CN102924069A - Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof - Google Patents

Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof Download PDF

Info

Publication number
CN102924069A
CN102924069A CN 201210428332 CN201210428332A CN102924069A CN 102924069 A CN102924069 A CN 102924069A CN 201210428332 CN201210428332 CN 201210428332 CN 201210428332 A CN201210428332 A CN 201210428332A CN 102924069 A CN102924069 A CN 102924069A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
powder
ferrite
mixed
hexagonal
type
Prior art date
Application number
CN 201210428332
Other languages
Chinese (zh)
Other versions
CN102924069B (en )
Inventor
翁革平
Original Assignee
安徽龙磁科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and a preparation method thereof. The composition formula of the hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet is represented by Cax1Srx2Bax3LaxFe2+aFe3+bOy, wherein x1 is 0.1-0.3, x2 is 0.2-0.5, x3 is 0.1-0.4, x is 0.1-0.3, a is 0.1-1.0, b is 12.0-14.0, 12.1<=a+b<=15.0, and y=1+1/2x+a+3/2b. Lanthanum oxide is added, the mole number of iron in the M type ferrite is enhanced, and the oxygen concentration in the sintering process is controlled to provide a appropriate non-oxidizing atmosphere so as to inhibit the generation of the alpha-Fe2O3 phase, so that the M+W mixed type magnetoplumbite structure can be generated in the original M type permanent magnetic ferrite. The invention has the following advantages: (1) compared with the single-phase M type ferrite, the invention enhances the residual flux density (Br) of the material, and maintains the high coercive force (Hcj); (2) compared with the single-phase W type ferrite, the invention has simpler production technique, and can perform industrial production only by slightly adjusting the M type permanent magnetic ferrite production technique; and (3) the magnet is free of rare and noble metal cobalt, and thus, the cost is lower.

Description

—种六角晶M+W混合型烧结永磁铁氧体磁体及其制备方法 - M + W seed Hexagonal mixed ferrite sintered permanent magnets and preparation method

技术领域 FIELD

[0001 ] 本发明涉及一种高性能永磁铁氧体磁体,具体的说涉及一种六角晶M+W混合型烧结永磁铁氧体磁体及其制备方法。 [0001] The present invention relates to a high performance permanent ferrite magnets, specifically relates to a hexagonal M + W mixed sintered permanent ferrite magnet and a preparation method.

技术背景 technical background

[0002] M型磁铅石永磁铁氧体磁体是由二价阳离子金属氧化物(SrO和BaO)和三氧化二铁(Fe203)所构成的化合物的总称,永磁铁氧体磁体广泛地适用于汽车、家用电器,工业自动化等行业。 [0002] M-type magnetoplumbite ferrite permanent magnets are compounds collectively by the divalent cation metal oxide (SrO and BaO) and ferric oxide (Fe203) composed of permanent ferrite magnets widely applicable to automobiles, household appliances, industrial automation and other industries. 作为永磁铁氧体材料,具有M型磁铅石结构的锶铁氧体(SrFe12O19)和钡铁氧体(BaFe12O19)被广泛应用。 As a permanent magnetic ferrite material, having a strontium ferrite, magnetoplumbite-type structure M (SrFe12O19) and barium ferrite (OF BaFe12O19) is widely used. 对于M型铁氧体磁体,主要着眼于使铁氧体晶粒的粒径接近单畴粒径、使铁氧体晶粒在磁各向异性方向排列以及进行高密度化方面,一直进行高性能化的努力。 For the M type ferrite magnet, ferrite grains mainly focused on the diameter close to the single domain particle size in ferrite grain alignment direction of the magnetic anisotropy and a high density connection, high-performance has been of effort. 这种努力的结果是,M型铁氧体磁体的磁性能已接近其上限,难以期望磁性能得到飞跃性提闻。 The result of this effort, the magnetic M-type ferrite magnets are approaching the upper limit, it is difficult to obtain desired magnetic properties dramatically mention smell.

[0003] 作为可能表现出优于M型铁氧体磁体的磁性能,W型铁氧体磁体是公知的。 [0003] As the magnetic superior M type ferrite magnet may exhibit energy, W-type ferrite magnets are well known. W型铁氧体磁体与M型铁氧体磁体相比,饱和磁化强度(4 Is)高约10%,各向异性磁场是相当程度。 Compared with the W-type ferrite magnet M type ferrite magnet, the saturation magnetization (4 Is) about 10% higher anisotropic magnetic field considerably. 中国专利(公开号CN1082496C)中,公开了一种W型铁氧体磁体,它是由SrO-2 (FeO) *n(Fe203)表示,其中η满足7. 2-7. 7的组成而构成,其烧结体的平均晶粒为2Mm或以下、(BH)max为5 MGOe或以上。 China Patent (Publication No. CN1082496C) discloses a W-type ferrite magnet, which is represented by SrO-2 (FeO) * n (Fe203), wherein η satisfy the composition 7. 2-7. 7 is constituted mean grain sintered body is 2Mm or less, (BH) max of 5 MGOe or more. 中国专利(公开号CN100393664C)中,公开了一种W型铁氧体磁体,它是由AFe2+aFe3+b027表示组分,A为从Sr、Ba以及Pb之中选择的至少I种元素,且I. 5 ^ a ^ 2. I ,12. 9 ^ 16.3。 China Patent (Publication No. CN100393664C) discloses a W-type ferrite magnet, which is represented AFe2 + aFe3 + b027 component, A I is at least one element selected from among Sr, Ba and Pb, and I. 5 ^ a ^ 2. I, 12. 9 ^ 16.3. 通过添加副成分的最佳化来提高磁性能,获得了最高磁性能是剩余磁通密度(Br) 4600Gs,矫顽力(Hcj) 32000e。 To improve the magnetic properties by addition of sub-optimal components, to obtain the highest magnetic remanence is (Br) 4600Gs, the coercive force (Hcj) 32000e.

发明内容 SUMMARY

[0004] 本发明的目的是提供一种六角晶M+W混合型烧结永磁铁氧体磁体及其制备方法,通过加入氧化镧和提高M型铁氧体中铁的摩尔数,并在烧结过程中控制氧的浓度以提供合适的非氧化气氛以抑制a -Fe203相的生成,即可在原M型永磁铁氧体中生成M+W混合型磁铅石结构,从而提高了烧结铁氧体的剩余磁通密度(Br),并保持了较高的矫顽力(He j)。 [0004] The object of the present invention is to provide a hexagonal M + W mixed and sintered permanent ferrite magnets prepared by the addition of lanthanum oxide and increase the number of moles of M-type ferrite of iron, and sintering process controlling the concentration of oxygen to provide a suitable non-oxidizing atmosphere in order to suppress a -Fe203 phase formation, to generate M + W-type magnetoplumbite structure mixed in the original M-type ferrite permanent magnet, thereby increasing the sintered ferrite remaining magnetic flux density (Br), and maintain a high coercive force (He j).

[0005] 为实现以上目的,本发明采用的技术方案如下: [0005] To achieve the above object, the present invention employs the following technical solutions:

[0006] 一种六角晶M+W混合型烧结永磁铁氧体磁体,其特征在于,其组成式用CaxlSrx2Bax3LaxFe2+aFe3+b0y 表示,其中,xl 为O. 1-0. 3,x2 为O. 2-0. 5,x3 为O. 1-0. 4,x 为O. 1-0. 3,a 为O. 1-1. 0,b 为12. 0-14. 0,12. I 彡a+b 彡15. O, y=l+l/2x+a+3/2b。 [0006] A hexagonal M + W mixed ferrite sintered permanent magnets, characterized by a composition formula represented CaxlSrx2Bax3LaxFe2 + aFe3 + b0y, wherein, XL is O. 1-0. 3, x2 is O. 2-0. 5, x3 is O. 1-0. 4, x is O. 1-0. 3, a is O. 1-1. 0, b is 12. 0-14. 0,12. I San a + b San 15. O, y = l + l / 2x + a + 3 / 2b.

[0007] 六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,包括配料混合、预烧、粗粉碎、球磨、成型和烧结等工序,具体步骤如下: [0007] Preparation of Hexagonal M + W mixed sintered permanent ferrite magnet, characterized in that it comprises mixing the ingredients, calcined, coarse pulverization, a ball mill, molding and sintering processes, the following steps:

[0008] ( I)配料混合 [0008] (I) mixing ingredients

[0009] 按CaxlSrx2Bax3LaxFe2+aFe3+bOy计算称量含有所需元素的碳酸I丐粉末、碳酸银粉末、碳酸钡粉末、氧化镧粉末及氧化铁粉末。 [0009] Press CaxlSrx2Bax3LaxFe2 + aFe3 + bOy calculation weighed powder containing carbonate I Hack, silver carbonate powder, barium carbonate powder, a lanthanum oxide powder and iron oxide powder to the desired element.

[0010]其中:xl 为O. 1-0. 3,[0011] x2 为0· 2-0. 5, [0010] wherein: xl is O. 1-0 3, [0011] x2 is 2-05 0.5,.

[0012] χ3 为O. 1-0. 4, [0012] χ3 is O. 1-0. 4,

[0013] X 为O. 1-0. 3, [0013] X is O. 1-0. 3,

[0014] a 为O. 1-1.0, [0014] a is O. 1-1.0,

[0015] b 为12. 0-14.0, [0015] b is 12. 0-14.0,

[0016] 12. I 彡a+b 彡15. 0, [0016] 12. I a + b San San 15.0,

[0017] y=l+l/2x+a+3/2b。 [0017] y = l + l / 2x + a + 3 / 2b.

[0018] 将上述称量好的粉末通过湿式工艺混合均匀,混合时间控制在3-5小时,混合后的混合物料平均粒度不大于Ι.Ομπι。 [0018] The above powder was weighed by a wet process mixing, the mixing time is controlled to 3-5 hours, the average particle size of the mixed feed mixture is no greater than Ι.Ομπι. 如果混合后料浆粒度过大,在预烧过程中容易引起预·烧不充分,使得生成六角晶相铁氧体的含量过低; If after mixing the slurry particle size is too large, prone to burn during the pre-firing is insufficient, so that the generation of the hexagonal ferrite phase content is too low;

[0019] (2)预烧 [0019] (2) burn

[0020] 将上述混合物料在空气中进行预烧,预烧温度为1200_1350°C,保温时间为1_3小时,得到预烧料颗粒; [0020] The above mixed material calcined in air, calcining temperature 1200_1350 ° C, holding time 1_3 hours, to obtain a calcined material particles;

[0021] (3)粗粉碎 [0021] (3) coarsely crushed

[0022] 将上述预烧料颗粒进行干式球磨粉碎至平均粒度3-5 μ m,得到预烧料粉; [0022] The above calcined material particles are pulverized by dry milling to an average particle size of 3-5 μ m, to obtain a calcined powder material;

[0023] (4)球磨: [0023] (4) Milling:

[0024] 向上述预烧料粉以重量配比方式加入二次添加剂,将所得混合物采用湿式球磨方式连续研磨,直至达到颗粒的平均粒度在O. 7-0. 8Mm ; [0024] powder to the calcined material was added in a weight ratio of secondary additive manner, and the resulting mixture was continuously milled by wet ball milling until the average particle size of the particles reached the O. 8Mm 7-0.;

[0025] (5)成型 [0025] (5) Molding

[0026] 将上述步骤所得的料浆进行脱水处理,脱水方式可采用离心方式或压滤方式进行,调整至料浆浓度在60-65wt%,然后进行磁场成型,成型磁场强度不小于500 kA/m ; [0026] The above step was dehydrated slurry, dewatered filter press or centrifugation methods can be used manner, the slurry concentration was adjusted to 60-65wt%, followed by forming a magnetic field, the magnetic field strength of the molding is not less than 500 kA / m;

[0027] (6)烧结 [0027] (6) Sintering

[0028] 将成形体在非氧化气氛中进行烧结,烧结温度为1150_1250°C,保温I. 0_3. O小时,通过在烧结炉中通入氮气来控制氧分压,氮气的通入,在500°C到最高温度之间的温度范围内进行。 [0028] The molded body in a nonoxidizing atmosphere for the sintering, the sintering temperature is 1150_1250 ° C, incubated I. 0_3. O h, to control the oxygen partial pressure of nitrogen gas in a sintering furnace by introducing nitrogen, at 500 ° C in a temperature range between the highest temperature.

[0029] 所述的配料混合工序中,还包含有一次添加剂二氧化硅和硼酸,其添加比例为:二氧化硅O. 05-0. 5wt%、硼酸O. 05-0. 2wt%。 Ingredients mixing step [0029], wherein further comprising a silica additive and boric acid, which is the addition ratio: silica O. 05-0 5wt%, boric O. 05-0 2wt%..

[0030] 所述的二次添加剂包括CaCO3粉末、SiO2粉末、Al2O3粉末、Cr2O3粉末、H3BO3粉末、ZnO粉末、Mn3O4粉末中的一种或多种,其中各化合物粉末的平均粒度不大于2. O μ m,各添加剂的添加比例为:CaCO3 :0. 3 〜I. 5wt%、SiO2 :0. I 〜I. 0wt%、Al2O3 :0. I 〜I. 5wt%、Cr2O3 :O. I 〜I. 5wt%、H3BO3 :0. 05 〜O. 2wt%、ZnO :0. 05 〜I. 2wt%、Mn3O4 :0. 05 〜I. 5wt%。 [0030] The secondary additives include CaCO3 powder, SiO2 powder, Al2O3 powder, Cr2O3 powder, of H3BO3 powder, ZnO powder, one or more Mn3O4 powder, wherein the average particle size of each compound powder is not more than 2. O μ m, the proportion of each additive is added: CaCO3:. 0 3 ~I 5wt%, SiO2:.. 0 I ~I 0wt%, Al2O3:.. 0 I ~I 5wt%, Cr2O3:. O I ~I. . 5wt%, H3BO3:. 0 05 ~O 2wt%, ZnO:.. 0 05 ~I 2wt%, Mn3O4:... 0 05 ~I 5wt%.

[0031] 所述的二次添加剂还包括在烧结工序发挥还原作用的碳黑。 [0031] The additive further comprises a secondary role to play in reducing the sintering step of the carbon black.

[0032] 所述的球磨工序中,需添加一定量的分散剂,所述分散剂为葡萄糖酸钙、山梨糖醇、抗坏血酸等的一种或多种,添加量为总成分重量的O. 2-1. 5wt%。 [0032] In the milling step, add a certain amount of the dispersing agent, said dispersing agent is calcium gluconate, sorbitol, one or more of ascorbic acid, added in an amount by weight of the total composition O. 2 -1. 5wt%.

[0033] 本发明的六角晶M+W混合型烧结永磁铁氧体磁体,具有4500Gs以上的Br,3500 Oe以上的Hcj,0. 90以上矩形度(Hk/Hcj)。 [0033] The present invention hexagonal M + W mixed ferrite sintered permanent magnet having the above 4500Gs Br, more than 3500 Oe of Hcj, 0. 90 or more squareness (Hk / Hcj).

[0034] 综上所述,本发明具有以下优点: [0034] In summary, the present invention has the following advantages:

[0035] (I)与单相M型铁氧体相比提高了材料的剩余磁通密度(Br),并保持了较高的矫顽力(Hcj);[0036] (2)比单相W型铁氧体生产工艺简单,在M型永磁铁氧体生产工艺基础上稍作调整,即可进行工业化生产; [0035] (I) a single-phase M-type ferrite improved compared to the residual magnetic flux density (Br) of the material, and maintain a high coercive force (Hcj); [0036] (2) than a single-phase W type ferrite production process is simple, a slight adjustment in the production process on the basis of the M-type ferrite permanent magnet, can be produced industrially;

[0037] (3)磁体中不含稀有贵金属钴,成本较低。 [0037] (3) does not contain rare metals cobalt magnet, a lower cost.

附图说明 BRIEF DESCRIPTION

[0038] 图I为工艺流程图。 [0038] Figure I is a process flow diagram.

具体实施方式 detailed description

[0039] 下面通过实施例,对本发明的技术方案作进一步具体说明:但是本发明并不限于这些实施例。 [0039] The following Examples, the technical solution of the present invention will be further described in detail: the invention is not limited to these examples.

[0040] 实施例I [0040] Example I

[0041] La添加量的研究: [0041] La additive amount of research:

[0042] 称量指定量的氧化铁(Fe2O3)粉末(纯度> 99. 0wt%、颗粒的原始平均粒度:0. 7〜l.Oym)、碳酸钙(CaCO3)粉末、(纯度彡98. 5wt%、颗粒的原始平均粒度:2. O〜5. Ομπι)、碳酸锶(SrCO3)粉末(纯度彡98. 5wt%、颗粒的原始平均粒度:1. O〜2. O μ m)、碳酸钡(BaCO3)粉末(纯度彡98. 5wt%、颗粒的原始平均粒度:1. O〜2. Ομπι)、氧化镧(La2O3)粉末(纯度彡99. 0wt%、颗粒的原始平均粒度:2. O〜5. O μ m),在上述混合物中添加O. 3wt%的SiO2粉末(纯度彡98. 0wt%、颗粒的原始平均粒度:1. O μ m)>0. lwt%的H3BO3粉末(纯度彡99. 0wt%)并进行湿式混合,混合后混合物的平均粒度为O. 9 μ m。 [0042] weighing specified amounts of iron oxide (Fe2O3) powder (purity> 99. 0wt%, average particle size of the original particles:. 0 7~l.Oym), calcium carbonate (CaCO3) powder (purity San 98. 5wt %, of the original average size of the particles:. 2 O~5 Ομπι), strontium carbonate (SrC03) powder (purity San 98. 5wt%, an average particle size of the original particles:... 1 O~2 O μ m), barium carbonate (BaCO3) powder (purity San 98. 5wt%, an average particle size of the original particles:. 1 O~2 Ομπι.), lanthanum oxide (of La2O3) powder (purity San 99. 0wt%, average particle size of the original particles:. 2 O . ~5 O μ m), was added to the mixture of SiO2 powder O. 3wt% (purity San 98. 0wt%, of the original average size of the particles:. 1 O μ m)> 0 lwt% of H3BO3 powder (purity. San 99. 0wt%) and wet mixed, the average particle size of the mixture after mixing is O. 9 μ m. 将混合物干燥后,以1280°C在大气中预烧2小时。 The mixture was dried, calcined at 1280 ° C in air for 2 hours.

[0043] 将所得的预烧料颗粒在振动磨碎机中进行干式粗粉碎,得到平均粒度3. O〜5. O μ m的粗粉。 [0043] The resulting calcined material particles subjected to dry coarse pulverization in a vibration mill to obtain an average particle size of 3. O~5. O μ m coarse powder.

[0044]接着,称取上述粗粉料 500 克,添加O. 25wt% 的SiO2、0· 60wt% 的CaCO3、0· 80wt%的Cr2O3、0. 10wt% 的H3BO3、0. 25wt% 的A1203、0. 20wt% 的Zn0、0. 25wt% 的Mn304、0. 60wt% 的葡萄糖酸钙及0. 30wt%的碳黑,再添加700毫升的水,进行湿式粉碎,得到平均粒度O. 75ym的铁氧体料浆。 [0044] Next, the above-mentioned coarse powder weighed 500 g, was added O. 25wt% of SiO2,0 · 60wt% of CaCO3,0 · 80wt% of Cr2O3,0. 10wt% of H3BO3,0. 25wt% of A1203, 0. 20wt% of Zn0,0. 25wt% of Mn304,0. 60wt% of calcium gluconate and 0. 30wt% carbon black, was added 700 ml of water and then, wet pulverized to obtain an average particle size of the iron O. 75ym ferrite slurry.

[0045] 将微粉碎后的料浆脱水后,在外加磁场强度700 kA/m的平行磁场中,以成型压力O. 4ton/cm3进行压缩成型。 [0045] After dewatering the slurry after the pulverization, the intensity of the parallel magnetic field applied 700 kA / m, the molding pressure to O. 4ton / cm3 is compression-molded. 所得成形体的直径为40mm、高度15mm的圆柱体。 The resulting molded body having a diameter of 40mm, height 15mm cylinder.

[0046] 在100_500°C的温度对成形体进行热处理,除去水分和有机分散剂,然后向烧结炉内通入氮气来控制氧浓度,在非氧化气氛中进行烧结,升温速度是120°C /小时,在1200°C保温I. 5小时,获得烧结永磁体。 [0046] The molded body at a temperature of heat treatment 100_500 ° C to remove water and an organic dispersing agent, and then to control the oxygen concentration in nitrogen gas to the sintering furnace, sintered in a non-oxidizing atmosphere, temperature elevation rate was 120 ° C / hours, at 1200 ° C incubation I. 5 hours to obtain a sintered permanent magnet.

[0047] 对所制备的铁氧体磁体样品组成进行分析,测定式CaxlSrx2Bax3LaxFe2+aFe3+bOy中的xl、x2、x3、x、a、b,氧含量y值(y=l+l/2x+a+3/2b)是根据化合价平衡原则计算而得。 [0047] The ferrite magnet sample was prepared composition was measured by analyzing formula CaxlSrx2Bax3LaxFe2 + aFe3 + bOy of xl, x2, x3, x, a, b, oxygen content y value (y = l + l / 2x + a + 3 / 2b) is calculated on the basis valency balance principle. a(Fe2+)的测定采用滴定法,xl、x2、x3、x、b的测定采用X-射线荧光分析法,主相状态用X射线衍射法测定。 Determination of a (Fe2 +) using the titration method, the measurement xl, x2, x3, x, b using X- ray fluorescence analysis, the main phase state measured by X-ray diffractometry. 测定结果如表I中所示。 The measurement results are shown in Table I below.

[0048] 用磁性能测试仪测量磁体样品的剩余磁感应强度(Br)、内禀矫顽力(Hcj)及矩形度(Hk/Hcj),所得测定值如表2中所示。 [0048] Samples for measuring the magnetic properties of the magnet tester residual induction (Br), intrinsic coercive force (Hcj) and squareness (Hk / Hcj), the resulting measured values ​​as shown in Table 2.

[0049]表 I[0052] [0049] TABLE I [0052]

Figure CN102924069AD00071

[0053] 从表I和表2中的结果表明,在本发明的铁氧体磁体中加入La3+和生成Fe2+之间正相关。 [0053] From the results in Table 2 and Table I indicate that the addition of La3 ferrite magnet of the present invention + and generates a positive correlation between + Fe2. 而且可以看出,X在O. I〜O. 3时,经过严格的工艺控制,合理一次及二次添加及烧结气氛的控制,在磁体不含稀有贵金属钴的情况下,完全可以获得4500Gs以上的Br,3500Oe以上的Hcj,O. 90以上矩形度(Hk/Hcj )的六角晶M+W混合型烧结永磁铁氧体磁体。 Furthermore it can be seen, X is added in the secondary O. I~O. 3, the rigorous process control, and control of reasonable time and sintering atmosphere, in a magnet-free cobalt rare metals, the above can be obtained 4500Gs is Br, more 3500Oe Hcj, O. 90 or more squareness (Hk / Hcj) of the hexagonal M + W mixed sintered permanent ferrite magnets. 经分析知X低于O. I时,La对六角晶的置换不充分,Fe2+的生成量不足,还存在a -Fe203相,磁性能较低;而当X超过O. 3时,则La的取代不完全,还有a _Fe203相生成,磁性能也较低。 The analysis known when X is less than O. I, La substitution of hexagonal insufficient, insufficient production amount of Fe2 +, phase, there is also a lower magnetic a -Fe203; when X exceeds O. 3, of the La substituted incomplete, there is a _Fe203 phase generating magnetic properties are low. [0054] 实施例2 [0054] Example 2

[0055] 铁的摩尔数研究: [0055] Study of the number of moles of iron:

[0056] 使用与实施例I相同的氧化铁(Fe2O3)粉末、碳酸钙(CaCO3)粉末、碳酸锶(SrCO3)粉末、碳酸钡(BaCO3)粉末及氧化镧(La2O3)粉末,调配成CaxlSrx2Bax3LaxFe2+aFe3+bOy (其中xl=0. 15,x2=0. 35,x3=0. 3,x=0. 2,a+b=ll. 5,12. 5,13. 5,14. 5 及15. 5)的组成。 [0056] Example I using the same iron oxide (Fe2O3) powder, calcium carbonate (CaCO3) powder, strontium carbonate (SrC03) powder, barium carbonate (BaCO3) powder and a lanthanum oxide (of La2O3) powder, formulated CaxlSrx2Bax3LaxFe2 + aFe3 + bOy (where xl = 0. 15, x2 = 0. 35, x3 = 0. 3, x = 0. 2, a + b = ll. 5,12. 5,13. 5,14. 5 and 15. 5) composition. 在上述混合物中添加O. 3wt%的SiO2粉末、O. lwt%的H3BO3粉末并进行湿式混合,混合物平均粒度O. 9 μ m。 Added to the above mixture of SiO2 powder O. 3wt%, O. Lwt% of H3BO3 powder and wet mixing, the average particle size mixture O. 9 μ m. 将混合物干燥后,以1280°C在大气中预烧2小时。 The mixture was dried, calcined at 1280 ° C in air for 2 hours.

[0057] 将所得的预烧料颗粒在振动磨碎机中进行干式粗粉碎,得到平均粒度3. O〜5. O μ m的粗粉。 [0057] The resulting calcined material particles subjected to dry coarse pulverization in a vibration mill to obtain an average particle size of 3. O~5. O μ m coarse powder.

[0058]接着,称取上述粗粉料 500 克,添加O. 25wt% 的SiO2、0· 60wt% 的CaCO3、0· 80wt%的Cr2O3、0. 10wt% 的H3BO3、0. 25wt% 的A1203、0. 20wt% 的Zn0、0. 25wt% 的Mn304、0. 60wt% 的葡萄糖酸钙及0. 30wt%的碳黑,再添加700毫升的水,进行湿式粉碎,得到平均粒度O. 75ym的铁氧体料浆。 [0058] Next, the above-mentioned coarse powder weighed 500 g, was added O. 25wt% of SiO2,0 · 60wt% of CaCO3,0 · 80wt% of Cr2O3,0. 10wt% of H3BO3,0. 25wt% of A1203, 0. 20wt% of Zn0,0. 25wt% of Mn304,0. 60wt% of calcium gluconate and 0. 30wt% carbon black, was added 700 ml of water and then, wet pulverized to obtain an average particle size of the iron O. 75ym ferrite slurry.

[0059] 将微粉碎后的料浆脱水后,在外加磁场强度700 kA/m的平行磁场中,以成型压力O. 4ton/cm3进行压缩成型。 [0059] After dewatering the slurry after the pulverization, the intensity of the parallel magnetic field applied 700 kA / m, the molding pressure to O. 4ton / cm3 is compression-molded. 所得成形体的直径为40mm、高度15mm的圆柱体。 The resulting molded body having a diameter of 40mm, height 15mm cylinder.

[0060] 在100-500°C的温度对成形体进行热处理,除去水分和有机分散剂,然后将烧结炉内通入氮气来控制氧浓度,在非氧化气氛中进行烧结,升温速度是120°C /小时,在1200°C保温I. 5小时,获得烧结永磁体。 [0060] The formed body is heat-treated at a temperature of 100-500 ° C to remove water and the organic dispersant, and then passed through a sintering furnace to control the concentration of oxygen with nitrogen, sintered in a non-oxidizing atmosphere, temperature elevation rate was 120 ° C / h, holding at 1200 ° C I. 5 hours to obtain a sintered permanent magnet.

[0061] 对所制备的铁氧体磁体样品进行组成分析和主相分析。 [0061] The ferrite magnet prepared samples analysis phase composition analysis and primary. 测定结果如表3中所示。 The measurement results are shown in Table 3.

[0062] 用磁性能测试仪测量磁体样品的剩余磁感应强度(Br)、内禀矫顽力(Hcj)及矩形度(Hk/Hcj),所得测定值如表4中所示。 [0062] Samples for measuring the magnetic properties of the magnet tester residual induction (Br), intrinsic coercive force (Hcj) and squareness (Hk / Hcj), the resulting measured values ​​as shown in Table 4.

[0063] 表3 [0063] TABLE 3

Figure CN102924069AD00081

[0065]表 4 [0065] TABLE 4

Figure CN102924069AD00091

[0067] 从表3中的结果可以看出,a+b小于12. O时,生成单一的M相铁氧体;a+b在12. 5〜14. 5时,生成M+W相铁氧体,a+b大于15. O时,有a -Fe203相生成。 [0067] As can be seen from the results in Table 3, a + b is less than 12. When the O, to produce a single phase of ferrite M;. A + b 5 at 12. 5~14, generates M + W-phase iron when ferrite, a + b is greater than 15. O, there is generated a -Fe203 phase.

[0068] 从表4中的结果可以看出,a+b在12. 5〜14. 5时,获得了优异的磁性能。 [0068] As can be seen from the results in Table 4, a + b 12 at 5~14. 5, a superior magnetic properties.

[0069] 实施例3 [0069] Example 3

[0070] 烧结气氛和炭黑添加量的研究: [0070] The addition amount of the sintering atmosphere and the carbon black Study:

[0071] 使用与实施例I相同的氧化铁(Fe2O3)粉末、碳酸钙(CaCO3)粉末、碳酸锶(SrCO3)粉末、碳酸钡(BaCO3)粉末及氧化镧(La2O3)粉末,调配成CaxlSrx2Bax3LaxFe2+aFe3+bOy(xl=0. 15, χ2=0. 35, χ3=0. 3, χ=0. 2, a+b=13. 5)的组成。 [0071] Example I using the same iron oxide (Fe2O3) powder, calcium carbonate (CaCO3) powder, strontium carbonate (SrC03) powder, barium carbonate (BaCO3) powder and a lanthanum oxide (of La2O3) powder, formulated CaxlSrx2Bax3LaxFe2 + aFe3 + bOy (xl = 0. 15, χ2 = 0. 35, χ3 = 0. 3, χ = 0. 2, a + b = 13. 5) of the composition. 在上述混合物中添加O. 3wt% 的SiO2粉末(纯度彡98. 0wt%、颗粒的原始平均粒度:I. O μ m)、0. lwt%的H3BO3粉末(纯度彡99. 0wt%)并进行湿式混合,混合物平均粒度O. 9 μ m。 O. 3wt% of SiO2 was added to the above mixture powder (Purity San 98. 0wt%, average particle size of the original particles:. I O μ m), 0 lwt% of H3BO3 powder (purity San 99. 0wt%) and wet mixing, the average particle size mixture O. 9 μ m. 将混合物干燥后,以1280°C在大气中预烧2小时。 The mixture was dried, calcined at 1280 ° C in air for 2 hours.

[0072] 将所得的预烧料颗粒在振动磨碎机中进行干式粗粉碎,得到平均粒度3. O〜5. O μ m的粗粉。 [0072] The resulting calcined material particles subjected to dry coarse pulverization in a vibration mill to obtain an average particle size of 3. O~5. O μ m coarse powder.

[0073] 接着,称取5份上述粗粉料各500克,添加O. 25wt%的SiO2 ,0. 60wt%的CaCO3、O. 80wt% 的Cr2O3、0· 10wt% 的H3BO3、0· 25wt% 的A1203、、0. 20wt% 的Ζη0、0· 25wt% 的Μη304、O. 60wt%的葡萄糖酸I丐,同时分别添加0、0. lwt%、0. 2wt%、0. 3wt%和O. 4wt%的碳黑,再添加700毫升的水,进行湿式粉碎,得到平均粒度O. 75 μ m的铁氧体料浆。 [0073] Next, 5 parts of the above crude weighed 500 grams powder, of adding O. 25wt% SiO2, 0. 60wt% of CaCO3, O. 80wt% of Cr2O3,0 · 10wt% of H3BO3,0 · 25wt% the A1203,, 0. 20wt% of Ζη0,0 · 25wt% of Μη304, O. 60wt% of gluconate I beggar, while adding 0,0. lwt%, respectively, 0. 2wt%, 0. 3wt% and O. 4wt% of carbon black, 700 ml of water was added and then, wet pulverized to obtain a ferrite slurry average particle size of O. 75 μ m.

[0074] 将微粉碎后的料浆脱水后,在外加磁场强度700 kA/m的平行磁场中,以成型压力O. 4ton/cm3进行压缩成型。 [0074] After dewatering the slurry after the pulverization, the intensity of the parallel magnetic field applied 700 kA / m, the molding pressure to O. 4ton / cm3 is compression-molded. 所得成形体的直径为40mm、高度15mm的圆柱体。 The resulting molded body having a diameter of 40mm, height 15mm cylinder.

[0075] 再将成形体分成2份,其中一份在空气中烧结,一份在非氧化气氛中进行烧结,分别获得烧结永磁体。 [0075] The shaped body is then divided into two parts, one of which sintered in air, sintering in a non-oxidizing atmosphere, respectively, to obtain a sintered permanent magnet.

[0076] 对所制备的铁氧体磁体样品进行组成分析和主相分析。 [0076] The ferrite magnet prepared samples analysis phase composition analysis and primary. 测定结果如表5中所示。 The measurement results are shown in Table 5.

[0077] 用磁性能测试仪测量磁体样品的剩余磁感应强度(Br)、内禀矫顽力(Hcj)及矩形度(Hk/Hcj),所得测定值如表6中所示。 [0077] Samples for measuring the magnetic properties of the magnet tester residual induction (Br), intrinsic coercive force (Hcj) and squareness (Hk / Hcj), the resulting measured values ​​as shown in Table 6.

[0078]表 5 [0078] TABLE 5

Figure CN102924069AD00101

[0080] 表6 [0080] TABLE 6

[0082] 从表5和表6中得结果可以看出,在氧化气氛中烧结不能获得M+W型的六角型铁氧体结构。 [0082] The results obtained can be seen from Tables 5 and 6, the sintering can not be obtained M + W type hexagonal ferrite structure in an oxidizing atmosphere. 而通过适量的碳添加及非氧化气氛烧结,可以获得M+W型的六角晶铁氧体结构及优异的磁性能。 Added non-oxidizing atmosphere and sintered by a suitable amount of carbon can be obtained M + W type hexagonal ferrite crystal structure and excellent magnetic properties.

[0083] 本发明提供铁氧体磁体和铁氧体磁体的制备方法,据此可以通过添加镧、增加铁的摩尔数、适量的添加还原性碳及控制烧结气氛来抑制a-Fe203相的生成,获得了优异的磁性能,不需添加稀有贵金属钴,节约稀有资源,降低制造成本。 [0083] The present invention provides a ferrite magnet and the ferrite magnet prepared accordingly by adding lanthanum, increasing the number of moles of iron, a suitable amount of carbon and adding a reducing sintering atmosphere to suppress the formation of the control a-Fe203 phase , a superior magnetic properties, without the addition of rare metals cobalt, saving scarce resources, reducing manufacturing costs.

Claims (6)

  1. 1. 一种六角晶M+W混合型烧结永磁铁氧体磁体,其特征在于,其组成式用CaxlSrx2Bax3LaxFe2+aFe3+bOy 表示,其中,xl 为O. 1-0. 3,x2 为O. 2-0. 5,x3 为O. 1-0. 4,x 为O. 1-0. 3,a 为O. 1-1. 0,b 为12. 0-14. 0,12. I 彡a+b 彡15. O, y=l+l/2x+a+3/2b。 A hexagonal M + W mixed ferrite sintered permanent magnets, characterized by a composition formula represented CaxlSrx2Bax3LaxFe2 + aFe3 + bOy, wherein, XL is O. 1-0. 3, x2 is O. 2 -0. 5, x3 is O. 1-0. 4, x is O. 1-0. 3, a is O. 1-1. 0, b is 12. 0-14. 0,12. I a Pie San + b 15. O, y = l + l / 2x + a + 3 / 2b.
  2. 2. 一种如权利要求书I所述的六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,包括配料混合、预烧、粗粉碎、球磨、成型和烧结等工序,具体步骤如下: (I)配料混合按CaxlSrx2Bax3LaxFe2+aFe3+bOy计算称量含有所需元素的碳酸韩粉末、碳酸银粉末、碳酸钡粉末、氧化镧粉末及氧化铁粉末; 其中:xl 为O. 1-0. 3, x2 为O. 2-0. 5 , x3 为O. 1-0. 4, X 为O. 1-0. 3, a 为O. 1-1. O, b 为12. 0-14. O, 12. I ≤ a+b ≤15. O, y=l+l/2x+a+3/2b ; 将上述称量好的粉末通过湿式工艺混合均匀,混合时间控制在3-5小时,混合后的混合物料平均粒度不大于I. O μ m ; 如果混合后料浆粒度过大,在预烧过程中容易引起预烧不充分,使得生成六角晶相铁氧体的含量过低; (2)预烧将上述混合物料在空气中进行预烧,预烧温度为1200-1350°C,保温时间为1-3小时,得到预烧料颗粒; (3)粗粉碎将上述预 I 2. A book according to claim hexagonal M + W method of preparing a hybrid permanent ferrite sintered magnet, characterized in that it comprises mixing the ingredients, calcined, coarse pulverization, a ball mill, molding and sintering processes , the following steps: (I) mixing ingredients according CaxlSrx2Bax3LaxFe2 + aFe3 + bOy Han carbonate powder containing the weighed calculation, silver carbonate powder, barium carbonate powder, a lanthanum oxide powder and iron oxide powder to the desired element; wherein: xl is O. 1-0. 3, x2 is O. 2-0. 5, x3 is O. 1-0. 4, X is O. 1-0. 3, a is O. 1-1. O, b is 12. . 0-14 O, 12. I ≤ a + b ≤15 O, y = l + l / 2x + a + 3 / 2b;. the above-described process weighed powders were uniformly mixed by a wet mixing time control 3 5 hours, an average particle size of the mixed feed mixture is no greater than I. O μ m; if mixed slurry particle size is too large, the burn process prone calcined insufficient, so that the content of the resulting hexagonal ferrite phase low; (2) calcining the mixed material is calcined in air, calcining temperature is 1200-1350 ° C, holding time 1 to 3 hours, to obtain a calcined material particles; (3) the above coarsely pulverized advance 烧料颗粒进行干式球磨粉碎至平均粒度3-5 μ m,得到预烧料粉; (4)球磨: 向上述预烧料粉以重量配比方式加入二次添加剂,将所得混合物采用湿式球磨方式连续研磨,直至达到颗粒的平均粒度在O. 7-0. 8Mm ; (5)成型将上述步骤所得的料浆进行脱水处理,脱水方式可采用离心方式或压滤方式进行,调整至料衆浓度在60-65wt%,然后进行磁场成型,成型磁场强度不小于500 kA/m ; (6)烧结将成形体在非氧化气氛中进行烧结,烧结温度为1150-1250°C,保温I. 0-3. O小时,通过在烧结炉中通入氮气来控制氧分压,氮气的通入,在500°C到最高温度之间的温度范围内进行。 Frit by dry ball milling the particles to an average particle size of 3-5 μ m, to obtain a calcined powder material; (4) ball: powder to the calcined material was added in a weight ratio of secondary additive manner, and the resulting mixture was wet milled continuous grinding until an average particle size in O. 7-0 8Mm;. (5) obtained in the above step of forming the slurry is dehydrated, dewatered filter press or centrifugation methods can be used manner, all the material is adjusted to at a concentration of 60-65wt%, and then forming a magnetic field, the magnetic field strength of the molding is not less than 500 kA / m; (6) sintering the molded body is sintered in a nonoxidizing atmosphere, the sintering temperature is 1150-1250 ° C, holding I. 0- 3. O hours, in a sintering furnace is controlled by introducing nitrogen into the oxygen partial pressure of nitrogen gas, at a temperature range between 500 ° C to a maximum temperature.
  3. 3.根据权利要求2所述的六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,所述的配料混合工序中,还包含有一次添加剂二氧化硅和硼酸,其添加比例为:二氧化硅O. 05-0. 5wt%、硼酸O. 05-0. 2wt%0 Hexagonal M 3. according to claim 2 + W preparing mixed sintered permanent ferrite magnet, wherein said step of mixing ingredients, further comprising a silica additive and boric acid, which is addition ratio is: silica O. 05-0 5wt%, boric O. 05-0 2wt% 0.
  4. 4.根据权利要求2所述的六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,所述的二次添加剂包括CaCO3粉末、SiO2粉末、Al2O3粉末、Cr2O3粉末、H3BO3粉末、ZnO粉末、Mn3O4粉末中的一种或多种,其中各化合物粉末的平均粒度不大于2. O μ m,各添加剂的添加比例为:CaCO3 :0. 3 〜I. 5wt%、SiO2 :0. I 〜I. 0wt%、Al2O3 :0. I 〜I. 5wt%、Cr2O3 :O. I 〜I. 5wt%、H3BO3 :0. 05 〜0. 2wt%、ZnO :0. 05 〜I. 2wt%、Mn3O4 :0. 05 〜I. 5wt%。 Hexagonal M 4. The method of claim 2 + W preparing mixed sintered permanent ferrite magnet, wherein said secondary additives include CaCO3 powder, SiO2 powder, Al2O3 powder, Cr2O3 powder, of H3BO3 powder, ZnO powder, Mn3O4 powder, one or more, wherein the average particle size of each compound powder is not more than 2. O μ m, the proportion of each additive is added: CaCO3:.. 0 3 ~I 5wt%, SiO2: 0. I ~I 0wt%, Al2O3:.. 0 I ~I 5wt%, Cr2O3:.. O I ~I 5wt%, H3BO3:... 0 05 ~0 2wt%, ZnO:. 0 05 ~I. 2wt%, Mn3O4:.. 0 05 ~I 5wt%.
  5. 5.根据权利要求2所述的六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,所述的二次添加剂还包括在烧结工序发挥还原作用的碳黑。 Hexagonal M 5. The method of claim 2 + W preparing mixed sintered permanent ferrite magnet, wherein said additive further comprises a secondary role to play in reducing the sintering step of the carbon black.
  6. 6.根据权利要求2所述的六角晶M+W混合型烧结永磁铁氧体磁体的制备方法,其特征在于,所述的球磨工序中,需添加一定量的分散剂,所述分散剂为葡萄糖酸钙、山梨糖醇、抗坏血酸等的一种或多种,添加量为总成分重量的O. 2-1. 5wt%。 The hexagonal M according to claim 2 + W preparing mixed sintered permanent ferrite magnet, characterized in that said milling step, add a certain amount of the dispersing agent, the dispersing agent is calcium gluconate, sorbitol, one or more of ascorbic acid, added in an amount by weight of the total composition O. 2-1. 5wt%.
CN 201210428332 2012-10-31 2012-10-31 Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof CN102924069B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210428332 CN102924069B (en) 2012-10-31 2012-10-31 Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210428332 CN102924069B (en) 2012-10-31 2012-10-31 Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof

Publications (2)

Publication Number Publication Date
CN102924069A true true CN102924069A (en) 2013-02-13
CN102924069B CN102924069B (en) 2014-02-05

Family

ID=47639033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210428332 CN102924069B (en) 2012-10-31 2012-10-31 Hexagonal crystal M+W mixed type sintered permanent magnetic ferrite magnet and preparation method thereof

Country Status (1)

Country Link
CN (1) CN102924069B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601263A (en) * 2015-12-23 2016-05-25 苏州冠达磁业有限公司 High-performance power soft-magnetic Mn-Zn ferrite material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638207A (en) * 1969-11-17 1972-01-25 Bell Telephone Labor Inc Magnetic devices
EP0297392A2 (en) * 1987-07-01 1989-01-04 Bayer Ag Process for preparing finely divided barium hescaferrite pigments from halide molten masses and use thereof
CN101599333A (en) * 2009-04-28 2009-12-09 横店集团东磁股份有限公司 Method for manufacturing anisotropic multi-pole magnetic ring through dry-press forming
CN102329128A (en) * 2011-06-11 2012-01-25 宜宾职业技术学院 Hard calcium ferrite and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3638207A (en) * 1969-11-17 1972-01-25 Bell Telephone Labor Inc Magnetic devices
EP0297392A2 (en) * 1987-07-01 1989-01-04 Bayer Ag Process for preparing finely divided barium hescaferrite pigments from halide molten masses and use thereof
CN101599333A (en) * 2009-04-28 2009-12-09 横店集团东磁股份有限公司 Method for manufacturing anisotropic multi-pole magnetic ring through dry-press forming
CN102329128A (en) * 2011-06-11 2012-01-25 宜宾职业技术学院 Hard calcium ferrite and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105601263A (en) * 2015-12-23 2016-05-25 苏州冠达磁业有限公司 High-performance power soft-magnetic Mn-Zn ferrite material and preparation method thereof

Also Published As

Publication number Publication date Type
CN102924069B (en) 2014-02-05 grant

Similar Documents

Publication Publication Date Title
WO2007060757A1 (en) Oxide based magnetic material, process for producing the same, sintered ferrite magnet and process for producing the same
CN102976741A (en) Preparation method of manganese zinc MnZn soft magnetic ferrite material containing modified nanocarbon
CN101050108A (en) Low dissipative ferrite material of manganese and zinc in broad frequency, and high magnetic permeability, and preparation method
CN101055796A (en) Making method for M type Sr-ferrite magnetic material
Sharma et al. Influence of Nd3+ and Sm3+ substitution on the magnetic properties of strontium ferrite sintered magnets
CN102982946A (en) La2O3-containing ferromagnetic core manufacturing method
CN101404197A (en) Manganese zinc soft magnetic ferrite and production method for its magnetic core
CN1447356A (en) Material powder of manganese-zinc power soft magnet ferrite and its preparation method
CN103951411A (en) Wide-temperature-range low-power-consumption high-Curie-temperature manganese/zinc ferrite material and preparation method thereof
CN102161585A (en) High-frequency wide-temperature low-power-consumption soft magnetic Mn-Zn ferrite and preparation method thereof
CN102737799A (en) Preparation method of nanometer crystal magnetic powder core with magnetic conductivity mum of 60
CN103103442A (en) Method for preparing neodymium-iron-boron material through main-auxiliary alloy method
CN101860091A (en) Preparation method for rare earth permanent ferrite magnetic shoe and product
JP2001052912A (en) Ferrite magnet material, sintered magnet and bonded magnet
CN101013622A (en) Ferrite magnetic material
CN101483360A (en) Permanent ferrite magnetic shoe for DC electric motor and production method thereof
Gadkari et al. Synthesis, characterization and magnetic properties of La3+ added Mg–Cd ferrites prepared by oxalate co-precipitation method
JP2001068320A (en) Ferrite magnet
Sharma et al. Effect of processing parameters on the magnetic properties of strontium ferrite sintered magnets using Taguchi orthogonal array design
CN1749209A (en) High saturated magnetic flux density and low loss manganese-zinc ferrite material and its preparing method
CN101913850A (en) Preparation method of high-magnetic-conductivity low-temperature-sintering Z-shaped hexagonal ferrite material
CN101468916A (en) Calcium permanent ferrite material
CN101209920A (en) Economic sintering permanent-magnet ferrite and preparing method thereof
CN101022052A (en) Permanent magnet oxysome magnetic shoe and producing method thereof
CN101712556A (en) Method for synthesizing presintering hard ferrite material

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model