Sodium hydroxide NaOH 50g,
Seignette salt KNaC 4h 4o 650g,
Under room temperature environment, the above-mentioned workpiece through cleaning immerses and carries out first time in the zinc dipping solution prepared and soak zinc, immersion time 50s by (5 ~ 35 DEG C, following identical).
3) wash, with the described workpiece of water cleaning after first time leaching zinc.
4) move back zinc, first prepare dezincifying solution, by water and nitric acid HNO 3volumetric ratio 1:1 prepare, immersed in dezincifying solution by above-mentioned workpiece after washing, carry out moving back zinc, temperature is room temperature, and the immersion time is 6s.
5) second time soaks zinc, under room temperature environment, soak zinc, time 25s by carrying out second time in the workpiece immersion zinc dipping solution through moving back zinc; Second time zinc dipping solution is identical with first time zinc dipping solution, and the present embodiment shares same groove solution.
6) washing dries up, and cleans the workpiece after second time leaching zinc and dry up with water.
Make the zone of oxidation of workpiece surface densification be removed after above-mentioned steps completes, obtain the very thin zinc tectum of one deck on aluminum metal surface, produce to prevent the oxide film of aluminium.Then nitriding treatment is carried out to workpiece surface, is specifically completed by following step:
1) be vented: first open bell, bell is built by being placed in after in described nitriding furnace through the workpiece of above-mentioned removal surface film oxide, stove is heated up, start to pass into ammonia when furnace temperature rises to 300 DEG C, be used for getting rid of oxygen in stove by the oxygen in ammonia and furnace air, furnace air is got rid of situation and is obtained by monitoring ammonia dissociation rate, and the fewer ammonia dissociation rate of furnace air is less, otherwise ammonia dissociation rate is larger.The ammonia dissociation rate of the present embodiment controls below 10%, controls to realize by controlling ammonia flow to ammonia dissociation rate.
2) first time heats up: make furnace temperature rise to 570 DEG C, reduce ammonia flow gradually, control ammonia dissociation rate 15% in temperature-rise period.
3) first paragraph nitriding: keep furnace temperature 570 DEG C, 5 hours, this process keeps ammonia dissociation rate 15%.
4) second time heats up: after single-stage nitriding completes, make furnace temperature rise to 620 DEG C, reduce ammonia flow simultaneously, make the ammonia dissociation rate at this temperature reach 40%;
5) second segment nitriding: keep furnace temperature 620 DEG C, 5 hours, this process keeps ammonia dissociation rate 40%;
6) move back nitrogen, keep furnace temperature 620 DEG C, reduce ammonia flow, cause ammonia dissociation rate to 70%, this state keeps 1 hour.
Above-mentioned steps makes the surfaces nitrided process of workpiece complete, turn off furnace power, make workpiece furnace cooling, furnace pressure should be kept in the process to be malleation, when furnace reduces to 150 DEG C, open fire door and take out workpiece, recording depth of penetration is 8 μm, and workpiece surface microhardness is 64.5HV0.1.
Embodiment 2
Workpiece material is 5050 aluminium alloys, and its chemical composition and content (wt%) are: Si0.4, Fe0.7, Cu0.2, Mn1.1, Mg1.4, Zn0.25, other 0.15, surplus is aluminium.First the process of removal surface film oxide is carried out to this Al alloy parts, is specifically completed by following step:
1) pre-treatment, carries out electrochemical deoiling, hot water wash, cold wash, acid etch and washing successively to Al alloy parts surface, and wherein electrochemical deoiling, acid etch process according to existing general industry surface of pure aluminum treatment process, repeat no more.
2) first time soaks zinc, first prepares zinc dipping solution, prepares by the proportion relation of 1 liter of water following masses compound:
Zinc oxide ZnO 20 g,
Sodium hydroxide NaOH 60g,
Seignette salt KNaC 4h 4o 670g,
Under room temperature environment, the above-mentioned workpiece through cleaning is immersed and carry out first time in the zinc dipping solution prepared and soak zinc, immersion time 60s.
3) wash, with the described workpiece of water cleaning after first time leaching zinc.
4) move back zinc, first prepare dezincifying solution, by water and nitric acid HNO 3volumetric ratio 1:1.1 prepare, immersed in dezincifying solution by above-mentioned workpiece after washing, carry out moving back zinc, temperature is room temperature, and the immersion time is 10s.
5) second time soaks zinc, under room temperature environment, soak zinc, time 30s by carrying out second time in the workpiece immersion zinc dipping solution through moving back zinc; Second time zinc dipping solution is identical with first time zinc dipping solution, and the present embodiment shares same groove solution.
6) washing dries up, and cleans the workpiece after second time leaching zinc and dry with water.
Make the zone of oxidation of workpiece surface densification be removed after above-mentioned steps completes, obtain the very thin zinc tectum of one deck on aluminum metal surface, produce to prevent the oxide film of aluminium.Then surface is carried out to workpiece and carries out nitriding treatment, specifically completed by following step:
1) be vented: first open bell, bell is built by being placed in after in described nitriding furnace through the workpiece of above-mentioned removal surface film oxide, stove is heated up, start to pass into ammonia when furnace temperature rises to 300 DEG C, be used for getting rid of oxygen in stove by the oxygen in ammonia and furnace air, furnace air is got rid of situation and is obtained by monitoring ammonia dissociation rate, and the fewer ammonia dissociation rate of furnace air is less, otherwise ammonia dissociation rate is larger.The ammonia dissociation rate of the present embodiment controls below 10%, controls to realize by controlling ammonia flow to ammonia dissociation rate.
2) first time heats up: make furnace temperature rise to 575 DEG C, reduce ammonia flow gradually, control ammonia dissociation rate 20% in temperature-rise period.
3) first paragraph nitriding: keep furnace temperature 575 DEG C, 10 hours, this process keeps ammonia dissociation rate 20%.
4) second time heats up: after single-stage nitriding completes, make furnace temperature rise to 630 DEG C, reduce ammonia flow simultaneously, make the ammonia dissociation rate at this temperature reach 50%;
5) second segment nitriding: keep furnace temperature 630 DEG C, 15 hours, this process keeps ammonia dissociation rate 50%;
6) move back nitrogen, keep furnace temperature 630 DEG C, reduce ammonia flow, cause ammonia dissociation rate to 75%, this state keeps 1.5 hours.
Above-mentioned steps makes the surfaces nitrided process of workpiece complete, and turns off furnace power, workpiece furnace cooling, furnace pressure should be kept in the process to be malleation, when furnace reduces to 170 DEG C, to open fire door and take out workpiece, recording depth of penetration is 25 μm, and workpiece surface microhardness is 238HV0.1.
Embodiment 3
Workpiece material is 2A12 aluminium alloy, and its chemical composition and content (wt%) are: Cu4.3, Mg1.6, Mn0.6, Si0.4, surplus are aluminium.First the process of removal surface film oxide is carried out to this Al alloy parts, is specifically completed by following step:
1) pre-treatment, carries out electrochemical deoiling, hot water wash, cold wash, acid etch and washing successively to Al alloy parts surface, and wherein electrochemical deoiling, acid etch process according to existing general industry surface of pure aluminum treatment process, repeat no more.
2) first time soaks zinc, first prepares zinc dipping solution, prepares by the proportion relation of 1 liter of water following masses compound:
Zinc oxide ZnO 30 g,
Sodium hydroxide NaOH 70g,
Seignette salt KNaC 4h 4o 690g,
Under room temperature environment, the above-mentioned workpiece through cleaning is immersed and carry out first time in the zinc dipping solution prepared and soak zinc, immersion time 70s.
3) wash, with the described workpiece of water cleaning after first time leaching zinc.
4) move back zinc, first prepare dezincifying solution, by water and nitric acid HNO 3volumetric ratio 1:0.8 prepare, immersed in dezincifying solution by above-mentioned workpiece after washing, carry out moving back zinc, temperature is room temperature, and the immersion time is 12s.
5) second time soaks zinc, under room temperature environment, soak zinc, time 35s by carrying out second time in the workpiece immersion zinc dipping solution through moving back zinc; Second time zinc dipping solution is identical with first time zinc dipping solution, and the present embodiment shares same groove solution.
6) washing dries up, and cleans the workpiece after second time leaching zinc and dry up with water.
Make the zone of oxidation of workpiece surface densification be removed after above-mentioned steps completes, obtain the very thin zinc tectum of one deck on aluminum metal surface, produce to prevent the oxide film of aluminium.Then surface is carried out to workpiece and carries out nitriding treatment, specifically completed by following step:
1) be vented: first open bell, bell is built by being placed in after in described nitriding furnace through the workpiece of above-mentioned removal surface film oxide, stove is heated up, start to pass into ammonia when furnace temperature rises to 300 DEG C, be used for getting rid of oxygen in stove by the oxygen in ammonia and furnace air, furnace air is got rid of situation and is obtained by monitoring ammonia dissociation rate, and the fewer ammonia dissociation rate of furnace air is less, otherwise ammonia dissociation rate is larger.The ammonia dissociation rate of the present embodiment controls below 10%, controls to realize by controlling ammonia flow to ammonia dissociation rate.
2) first time heats up: make furnace temperature rise to 590 DEG C, reduce ammonia flow gradually, control ammonia dissociation rate 25% in temperature-rise period.
3) first paragraph nitriding: keep furnace temperature 590 DEG C, 20 hours, this process keeps ammonia dissociation rate 25%.
4) second time heats up: after single-stage nitriding completes, make furnace temperature rise to 640 DEG C, reduce ammonia flow simultaneously, make the ammonia dissociation rate at this temperature reach 50%;
5) second segment nitriding: keep furnace temperature 640 DEG C, 30 hours, this process keeps ammonia dissociation rate 55%;
4) move back nitrogen, keep furnace temperature 640 DEG C, reduce ammonia flow, cause ammonia dissociation rate to 80%, this state keeps 2 hours.
Above-mentioned steps makes the surfaces nitrided process of workpiece complete, turn off furnace power, make workpiece furnace cooling, furnace pressure should be kept in the process to be malleation, when furnace reduces to 150 DEG C, open fire door and take out workpiece, recording depth of penetration is 35 μm, and workpiece surface microhardness is 337HV0.1.
The present invention is never confined to above-described embodiment, may be combined with out more embodiment again according to technical scheme of the present invention in conjunction with state of the art means, these all fall into the present invention want the scope of resist technology scheme.In addition the present invention's cementing furnace used is also not limited to the RQ3-35-9 gas carbruizing furance described in above-described embodiment, and other types of gases nitriding furnace or gas carbruizing furance can be implemented by the described step of above-described embodiment and processing condition equally.

Claims (5)

1. the two sections of gas nitriding methods in Al and Alalloy surface, comprise the steps:
1) surface film oxide is removed
A. pre-treatment clean Al and Alalloy workpiece;
B. first time soaks zinc, under room temperature environment, soak zinc, time 50 ~ 70s by carrying out first time in the described workpiece immersion zinc dipping solution of cleaning;
C. wash, with the described workpiece of water cleaning after first time leaching zinc;
D. move back zinc, the described workpiece after washing is at room temperature immersed nitric acid HNO 3zinc is moved back in the aqueous solution;
E. second time soaks zinc, under room temperature environment, soak zinc, time 25 ~ 35s by carrying out second time in the described workpiece immersion zinc dipping solution through moving back zinc;
F. washing dries up, and cleans the described workpiece after second time leaching zinc and dry up or dry with water;
2) surfaces nitrided
A. be vented: the described workpiece through above-mentioned removal surface film oxide is placed in after in nitriding furnace, starts to pass into ammonia to get rid of furnace air, until ammonia dissociation rate is less than 10%;
B. first time heats up: make furnace temperature rise to 570 ~ 590 DEG C, in temperature-rise period, reduce ammonia flow gradually, until ammonia dissociation rate reaches 30 ~ 45%;
C. first paragraph nitriding: keep furnace temperature 570 ~ 590 DEG C, 5 ~ 20 hours, this process keeps ammonia dissociation rate 15 ~ 25%;
D. second time heats up, and after single-stage nitriding completes, makes furnace temperature rise to 620 ~ 640 DEG C, reduces ammonia flow simultaneously, make the ammonia dissociation rate at this temperature reach 40 ~ 55%;
E. second segment nitriding: keep furnace temperature 620 ~ 640 DEG C, 5 ~ 30 hours, this process keeps ammonia dissociation rate 40 ~ 55%;
F. move back nitrogen, keep furnace temperature 620 ~ 640 DEG C, reduce ammonia flow, cause ammonia dissociation rate to 70 ~ 80%, this state keeps 1 ~ 2 hour.
2. the two sections of gas nitriding methods in Al and Alalloy surface according to claim 1, is characterized in that described zinc dipping solution is the proportion relation gained solution by 1 liter of water following masses compound:
Zinc oxide ZnO 10 ~ 30 g,
Sodium hydroxide NaOH 50 ~ 70g,
Seignette salt KNaC 4h 4o 650 ~ 90g.
3. the two sections of gas nitriding methods in Al and Alalloy surface according to claim 1, is characterized in that zinc process of the moving back nitric acid HNO used in described removal surface film oxide step 3the aqueous solution is water and the nitric acid HNO of 1: 0.8 ~ 1: 1.1 volumetric ratios 3mixing solutions, the described workpiece time of immersing in this solution is 6 ~ 12s.
4. the two sections of gas nitriding methods in Al and Alalloy according to claim 1 surface, the preprocessing process that it is characterized in that in described removal surface film oxide step comprise carry out successively electrochemical deoiling, hot water wash, cold wash, acid etch and washing step by step.
5. the two sections of gas nitriding methods in Al and Alalloy surface according to claim 1, is characterized in that, in described surfaces nitrided steps of exhausting, being placed in after in nitriding furnace at described workpiece, are heated up by stove, start to pass into ammonia when furnace temperature rises to 300 DEG C.
CN201210423467.8A 2012-10-30 2012-10-30 Two-section gas nitridation method for surfaces of aluminum and aluminum alloy Expired - Fee Related CN102925851B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210423467.8A CN102925851B (en) 2012-10-30 2012-10-30 Two-section gas nitridation method for surfaces of aluminum and aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210423467.8A CN102925851B (en) 2012-10-30 2012-10-30 Two-section gas nitridation method for surfaces of aluminum and aluminum alloy

Publications (2)

Publication Number Publication Date
CN102925851A CN102925851A (en) 2013-02-13
CN102925851B true CN102925851B (en) 2015-07-08

Family

ID=47640773

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210423467.8A Expired - Fee Related CN102925851B (en) 2012-10-30 2012-10-30 Two-section gas nitridation method for surfaces of aluminum and aluminum alloy

Country Status (1)

Country Link
CN (1) CN102925851B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105887000A (en) * 2016-06-08 2016-08-24 连云港江南精工机械有限公司 Nitriding heat treatment method of die-casting machine accessory
CN109536762A (en) * 2018-12-04 2019-03-29 舒城久联精密机械有限公司 A kind of preparation method of Precision Machining lathe tool high-strength alloy
CN110423977B (en) * 2019-09-05 2021-06-18 合肥工业大学 Gas nitriding method for aluminum material by taking chemical iron-immersion plating as pretreatment
CN114875353B (en) * 2022-04-27 2024-03-19 宁波同创强磁材料有限公司 Preparation method of high-corrosion-resistance sintered NdFeB magnet
CN115505865B (en) * 2022-09-26 2024-01-23 沈阳飞机工业(集团)有限公司 Hook-type part local nitriding heat treatment clamp and method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266106A (en) * 1999-12-02 2000-09-13 方大集团股份有限公司 Pre-oxidation permeation-promoting high-temp short-time nitridizing technology
CN1329181A (en) * 2001-06-14 2002-01-02 上海交通大学 Rapid high-temp. gas nitration process for TiAl base alloy
CN101497980A (en) * 2008-02-01 2009-08-05 远立贤 Cyclic heating rapid nitridation catalytic cementation process
CN101522563A (en) * 2006-10-16 2009-09-02 艾尔坎国际有限公司 Process for fabricating aluminium nitride, and aluminium nitride wafer and powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1266106A (en) * 1999-12-02 2000-09-13 方大集团股份有限公司 Pre-oxidation permeation-promoting high-temp short-time nitridizing technology
CN1329181A (en) * 2001-06-14 2002-01-02 上海交通大学 Rapid high-temp. gas nitration process for TiAl base alloy
CN101522563A (en) * 2006-10-16 2009-09-02 艾尔坎国际有限公司 Process for fabricating aluminium nitride, and aluminium nitride wafer and powder
CN101497980A (en) * 2008-02-01 2009-08-05 远立贤 Cyclic heating rapid nitridation catalytic cementation process

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘生发等.井式热处理多用炉工艺调试.《材料组织结构控制与性能测试》.武汉理工大学出版社,2011,第81-82页. *
铝及其合金压铸件装饰性镀金工艺;苏静康;《材料保护》;19870430(第03期);第46-47页 *
雷廷权等.二段渗氮.《热处理工艺方法300种》.中国农业机械出版社,1982,第220-223页. *

Also Published As

Publication number Publication date
CN102925851A (en) 2013-02-13

Similar Documents

Publication Publication Date Title
CN102925851B (en) Two-section gas nitridation method for surfaces of aluminum and aluminum alloy
CN102808210B (en) Micro-arc oxidation surface treatment method and product prepared by same
CN102943231B (en) Surface three-step nitridation method of aluminium and aluminium alloy
JP2019108616A (en) Passivation of micro-discontinuous chromium deposited from trivalent electrolyte
JP6806151B2 (en) Sn plated steel sheet
JP6806152B2 (en) Sn-based alloy plated steel sheet
CN102234800A (en) Aluminum alloy rare earth passivating liquid taking chlorine salt as accelerator and use method thereof
CN105441743A (en) Aluminum-based amorphous alloy composite material and preparation method thereof
CN102943230B (en) The nitriding method on Al and Alalloy surface
CN100519840C (en) Magnesium alloy surface phosphorization treatment method
CN109234773A (en) A kind of preparation method of Mg alloy surface composite coating
CN113122833B (en) Aluminum alloy passivation method
TWI689633B (en) Sn COATED STEEL SHEET AND METHOD FOR PRODUCING Sn COATED STEEL SHEET
Darband et al. Electrochemical phosphate conversion coatings: A review
CN103789722B (en) One significantly improves the corrosion proof chemical heat treatment method of gear
US20150197870A1 (en) Method for Plating Fine Grain Copper Deposit on Metal Substrate
CN102321862A (en) Treatment method for producing ferro-boron alloying on surface of low carbon steel strip base on nanometer technology
JP2022104855A (en) Corrosion-resistant neodymium iron-boron magnet, surface treatment method, and usage of hydroxyl group compound
CN108441810B (en) A kind of die casting aluminium piece surface treatment process
TW202229003A (en) Stainless steel material structure and its surface manufacturing method
Song et al. Phosphate-silicate composite coating formed on AM60 magnesium alloy
JP5049692B2 (en) Method for producing iron sulfide film
CN113215636B (en) Surface treatment method for pickled plate
CN114622194B (en) Zinc alloy environment-friendly coloring liquid and coloring process thereof
CN102912285B (en) Method for nitriding aluminum and aluminum alloy two-section liquids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150708

Termination date: 20171030

CF01 Termination of patent right due to non-payment of annual fee