CN102902010B - Waveguide grating device with uniform channel loss - Google Patents

Waveguide grating device with uniform channel loss Download PDF

Info

Publication number
CN102902010B
CN102902010B CN 201210419343 CN201210419343A CN102902010B CN 102902010 B CN102902010 B CN 102902010B CN 201210419343 CN201210419343 CN 201210419343 CN 201210419343 A CN201210419343 A CN 201210419343A CN 102902010 B CN102902010 B CN 102902010B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
waveguide
output
array
grating
center
Prior art date
Application number
CN 201210419343
Other languages
Chinese (zh)
Other versions
CN102902010A (en )
Inventor
何建军
晋雯
邹俊
夏翔
郎婷婷
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明公开了一种信道损耗均匀的波导光栅器件。 The present invention discloses a uniform channel loss waveguide grating device. 它包括至少一条输入波导、输入平板波导区、光栅单元阵列、输出平板波导区和输出波导阵列;光栅单元阵列中的每个单元的中心出射光,按一定的角度分布函数变化,经输出平板波导区的传输后,指向偏离输出波导阵列的中心,以此分散光栅单元阵列中各单元输出的光峰值能量在输出波导阵列上的分布,从而提高各输出信道插入损耗的非均匀性。 It comprises at least one input waveguide, an input slab waveguide region, barrier element array, output slab waveguide region and an output waveguide array; center of each cell barrier element array light emitted by a certain angular distribution function of the change via the output slab waveguide after the transfer zone, point offset from the center of the output waveguide array, in order dispersion peak energy distribution of the light output of each unit in the output waveguide array barrier element array, thereby improving the non-uniformity of insertion loss of each of the output channels. 本发明在不改变传统波导光栅器件各个组成部分的基础上,解决了传统波导光栅器件的各输出信道在一个自由光谱范围内的插入损耗最大值与最小值之间具有3dB差异的问题,适用于基于二氧化硅、磷化铟和硅等的各种波导材料和波导结构,具有制作简单、成本低等优点。 Problem of the present invention without changing the conventional waveguide grating devices of the various components, to solve the conventional waveguide grating devices in each output channel has a 3dB insertion loss difference between the maximum and minimum values ​​of free spectral range for based on the various waveguides and the waveguide structure silica materials, such as silicon and indium phosphide, having a simple production, low cost.

Description

信道损耗均匀的波导光栅器件 Uniform channel loss waveguide grating device

技术领域 FIELD

[0001] 本发明涉及集成阵列波导光栅器件,具体涉及一种信道损耗均匀的波导光栅器件。 [0001] The present invention relates to an integrated arrayed waveguide grating device, particularly to a uniform channel loss waveguide grating device.

背景技术 Background technique

[0002] 集成光波导光栅波分复用器件主要有阵列波导光栅(arrayed waveguidegrating,简称AWG)和蚀刻衍射光栅(etched diffraction grating,简称EDG)。 [0002] The integrated optical waveguide grating wavelength division multiplexer arrayed waveguide grating device main (arrayed waveguidegrating, referred to as AWG) and etching the diffraction grating (etched diffraction grating, referred to EDG). 其中阵列波导光栅由于其结构紧凑、易于集成、性能优良、可靠性较高等优点,是光通信系统中实现波分复用功能的核心器件之一。 Wherein the arrayed waveguide grating because of its compact structure, easy integration, high performance, high reliability, etc., is one of the key components in optical communication systems to achieve wavelength division multiplexing function. 一个NXN的AWG可以在其每个输出信道上同时传输N个不同的光频,大大提高了光传输系统的传输量,因此它也是实现光分差复用器和一个NXN光路由系统的核心组成部件。 NXN of a AWG can transmit at each of its output channels N different optical frequencies, greatly improving the transmission capacity of optical transmission system, it also points to achieve core optical multiplexer and a difference NXN optical routing system composed of part. 然而,由于普通的AWG在一个自由光谱范围(Free SpectralRegion,简称FSR)内其中心信道和边缘信道的插入损耗之差为3dB,而在通信中通常要求输出信道间的插入损耗非均匀性至少小于ldB,这就大大降低了AWG实际可用的信道数和其循环特性的使用,因此,提高AWG的输出通道在一个FSR内信道插入损耗的均匀性是十分重要的。 However, since the conventional AWG in a free spectral range (Free SpectralRegion, referred to as FSR) the difference between the insertion loss within the center channel and the edge channels is 3dB, while in communication usually requires the insertion loss of the non-uniformity among the output channels of at least less than ldB, which greatly reduces the number of channels actually available AWG and cycle characteristics, and therefore, improve the uniformity of the AWG output channels FSR within a channel insertion loss is important.

[0003]目前,已报导的提高AWG输出信道均匀性的技术主要有:改善阵列波导和输出平板波导区交界面上的模场分布法和双衍射级次合成法等。 [0003] It has been reported to improve the uniformity of the AWG output channels in the art are: to improve the interface of the mode field distribution method of the arrayed waveguide and the output slab waveguide region and a double diffraction orders synthesis and the like. JCChen等人(JCChen,etal, "Waveguide grating rout·ers with greater channel uniformity,〃 Electron.Lett, vol.33,n0.23,pp.1951-1952,1997)通过在阵列波导的入口和出口增加一段辅助波导来改变阵列波导和输出平板波导交界面上的模场分布,从而提高了各输出信道的插入损耗均勻性,同时也增加了可使用的输出信道数。K.TaKiguchi等人(K.Takiguchi,et al, ^Arrayed-waveguide grating with uniform loss properties over the entirerange of wavelength channels, 〃 Opt.Lett.,vol.31,n0.4,pp.459-461,2006)通过对边缘信道收集其相邻两个衍射级次的能量,再利用一个多模干涉耦合器(MMI)将相应输出波导输出的能量耦合到一个输出信道,从而达到提高信道均匀性的目的。Y.SaKamaki等人(Y.Sakamaki, et al, 〃Loss uniformity improvement of arrayed-waveguidegrating with mode-fieId converters designed by wavefront matchingmethod, "Journal of Lightwave Technology, vol.n0., pp.yea JCChen et al (JCChen, etal, "Waveguide grating rout · ers with greater channel uniformity, 〃 Electron.Lett, vol.33, n0.23, pp.1951-1952,1997) through the arrayed waveguide increase in the inlet and outlet section an auxiliary waveguide to change the mode field distribution of the boundary surface between the slab waveguide and the output waveguide array, thereby improving the uniformity of the insertion loss of the respective output channels, and also increases the output channel number .K.TaKiguchi et al (K. Takiguchi usable , et al, ^ Arrayed-waveguide grating with uniform loss properties over the entirerange of wavelength channels, 〃 Opt.Lett., vol.31, n0.4, pp.459-461,2006) collected by the adjacent edges of the channel two diffraction orders energy, recycling a multimode interference coupler (MMI) waveguide output energy output is coupled to a respective output channels, the channel so as to improve the uniformity of the like object .Y.SaKamaki person (Y.Sakamaki , et al, 〃Loss uniformity improvement of arrayed-waveguidegrating with mode-fieId converters designed by wavefront matchingmethod, "Journal of Lightwave Technology, vol.n0., pp.yea r)利用波前匹配法在阵列波导的输出端引入一系列模斑转换器以改变单根阵列波导在输出成像面上的远场分布,进而达到提高各输出信道插入损耗均匀性的目的。 Before r) is introduced by using a series of wave matching method spot-size converter at the output of the arrayed waveguide of the arrayed waveguide to a single change in the output image plane far-field distribution, and thus to improve the insertion loss of the respective output channel object uniformity. 国家发明专利(ZL200510126242.6)“采用损耗微调波导实现阵列波导光栅通道均匀性的方法”是通过在阵列波导光栅的输出波导的末端加入损耗微调波导,从而实现阵列波导光栅的输出信道插入损耗均匀。 National patent (ZL200510126242.6) "trimming loss waveguide using a method of uniformly arrayed waveguide grating channel achieved" by adding at the end of the output waveguide loss arrayed waveguide grating waveguide trimming, thereby realizing an arrayed waveguide grating output channel insertion loss uniformity .

[0004] 然而,以上提高阵·列波导光栅各输出信道插入损耗均匀性的技术都是以需要增加额外的器件或者增加设计难度为代价,这样不仅增加了器件制作工艺的难度,还降低了器件的其它性能。 [0004] However, the above improved array and columns waveguide grating respective output channel insertion uniformity technical losses are based on the need for additional components or increasing difficulty in designing the cost, not only increases the difficulty of the device fabrication process, further reducing device the other properties. 发明内容 SUMMARY

[0005] 针对背景技术的不足,本发明的目的在于提供一种信道损耗均匀的波导光栅器件,解决了传统阵列波导光栅和蚀刻衍射光栅的各输出信道在一个自由光谱范围内插入损耗最大值与最小值之间具有3dB差异的问题。 [0005] For the amount of background art, an object of the present invention to provide a channel loss uniform waveguide grating devices, solves the respective output channel conventional arrayed waveguide grating and etching the diffraction grating insertion loss maximum value within a free spectral range and problems with 3dB difference between a minimum value.

[0006] 本发明的目的是通过以下技术方案来实现的: [0006] The object of the present invention is achieved by the following technical solution:

[0007] —种信道损耗均匀的波导光栅器件,它包括至少一条输入波导、输入平板波导区、光栅单元阵列、输出平板波导区和输出波导阵列,从输入波导进入的入射光在输入平板波导区)发散后被光栅单元阵列中的每个单元所接收,经其透射或反射后通过输出平板波导区射向输出波导阵列;其特征在于:所述光栅单元阵列中的每个单元的中心出射光,按一定的角度分布函数变化,经输出平板波导区的传输后,指向偏离输出波导阵列的中心,以此分散光栅单元阵列中各单元输出的光峰值能量在输出波导阵列上的分布,从而达到提高各输出信道插入损耗非均匀性的要求。 [0007] - seed channel loss uniform waveguide grating device, which comprises at least one input waveguide, an input slab waveguide region, barrier element array, an output slab waveguide region and an output waveguide array, from the input waveguide into the incident light at the input slab waveguide region ) diverging after each barrier element array unit receives, after transmission or reflection through its output directed through the waveguide array output slab waveguide region; characterized in that: the center of each cell in the array of barrier elements emitted light , a certain angle distribution function of the change, after the transmission of the output slab waveguide region, point offset from the center of the output waveguide array, in order dispersion peak energy distribution of the light output of each unit in the output waveguide array barrier element array, so as to achieve each output channel to improve the non-uniformity of insertion loss requirements.

[0008] 所述的光栅单元阵列由一系列长度等差级数递增的波导阵列组成。 [0008] the length of the barrier element array consists of a series of incremental arithmetic progression waveguide arrays.

[0009] 所述波导阵列中每根光栅单元波导在输出平板波导区的入口处的朝向按一定的角度分布函数指向输出波导阵列,所述的角度分布函数满足如下关系式: [0009] The waveguide array of barrier elements in each of the inlet of the waveguide toward the output slab waveguide region with a certain angle distribution function directed output waveguide array, the angular distribution function satisfies the following relationship:

[0010] [0010]

Figure CN102902010BD00051

[0011] 其中,4是各光栅单元波导`的指向与输出平板波导区中心线的夹角泌表示第左根 [0011] wherein each barrier element 4 is directed to the waveguide 'region and the output slab waveguide centerline of the angle of the left represents the root secretion

光栅单元波导,r是第/根光栅单元波导的指向与输出平板波导区中心线的夹角,幂指数是一个大于O的实数。 Waveguide grating elements, r is the angle between the first point and the output slab / fiber grating waveguide means the waveguide centerline, the exponent is a real number greater than O.

[0012] 所述的角度分布函数中幂指数和角度r是根据对各输出信道的插入损耗非均匀性,即各输出信道插入损耗最大值与最小值之差,进行优化所得;经过优化后得到的幂指数/7为3。 The angle of [0012] exponential distribution function and r is the angle of non-uniformity in accordance with the insertion loss for each output channel, i.e. each output channel insertion loss is the difference between maximum and minimum values, the resulting optimization; is optimized to give exponent / 7 to 3.

[0013] 所述角度r的值介于C和卢之间,即其中a是第/根光栅单元波导和输出波导阵列中心的连线与输出平板波导区中心线的夹角,卢肩第/根光栅单元波导和输出波导#1的连线与输出平板波导区中心线的夹角。 [0013] r is the value of the angle between C and Lu, in which a is the angle between the connection region and the output slab waveguide centerline of / root barrier element array waveguide and output waveguide centers, Lu first shoulder / root angle and output waveguide a grating waveguide unit # 1 is a connection with the output slab waveguide region centerline.

[0014] 所述光栅单元阵列是由一系列单元反射面构成的蚀刻光栅,从输入波导在输入平板波导区的入口端点到各单元反射面中心再到输出波导阵列在输出平板波导区的入口中心的总光学长度成等差级数递增。 [0014] The array of barrier elements is etched by a series of grating units constituting the reflective surface of the waveguide from the input terminal to the respective reflecting surface units at the central inlet of the input slab waveguide region, to output an inlet center of the waveguide array output slab waveguide region the total optical length to incremental arithmetic progression.

[0015] 所述的蚀刻光栅中的各单元反射面朝向使得从输入波导入射到该反射面单元中心的光线的反射光线按一定的角度分布函数指向输出波导阵列,所述的角度分布函数满足如下关系式: [0015] Each unit of the reflective surface etched toward the grating such that light is incident from the input waveguide to the center of the reflecting unit surface reflection of light with a certain angle distribution function directed output waveguide array, the angular distribution function satisfies the following relationship:

[0016] [0016]

Figure CN102902010BD00052

[0017] 其中4表示蚀刻光栅第t个单元反射面中心反射光线与输出平板波导区中心线的夹角,r是第/个单元反射面中心反射光线与输出平板波导区中心线的夹角,幂指数是一个大于O的实数。 [0017] where 4 represents t-etched grating reflecting surface units and the center of the reflecting angle of light output slab waveguide centerline, r is the first / reflection surface units and the central angle of the reflected light output slab waveguide region centerline, exponent is a real number greater than O.

[0018] 所述输出波导阵列中的每一个波导的朝向偏离光栅单元阵列的中心。 [0018] The output of each of the waveguide toward the waveguide array offset from the center of the barrier element array.

[0019] 对应N个信道的波导光栅器件,N个信道占据所述波导光栅器件的整个自由光谱范围,即信道间隔为自由光谱范围的1/N。 [0019] for N channel waveguide grating device, the N channel occupies the entire free spectral range of the waveguide grating device, i.e., a channel spacing of the free spectral range of 1 / N.

[0020] 对应输入波导和输出波导数目相同的波导光栅器件,所述输入平板波导区的输入波导阵列和光栅单元阵列的入口处的结构设计与输出平板波导区的输出波导阵列和光栅单元阵列的出口处得结构设计对称,从而构成NXN端口的光波长路由器。 [0020] corresponding to the same number of input waveguide and output waveguide waveguide grating device, the input and output waveguide array grating at the entrance of the cell array structure array and the input cell array waveguide grating slab waveguide region and the output slab waveguide design zone symmetrical design obtained at the outlet, thereby constituting the optical wavelength router NXN port.

[0021] 本发明具有的有益效果是: [0021] The present invention has the advantages that:

[0022] 1.本发明可以在不增加芯片尺寸和额外器件的基础上,实现阵列波导光栅和蚀刻衍射光栅的各输出信道在一个自由光谱范围内具有良好的插入损耗非均匀性,各输出信道的插入损耗最大值与最小值之差至少小于ldB。 [0022] 1. The present invention may, without increasing the chip size and additional devices on the realization of the respective output channel AWG and etched diffraction grating with good insertion nonuniformity loss, each output channel in a free spectral range the difference between the minimum and the maximum insertion loss is less than at least ldB.

[0023] 2.本发明适用于基于二氧化硅、磷化铟和硅等的各种波导材料和波导结构,制作工艺与传统波导光栅器件相同,具有制作简单、成本低等优点。 [0023] 2. The present invention is applicable to various silica-based, such as indium phosphide and silicon waveguide structure and waveguide material, production process and the same conventional waveguide grating devices, having a simple production, low cost.

附图说明 BRIEF DESCRIPTION

[0024] 图1是本发明所述的一种信道损耗均匀的波导光栅器件的结构示意图。 [0024] FIG. 1 is a schematic view of a uniform loss of a waveguide grating device according to the present invention channel.

[0025] 图2(a)是传统阵列波导光栅的结构布局在输出平板波导区的放大图。 [0025] FIG. 2 (a) is a structural layout of a conventional arrayed waveguide grating is an enlarged view of the output slab waveguide region.

[0026] 图2(b)是采用传统阵列波导光栅的结构布局得到的输出频谱图。 [0026] FIG. 2 (b) is to use a conventional layout structure of the output spectrum of the arrayed waveguide grating obtained.

[0027] 图3(a)是本发明所述的阵列波导光栅的结构示意图。 [0027] FIG. 3 (a) is a schematic diagram of an arrayed waveguide grating structure according to the present invention.

[0028] 图3(b)是图3(a)中输出平板波导区的放大图。 [0028] FIG. 3 (b) is a view 3 (a) is an enlarged view of the output slab waveguide region.

[0029] 图3(c)是本发明所述的波导阵列在传统阵列波导光栅布局上实现波导朝向位置变化的示意图。 [0029] FIG. 3 (c) is a schematic view of the waveguide array of the present invention to achieve a change in orientation of the waveguide in the conventional arrayed waveguide grating layout.

[0030] 图4是不同幂指数下,阵列波导光栅损耗非均匀性随Y的变化情况。 [0030] FIG. 4 is a different exponent, loss of the arrayed waveguide grating changes with the non-uniformity of Y.

[0031] 图5是对应于图4各条件下得到的相对于传统阵列波导光栅引入的额外损耗。 [0031] FIG. 5 is obtained corresponding to additional losses under the respective conditions of FIG. 4 with respect to the introduction of a conventional arrayed waveguide grating.

[0032] 图6是分别在普通阵列波导结构和本发明所述方法的阵列波导结构(对应K=0.15和7 =0.17两种情况)下,各光栅单元波导的指向与输出平板波导区中心线的夹角 [0032] FIG. 6 are in the normal array waveguide structure and method of the present invention, an array waveguide structure (7 corresponding to K = 0.15 and = 0.17 in both cases), the point with output slab waveguide grating elements of each waveguide centerline angle

4的变化情况。 4 changes.

[0033] 图7 (a)是采用本发明所述的的阵列波导光栅结构(对应Y =0.17的情况)得到的输出频谱图。 [0033] FIG. 7 (a) is the use of an array waveguide grating structure according to the present invention (corresponding to the case of Y = 0.17) obtained in the output spectrum of FIG.

[0034] 图7 (b)是采用本发明所述的的阵列波导光栅结构(对应^ =0.15的情况)得到的输出频谱图。 [0034] FIG. 7 (b) of the present invention is the use of the arrayed waveguide grating structure (corresponding to the case where ^ = 0.15) obtained in the output spectrum of FIG.

[0035] 图8是传统蚀刻衍射光栅的结构示意图。 [0035] FIG. 8 is a schematic view of a conventional etched diffraction grating.

[0036] 图9(a)是本发明所述的蚀刻衍射光栅的结构示意图。 [0036] FIG. 9 (a) is a schematic diagram of a diffraction grating structure is etched according to the present invention.

[0037] 图9 (b)是本发明所述的蚀刻衍射光栅在传统蚀刻衍射光栅布局上实现单元反射面中心反射光线朝向变化的结构示意图。 [0037] FIG. 9 (b) is a schematic view of the etched diffraction grating of the present invention to achieve a reflecting surface centered on the means conventional etching reflected light toward the diffraction grating layout changes.

[0038] 图10是采用本发明所述方法的NXN端口的光波长路由器示意图。 [0038] FIG. 10 is the use of the method of the present invention, optical wavelength router schematic NXN port.

[0039] 图中:1、输入波导,2、输入平板波导区,3、光栅单元阵列,3a、波导阵列,3b、蚀刻光栅,4、输出平板波导区,5、输出波导阵列,6、罗兰圆,7、光栅圆,8、输出平板波导区中心线,9、第J个光栅单元(第I根光栅单元波导或第I个单元反射面),10、第_/个光栅单元(第-1根光栅单元波导或第-1个单元反射面),11、第O个光栅单元(第O根光栅单元波导或第O个单元反射面),12、第/个光栅单元波导与输出波导#1的连线,13、第-J个光栅单元波导与输出波导#Νώ的连线,14、第I个光栅单元波导与其朝向位置的连线,15、输出波导#Να, 16、输出波导#1,17、输出波导阵列最中心的一根波导,18、传统阵列波导光栅的第I根光栅单元波导,19、传统阵列波导光栅的第-J根光栅单元波导,20、第J根光栅单元波导和输出波导阵列中心的连线,21、第-J根光栅单元波导与输出波导阵列的 [0039] FIG: 1, input waveguide 2, the input slab waveguide region, 3, barrier element array, 3a, waveguide array, 3b, etched gratings, 4, output slab waveguide region, 5, an output waveguide array, 6, Roland round 7, the raster circle, 8, the center line of the output slab waveguide region, 9, J-raster units (I fiber grating of the waveguide section or the second reflecting surface units I), 10, _ / raster units (first - a waveguide grating elements or units of reflection surfaces -1), 11, O raster units (a first unit waveguide fiber grating O O units or the reflecting surface), 12, / raster units waveguide and output waveguide # connection 1 13, the first raster units -J waveguide and the output waveguide # Νώ connection, 14, I, raster units toward its connection position of the waveguide 15, the output waveguide # Να, 16, the output waveguides # 1,17, a most central output waveguide array waveguide 18, the conventional arrayed waveguide grating waveguide grating elements root of I, 19, of a conventional arrayed waveguide grating waveguide unit -J fiber grating 20, the grating elements of the root J waveguide and the output waveguide array center connection, 21, barrier element -J root array waveguide and output waveguide 中心的连线,22、第J个单元反射面中心与输出波导阵列中心的连线,23、第-J个单元反射面中心与输出波导阵列中心的连线,24、第/个单元反射面的中心与输出波导#1的连线,25、第-J个单元反射面的中心与输出波导#Νώ的连线。 Connecting the center, 22, of the center of the reflecting surface units of J output waveguides and connecting center of the array 23, the first connection module -J th reflection surface and the center of the output waveguide array center, 24, of / reflection surface units connecting the center of the output waveguide # 1, 25, the first reflecting surface -J central unit and the output waveguide # Νώ connection.

具体实施方式 detailed description

[0040] 下面结合附图和实施例对本发明作进一步说明。 Drawings and embodiments of the present invention will be further described [0040] below in conjunction.

[0041] 图1是本发明所述的一种信道损耗均匀的波导光栅器件的原理示意图,从输入波导I进入的入射光在输入平板波导区2发散后被光栅单元阵列3中的每个单元所接收,经其透射或反射后通过输出平板波导区4射向输出波导阵列5,由于干涉效应使得不同波长的光在不同的输出波导处形成相长相干而输出。 [0041] FIG. 1 is a schematic view of the principle of a uniform loss of a waveguide grating device according to the present invention, the channel from the input waveguide into the incident light I each cell in the input array of barrier elements 2 after diverging slab waveguide region 3 received, through which the output slab waveguide region 4 toward the output waveguide array 5 is transmitted or reflected, such that an interference effect due to the light of different wavelengths and outputs the formed dry phase looks different output waveguides. 与传统的波导光栅器件不同,本发明所述光栅单元阵列3中的每个单元的中心出射光,按一定的角度分布函数变化,经输出平板波导区4的传输后,指向偏离输出波导阵列5的中心,以此分散光栅单元阵列3中各单元输出的光峰值能量在输出波导阵列5上的分布,从而达到提高各输出信道插入损耗均匀性的要求。 And various conventional waveguide grating devices, the present invention is in the center of each cell 3 of barrier element array light emitted by a certain angular distribution function of the change, after the transmission of the output slab waveguide region 4, point offset from the output waveguide array 5 center, thus dispersing barrier element array 3 to the output waveguide array 5 of the distribution of the light output from the peak energy of each unit, so as to improve the respective output channel insertion loss uniformity requirements.

[0042] 因为集成光波导光栅器件主要有阵列波导光栅和蚀刻衍射光栅,下面将以这两种器件为例详细的介绍本发明所述的一种信道损耗均匀的波导光栅器件。 [0042] Since the main integrated optical waveguide grating device array waveguide grating and the diffraction grating is etched, the following two devices will be described in detail as an example of the A channel of the present invention, a uniform loss waveguide grating device.

[0043] 传统阵列波导光栅的各光栅单元波导的出口朝向如图2(a)所示,均指向输出波导阵列5的中心。 [0043] The outlet of each of the conventional arrayed waveguide grating waveguide grating elements toward the FIG. 2 (a) as shown, are directed to the center of the output waveguide array 5. 由于光在波导·中传输的基模模场分布可以用高斯分布来近似,所以当光经过波导阵列3a的传输,再由输出平板波导区4的衍射,最后在输出波导阵列5入口所在的罗兰圆6上形成干涉,其光能量的最大值将出现在输出波导阵列5的中心,那么在一个自由光谱范围内,边缘的输出波导15和16与输出波导阵列最中心的一根波导17之间的插入损耗就有3dB的差别,如图2(b)所示。 Since the light in the fundamental mode mode field waveguide-transmitted distribution can be approximated by a Gaussian distribution, so when light passes through the waveguide array transmission 3a, and then the diffractive slab waveguide region 4 by the output, and finally the output waveguide array 5 inlet located Roland then in a free spectral range, between 15 and output waveguide array 16 with a center-most edge of the output waveguide 17 of the waveguide 6 is formed on the interferometric circle, the center of which is the maximum light energy in the output waveguide array 5 will appear, the insertion loss of 3dB have differences, as shown in FIG 2 (b) shown in FIG. 如果要求输出波导阵列5的各信道之间损耗均匀性至少小于ldB,那么输出波导阵列5边缘的波导就不满足要求而不能被使用。 If the requested output channel waveguide array 5 between the loss of uniformity of at least less than ldB, the output waveguide array 5 does not meet the requirements of the edge of the waveguide can not be used. 基于这个原因,改变波导阵列3a的各波导朝向,使波导阵列3a中的每根光栅单元波导的中心朝向位置按设定的角度分布函数指向输出阵列波导5,该角度分布函数如下: For this reason, changing the waveguide array 3a of each waveguide toward the waveguide array each barrier element 3a toward the center of the waveguide in a position angularly set point distribution function of the output waveguide array 5, the angular distribution function as follows:

Figure CN102902010BD00071

[0045] 其中,^是各光栅单元波导的指向与输出平板波导区中心线8的夹角,左表示第左 [0045] where ^ is the angle pointing in the output slab waveguide grating elements of each waveguide centerline 8, the left represents the left

根光栅单元波导,以波导阵列最中间的第O根光栅单元波导11作为分界,该波导以上的光栅单元波导的A值为正,以下的光栅单元波导的A值为负。 Root waveguide grating elements to the first intermediate waveguide array most O unit waveguide fiber grating 11 as the boundary, the above waveguide grating waveguide unit A is positive, the A waveguide grating means is negative. 波导阵列中第/个光栅单元波导与输出波导#1的连线12与输出平板波导区中心线8的夹角为β,由于对称性,波导阵列中的第-/个光栅单元波导与输出波导#Nch的连线13与输出平板波导区中心线8的夹角为_β,α是第J根光栅单元波导和输出波导阵列中心的连线20与输出平板波导区中心线8的夹角,根据对称性,波导阵列中第_/根光栅单元波导与输出波导阵列的中心的连线21与输出平板波导区中心线8的夹角为-α,Y是波导阵列第J根光栅单元波导的指向与输出平板波导区中心线8的夹角,其值介于α和β之间,即,幂指数η是一个大于O的实数。 A waveguide array with the output connections of 1 / # raster units waveguides 12 and the center line of the angle between the output slab waveguide region for beta] 8, due to the symmetry, the first waveguide array - / raster units and the waveguide output waveguide #Nch connection 13 with the centerline of the angle between the output slab waveguide region 8 is _β, α is the angle of the J connecting waveguide fiber grating means and an output waveguide array 20 and the center of the output slab waveguide region 8 of the centerline, By symmetry, the first waveguide array _ / fiber grating and the waveguide unit 21 and the connection angle between the centerline of the output slab waveguide region 8 of the output waveguide array as a center -α, Y is J-th root of the waveguide array waveguide grating elements pointing angle to the output slab waveguide region of the center line 8, a value between α and beta], i.e., the exponent is greater than η is a real number of O.

[0046] 本发明中波导阵列3a中各光栅单元波导出口朝向位置的变化是在传统阵列波导光栅结构的基础上,不改变波导阵列3a出口各波导中心在光栅圆7上的位置,只是沿该中心略微转过一个角度,如图3(c)所示,传统阵列波导光栅的第J根光栅单元波导18经过角度偏移后变为了波导阵列3a的第J根光栅单元波导9,其出口中心朝向输出波导16,同理传统阵列波导光栅的第_/根光栅单元波导19经过角度变化后变为第-J根光栅单元波导10,其出口中心朝向输出波导15,经过角度变化后所有光栅单元波导不再均朝向输出波导阵列5的中心,而是朝向如图3(b)所示的以输出波导15和输出波导16为边界的输出波导阵列入口所在的罗兰圆6的一段,图3(b)是本发明所述的阵列波导光栅的输出平板波导区的放大图。 [0046] variations of the present invention, the waveguide array 3a of each barrier element waveguide outlet toward the position is based on a conventional arrayed waveguide grating structure, without changing the position of the waveguide array 3a outlet of each center of the waveguide in the grating circle 7, except along the Center slightly through an angle, as shown in FIG 3 (c), the conventional arrayed waveguide grating waveguide grating elements of the root of J 18 through an angle of deviation becomes 9, the outlet 3a of the center of the waveguide array unit waveguide fiber grating J toward the output waveguide 16, similarly conventional arrayed waveguide grating of _ / fiber grating waveguide unit 19 after switching to the second angle change unit -J fiber grating waveguide 10, its outlet towards the center of the output waveguide 15, after the angle change all barrier elements waveguides toward the output waveguides are no longer the center of the array 5, but the orientation shown in FIG. 3 (b) to output waveguides 15 and output waveguides 16 is the output section of the Rowland circle waveguide array boundary where the inlet 6, and FIG. 3 ( b) is an enlarged view of the arrayed waveguide grating output slab waveguide region according to the present invention.

[0047] 在关系式(I)中有两个自由参量K和n,一个自由光谱范围内良好的输出信道插入损耗均匀性的获得将是这两个参量最佳优化的结果。 [0047] There are two free parameters in the relationship K and n of formula (I), the free spectral range of a good output channel insertion loss uniformity to obtain the best result would be to optimize these two parameters.

[0048] 图8给出了传统蚀刻衍射光栅的结构示意图,各单元反射面反射的光线的能量最大值聚焦点在输出波导阵列5的中心。 [0048] FIG. 8 shows a schematic structure of a conventional etched diffraction grating, the maximum energy of the light reflecting surface of each unit of the focal point in the center of the array of output waveguides 5. 如果设定蚀刻衍射光栅的衍射级次为m,输出波导 If the set of etching the diffraction grating diffraction order is m, the output waveguide

阵列5传输光的波长从下而上为為,最中心的波导传输的光波长为,那么对于传 5 array of wavelength of transmitted light is from the bottom of the optical waveguide transmission wavelength is most central, then to pass

统的蚀刻衍射光栅,各单元反射面的角度朝向均是以波长为太的m级衍射获得闪耀来设定的。 Conventional etching the diffraction grating, the angle of the reflecting surface units are based on the orientation of the wavelength of m-th order diffracted so obtained to set the blaze. 若用高斯分布来近似光在波导中传输的基模模场,那么由各单元反射面闪耀的能量最大值将汇聚在输出波导阵列5的中心,而边缘信道的插入损耗与中心信道就会有至少3dB的差别。 When approximated by a Gaussian distribution in the fundamental mode light transmitted in the waveguide mode field, the respective reflecting surface units will converge shining energy maximum at the center of the array of output waveguides 5, insertion loss and the central edge of the channel will be a channel difference of at least 3dB. 基于这个原因,改变单元反射面的角度朝向,使输入波导I入射到各单元反射面中心的反射光线按设定的角度分布函数指向输出波导阵列5,该角度分布函数如下: For this reason, changing the angle of the reflecting surface of the unit toward the input waveguide I reflected light rays incident to the center of the reflecting surface units set angularly directed distribution function of the output waveguide array 5, the angular distribution function as follows:

[0049] [0049]

Figure CN102902010BD00081

[0050] 其中&表示蚀刻光栅3b第々个单元反射面中心反射光线的指向与输出平板波导区中心线8的夹角,A表示蚀刻光栅的第A个反射面,以蚀刻光栅的中心点作为分界点,该分界点以上的单元反射面对应的々值为正,分界点以下的々值为负。 [0050] where represents & etched grating 3b of the reflecting surface units 々 center of the reflected light directed to the output slab waveguide region included angle centerline 8, A represents A reflecting surface is etched grating, the center point of the grating is etched as boundary point, above the demarcation point unit value corresponding to the reflection face 々 positive, following 々 demarcation point is negative. 戽表示蚀刻光栅的第/个单元反射面的中心与输出波导#1的连线24与输出平板波导区中心线8的夹角,爲表示蚀刻光栅的第_/个单元反射面的中心与输出波导#Νώ的连线25与输出平板波导区中心线8的夹角,巧表示蚀刻光栅3b的第J个单元反射面中心与输出波导阵列中心的连线22与输出平板波导区中心线8的夹角,表示蚀刻光栅的第-J个单元反射面中心与输出波导阵列中心的连线23与输出平板波导区中心线8的夹角是蚀刻光栅第J个反射面中心反射光线的指向与输出平板波导区中心线8的夹角,min(|o4|a2|)^y Smas(|爲|,|爲j),幂指数η是一个大于O的实数。 # Denotes the angle bucket waveguide connecting an output slab waveguide 24 and the central region of the center line 8 / reflection surface units etched grating and the output, is a center of the output _ / reflection surface units etched grating # Νώ connection waveguide 25 and the output slab waveguide region included angle centerline 8, the etching represents Qiao J grating 3b of the reflecting surface units of the center of the output waveguide array 22 with the center line connecting the center line of the output slab waveguide region 8 angle, represents the angle wires 23 and the output slab waveguide region -J centerline 8 of the reflecting surface units of the center of the output waveguide array is the center point of the grating is etched with an etching raster output J-th reflecting surface reflecting light centers 8 the center line of the slab waveguide region angle, min (| o4 | a2 |) ^ y Smas (| is |, | as j), the exponent η is a real number greater than O is.

[0051]图9(a)是本发明所述的蚀刻衍射光栅的结构示意图,其中蚀刻光栅的单元反射面中心反射光线角度转动的示意图如9(b)。 [0051] FIG. 9 (a) is a schematic diagram of a diffraction grating structure is etched according to the present invention, a schematic diagram of a central unit wherein the reflective surface etched grating angular rotation as reflected light 9 (b).

[0052] 本发明是在不改变蚀刻光栅结构的基础上,使各单元反射面绕面中心稍微转动朝向角度,如图9 (b)所示,蚀刻光栅3b的第I个单元反射面转动朝向角度,使第I个单元反射面中心反射的光线的指向从输出波导阵列5的中心转变为输出波导#1,该单元反射面 [0052] The present invention is based on the etching without changing the grating structure, each unit reflection surface is slightly rotated about the center plane orientation angle, FIG. 9 (b), the first reflecting surface units I etched grating is rotated toward 3b angle, the first reflecting surface I units center of the reflecting light rays directed from the output waveguide array 5 into the center of the output waveguide # 1, the reflecting surface unit

闪耀的光波长从4转变为Λ,同理转动蚀刻光栅3b的第-J个单元反射面的朝向角度,使 Shining light wavelength conversion from 4 to Lambda, -J Similarly rotational orientation angle of the reflecting surface units etched grating 3b, so that

第-J个单元反射面中心反射的光线的指向从输出波导阵列5的中心转变为输出波导#凡,, -J units of reflection surfaces of the center point of light reflected from the center of the output waveguide transition for the output waveguide array 5 ,, where #

闪耀的光波长从^转变为,其他的单元反射面中心反射的光线的朝向角度的变化服从 Change in orientation angle of the light shining from the wavelength conversion as ^, the other reflection surface unit center light reflected obedience

公式(2)从而使各单元反射面闪耀的光波长从集中在^的情况转变到分散4与之间的情况,对应的由各单元反射面闪耀的光峰值能量的最大值也分散到了输出波导15和16之间,从而实现均匀信道损耗均匀性的目的。 Equation (2) such that each cell blazed wavelength light reflective surface transition from situation to situation concentrated dispersion ^ 4 between the maximum value corresponding to the respective reflecting surface units shining light peak energy output waveguide to be dispersed between 15 and 16, thereby achieving the purpose of a uniform channel loss uniformity.

[0053] 由于传统的输出波导阵列5的各波导入口的朝向均是指向光栅单元阵列3的出口中心,那么为了减小本发明所述的波导光栅器件带来的额外损耗,各输出波导入口的朝向也应该按照接收最大光能量来优化。 [0053] Since the conventional waveguide toward the output waveguide array each inlet 5 are directed outlet barrier element array center 3, then in order to reduce the additional losses caused by the waveguide grating device of the present invention, each of the output waveguide entrance toward the maximum should be in accordance with the received light energy to optimize.

[0054] 图10是采用本发明所述的NXN端口的光波长路由器示意图,如图所示输入平板波导区2及其交界的输入波导I和光栅阵列3的入口的结构设计与输出平板波导区4及其交界的输出波导阵列5和光栅波导阵列3的出口的结构设计完全对称,那么当光从输出波导阵列5的中心波导输入时,N个输入波导将分别接收到各自波导对应波长的光能量,并且各信道的插入损耗非均匀性小于ldB,也就是说无论以输入波导还是输出波导作为输入,最终在输出各信道接收到的光能量之间的插入损耗非均匀性都小于ldB。 [0054] FIG. 10 is a schematic view of using NXN optical wavelength router port according to the present invention, as shown in the input slab waveguide region 2 and the junction of flat design and output I and the inlet 3 of the input waveguide grating waveguide array region 4 and the junction of the output waveguide array grating waveguide array 5 and the outlet 3 of the structural design completely symmetrical, then the array when the center of the light output from the waveguide input waveguide 5, N input optical waveguides to receive the wavelength corresponding to a respective waveguide energy, and each channel insertion loss of less than ldB non-uniformity, that is to say whether the input or output waveguide as the input waveguide, the insertion loss between non-uniformity in the final output of the light energy received by each channel is less than ldB.

[0055] 接着,将以一个具体案例对本发明作进一步说明: [0055] Next, a concrete case will further illustrate the present invention:

[0056] 以SiO2波导材料为例,波导尺寸为6 μ mX 6 μ m,芯层折射率为1.47,包层折射率为1.46,设计一个IX 16的阵列波导光栅。 [0056] In an example SiO2 waveguide material, the waveguide size of 6 μ mX 6 μ m, a refractive index of 1.47 of the core layer, the cladding refractive index of 1.46, a design of the arrayed waveguide grating of IX 16. 根据关系式(I)需要选足1和η的值来确定 Is determined according to the relationship (I) is selected from the foot required value of 1 and η

各光栅单元波导偏离输出平板波导区中心线的角度民。 Each barrier element output waveguide deviates from the angle of the centerline China slab waveguide region. 根据所选波导材料与尺寸,算出 Depending on the selected materials and dimensions of the waveguide, is calculated

α=0.142,β=0.192,K将在该范围内取值。 α = 0.142, β = 0.192, K value will be within the range. 首先,分别设定幂指数η=1、2、3,让波导阵列的 First, each set of exponent η = 1,2,3, so that the waveguide array

第/根光栅单元波导9的朝向角度^在α与β间变化,而其他的光栅单元波导按照公式(I) Of / root waveguide grating elements 9 toward the angle α varies between ^ and β, and the other units of the waveguide grating according to Formula (I)

的角度八变化,得到在不同的幂指数下,损耗非均匀性与朝向角度^的关系,如图4所示: Eight angle changes, the relationship obtained at different exponent, and loss of non-uniformity of the orientation angle ^, shown in Figure 4:

幂指数η固定时,随着朝向角度K的增大,损耗非均匀性变小;在同一朝向角度下,幂级数次数η在一定范围内变化时,损耗非均匀性先变化到最小再逐渐增大(图4中,幂指数η=3,朝向角度I为■^时,损耗非均匀性为负值是因为中心通道的损耗大于边缘通道)。 When the exponent η fixed, as the orientation angle K is increased, the loss of the small non-uniformity; at the same orientation angle, frequency and power series η vary within a certain range, the loss of non-uniformity to a minimum and then gradually changes to increases (in FIG. 4 when, exponent η = 3, I is the orientation angle ■ ^, loss of non-uniformity is negative because the loss is greater than the edge of the central passage channel). 因此设计中,在兼顾版图布局的情况下可以有两种方案选择幂指数η和朝向角度f来得到最优的损耗非均匀性:方案一,选定幂指数后,通过改变最边缘波导的朝向角度来实现良好的损耗非均匀性;方案二,选定波导朝向角度后,通过改变幂指数来实现良好的损耗非均匀性。 Thus the design, both in the case where the layout of the layout may have two options and choice of exponent η f to get the best orientation angle of the non-uniformity loss: a program, the selected exponent, toward the outermost edge of the waveguide by changing the loss angle to achieve a good non-uniformity; scheme II, the orientation angle is selected to achieve a good non-uniformity by varying the loss exponent waveguide. 图5是对应于图4各条件下得到的相对于传统阵列波导光栅引入的额外损耗。 FIG 5 is obtained corresponding to additional losses under the respective conditions of FIG. 4 with respect to the introduction of a conventional arrayed waveguide grating. 从图4和图5可以看出当幂指数n=3,朝向角度7 =0.17时,各信道的损耗非均匀性小于0.4dB,额外损耗为3dB,最边缘信道损耗为3.4dB ;当幂指数n=3,朝向角度K =0.15时,各信道的损耗非均匀性小于ldB,额外损耗为2dB,也就是说最边缘信道损耗为3dB。 From Figures 4 and 5 can be seen that when the exponent n = 3, 7 = 0.17 when the orientation angle of each channel is less than 0.4dB loss of non-uniformity, additional loss is 3dB, most 3.4dB loss of the edge channels; if the exponent n = 3, when the orientation angle K = 0.15, the loss of non-uniformity of each channel is less than ldB, 2dB additional loss, that is to say most edge channel loss 3dB. 后者最差的边缘信道的损耗虽然与传统设计一样,但是损耗非均匀性却比传统设计小2dB。 The latter edge channel worst loss while the conventional designs, but the loss of non-uniformity than the conventional design of small 2dB. 故以此参数,即幂指数n=3,朝向角k =0.15来模拟本发明所述的阵列波导光栅频谱响应,同时保证各输出波导接收能量最大化。 So this parameter, i.e. the exponent n = 3, k = 0.15 angle toward the arrayed waveguide grating to simulate the spectral response of the present invention, while ensuring maximum energy received in each output waveguide. 图6是该情况下的波导阵列3a的各光栅单元波导偏离输出平板波导区中心线8的角度4的分布情况,为了作对比,传统阵列波导光栅中各波导对应的角度和按 6 FIG. 3a is an array waveguide grating in this case each distribution unit output waveguide deviates from the angle of the center line 8 of the slab waveguide region 4, in order for comparison, the corresponding angle in each of the conventional arrayed waveguide grating waveguide and the press

照本发明所述的(对应?^ =0.17的情况)各波导对应的角度也在图6中给出。 (Corresponding to? ^ = 0.17 case) according to the present invention is given as an angle corresponding to each waveguide also FIG. 6. 图2(b)给出了在传统阵列波导光栅结构设计下其一个FSR内具有3dB损耗非均匀性的光谱图。 FIG 2 (b) shows the non-uniformity having a 3dB loss spectrum within which the FSR in a conventional arrayed waveguide grating design. 从图7(a)和图7(b)采用本发明的阵列波导结构得到的输出频谱图中可见,在一个自由传输范围内输出信道损耗非均匀性分别为0.4dB和ldB,很明显可以看到本发明所述的阵列波导光栅实现了对各输出信道插损耗均匀性的提高,并且由输出频谱图可见对应N个信道(该实例中N=16)的波导光栅,所述N个信道占据所述阵列波导光栅的整个自由光谱范围,即信道间隔为阵列波导光栅的自由光谱范围的1/N。 (A) and 7 (b) using the output spectrum of the arrayed waveguide structure of the present invention obtained can be seen from FIG. 7, the output channel loss nonuniformity were 0.4dB and ldB in a free transmission range, it is obvious to see the arrayed waveguide grating according to the present invention achieves improved uniformity for each output channel insertion loss, and the output spectrum is visible corresponding to the N channels (in this example N = 16) of the waveguide grating, the N channel occupies the free spectral range of the entire array waveguide grating, i.e. a channel spacing of the free spectral range of the waveguide grating array of 1 / N.

[0057] 上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。 [0057] The above examples are intended to illustrate the invention rather than limit the invention, and any modifications and variations within the scope of spirit of the present invention claims, the present invention is made, it is within the scope of the present invention. .

Claims (6)

  1. 1.一种信道损耗均匀的波导光栅器件,它包括至少一条输入波导(I)、输入平板波导区(2)、光栅单元阵列(3)、输出平板波导区(4)和输出波导阵列(5),从输入波导⑴进入的入射光在输入平板波导区(2)发散后被光栅单元阵列(3)中的每个单元所接收,经其透射或反射后通过输出平板波导区(4)射向输出波导阵列(5);其特征在于:所述光栅单元阵列(3)中的每个单元的中心出射光,按一定的角度分布函数变化,经输出平板波导区(4)的传输后,指向偏离输出波导阵列(5)的中心,以此分散光栅单兀阵列(3)中各单兀输出的光峰值能量在输出波导阵列(5)上的分布,从而达到提高各输出信道插入损耗非均匀性的要求; 所述的光栅单元阵列(3)由一系列长度等差级数递增的波导阵列(3a)组成; 所述波导阵列(3a)中每根光栅单元波导在输出平板波导区(4)的入口处的朝向按一定的角度分 A uniform channel loss waveguide grating device, which comprises at least one input waveguide (the I), an input slab waveguide region (2), barrier element array (3), output slab waveguide region (4) and the output waveguide array (5 ) from the input waveguide into the incident divergence after ⑴ array of barrier elements in the input slab waveguide region (2) (3) received in each cell, through which the transmitted or reflected by the output slab waveguide region (4) emitted the output waveguide array (5); characterized in that: the center of each cell of the array of barrier elements (3) in the outgoing light, a certain angular distribution function of the change, the transmission through the output slab waveguide region (4), center point offset from the output waveguide array (5), in order dispersion grating single Wu array light peak energy (3) in each single Wu output in the output distribution in the waveguide array (5), so as to improve the respective output channel insertion loss non- uniformity requirements; the array of barrier elements (3) by a series of incremental arithmetic progression length of the waveguide array (3a) composition; said waveguide array (3a) in each of the grating elements in the output slab waveguide region waveguide ( 4 toward) the inlet of a certain angle points 函数指向输出波导阵列(5),所述的角度分布函数满足如下关系式: Point function output waveguide array (5), the angular distribution function satisfies the following relationship:
    Figure CN102902010BC00021
    其中,9,是各光栅单元波导的指向与输出平板波导区中心线⑶的夹角,k表示第k根光栅单元波导,Y是第I根光栅单元波导(9)的指向与输出平板波导区中心线(8)的夹角,幂指数η是一个大于O的实数; 所述角度Y的值介于α和β之间,即α < Y < β,其中α是第I根光栅单元波导和输出波导阵列中心的连线(20)与输出平板波导区中心线⑶的夹角,β是第I根光栅单元波导和输出波导#1的连线(12)与输出平板波导区中心线(8)的夹角。 Wherein, 9, is the angle between the center line and the output is directed ⑶ plate waveguide grating elements of each waveguide region, k represents the k-th waveguide grating elements, Y is I, unit waveguide fiber grating (9) is directed to the output slab waveguide region angle between the center line (8), the exponent η is a real number greater than O; and Y value of the angle beta] and [alpha] is between, i.e. α <Y <β, where I [alpha] is the root of the grating elements and the waveguide connection (20) of the center of the output waveguide array and the output slab waveguide region ⑶ centerline angle, β is the first unit I fiber grating waveguide and the output waveguide # connection (12) an output slab waveguide region and the center line (8 ) angle.
  2. 2.根据权利要求1所述的一种信道损耗均匀的波导光栅器件,其特征在于:所述的角度分布函数中幂指数η和角度Y是根据对各输出信道的插入损耗非均匀性,即各输出信道插入损耗最大值与最小值之差,进行优化所得;经过优化后得到的幂指数η为3。 2. A channel according to a uniform loss waveguide grating device claimed in claim, characterized in that: the angular distribution function of exponent η and Y is an angle that is non-uniformity of insertion loss of the respective output channels, each output channel insertion loss is the difference between maximum and minimum values, the resulting optimization; after optimization of the obtained exponent η 3.
  3. 3.根据权利要求1所述的一种信道损耗均匀的波导光栅器件,其特征在于:所述光栅单元阵列(3)是由一系列单元反射面构成的蚀刻光栅(3b),从输入波导(I)在输入平板波导区⑵的入口端点到各单元反射面中心再到输出波导阵列(5)在输出平板波导区⑷的入口中心的总光学长度成等差级数递增; 所述的蚀刻光栅(3b)中的各单元反射面朝向使得从输入波导(I)入射到该反射面单元中心的光线的反射光线按一定的角度分布函数指向输出波导阵列(5),所述的角度分布函数满足如下关系式: 3. A channel according to a uniform loss waveguide grating device claimed in claim, wherein: the array of barrier elements (3) are constituted by a series of unit reflective surface etched grating (3B), from the input waveguide ( I) the input slab waveguide region at the inlet end to the respective units of ⑵ reflective surface and then to the center of the output waveguide array (5) in incremental arithmetic progression to the total optical inlet center ⑷ output slab waveguide region length; etching said gratings each unit reflection surface (3b) is such that the reflected light toward the light reflecting unit center plane with a certain angle distribution function from the input waveguide (I) is incident point to the output waveguide array (5), the angular distribution function satisfies the following relationship:
    Figure CN102902010BC00022
    其中Θ „表示蚀刻光栅第k个单元反射面中心反射光线的指向与输出平板波导区中心线(8)的夹角,Y是第I个单元反射面(9)中心反射光线的指向与输出平板波导区中心线(8)的夹角,min (| aj | , | a 2)) ^ y ( max (| β 2|), P1表示蚀刻光栅的第I个单元反射面的中心与输出波导#1的连线(24)与输出平板波导区中心线(8)的夹角,β2表示蚀刻光栅的第-1个单元反射面的中心与输出波导#Νώ的连线(25)与输出平板波导区中心线(8)的夹角,Ci1表示蚀刻光栅(3b)的第I个单元反射面中心与输出波导阵列中心的连线(22)与输出平板波导区中心线(8)的夹角,Ci2是蚀刻光栅第I个反射面中心反射光线的指向与输出平板波导区中心线(8)的夹角,幂指数η是一个大于O的实数。 Wherein Θ "k denotes the angle of the etched grating units reflecting surface center point of the reflected light output slab waveguide region and the center line (8), Y is I, the reflecting surface units (9) and the center point of the reflected light output plate the angle between the center line of waveguide region (8), min (| aj |, | a 2)) ^ y (max (| β 2 |), P1 represents the center of the reflecting surface units I etched grating and the output waveguide # angle connection (24) an output slab waveguide region and the center line (8), β2 represents the center of the reflecting surface units -1 and etching the grating wires (25) and the output waveguides # Νώ output slab waveguide angle region center line (8), Ci1 represents etched grating (3b) of the reflecting surface I units center of the output waveguide connecting the center of the array (22) and the output slab waveguide region center line (8) of the angle, Ci2 is the I-th grating etched reflecting face center point of the reflected light output slab waveguide region and the center line (8) of the angle, the exponent η is a real number greater than O is.
  4. 4.根据权利要求1所述的一种信道损耗均匀的波导光栅器件,其特征在于:所述输出波导阵列(5)中的每一个波导的朝向偏离光栅单元阵列(3)的中心。 4. A channel according to a uniform loss waveguide grating device claimed in claim wherein: each of said output waveguide array toward (5) offset from the center of the waveguide array of barrier elements (3).
  5. 5.根据权利要求1所述的一种信道损耗均匀的波导光栅器件,其特征在于:对应N个信道的波导光栅器件,N个信道占据所述波导光栅器件的整个自由光谱范围,即信道间隔为自由光谱范围的1/Ν。 According to claim 1. A channel loss uniform waveguide grating device claimed in claim, wherein: the corresponding N channel waveguide grating device, the N channel occupies the entire free spectral range of the waveguide grating device, i.e. channel spacing the free spectral range 1 / Ν.
  6. 6.根据权利要求1所述的一种信道损耗均勻的波导光栅器件,其特征在于:对应输入波导和输出波导数目相同的波导光栅器件,所述输入平板波导区(2)的输入波导阵列和光栅单元阵列(3)的入口处的结构设计与输出平板波导区(4)的输出波导阵列和光栅单元阵列⑶的出口处得结构设计对称,从而构成NXN端口的光波长路由器。 6. A channel according to a uniform loss waveguide grating device claimed in claim, wherein: the same number corresponding to the input waveguide and the output waveguide of the waveguide grating device, said input slab waveguide array waveguide region (2) and and an array of output waveguides at the outlet of barrier element array output ⑶ flat structural design and the inlet of the barrier element array (3) of the waveguide region (4) have a symmetrical design, thereby constituting the optical wavelength router NXN port.
CN 201210419343 2012-10-26 2012-10-26 Waveguide grating device with uniform channel loss CN102902010B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210419343 CN102902010B (en) 2012-10-26 2012-10-26 Waveguide grating device with uniform channel loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210419343 CN102902010B (en) 2012-10-26 2012-10-26 Waveguide grating device with uniform channel loss

Publications (2)

Publication Number Publication Date
CN102902010A true CN102902010A (en) 2013-01-30
CN102902010B true CN102902010B (en) 2013-10-30

Family

ID=47574345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210419343 CN102902010B (en) 2012-10-26 2012-10-26 Waveguide grating device with uniform channel loss

Country Status (1)

Country Link
CN (1) CN102902010B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472534B (en) * 2013-09-13 2015-09-09 河南仕佳光子科技有限公司 The arrayed waveguide grating edge channel achieve planarization and uniformity loss method
CN104238008B (en) * 2014-09-10 2017-05-03 浙江大学 Reduced frequency deviation n × n array waveguide grating optical wavelength router
CN105547478B (en) * 2016-01-27 2018-02-16 浙江大学 Etching the diffraction grating based imaging spectrometer

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351262A (en) 1992-09-10 1994-09-27 Bell Communications Research, Inc. Multi-stripe array grating integrated cavity laser
CN1171559A (en) 1996-07-01 1998-01-28 康宁股份有限公司 Multiplexer/demultiplexer with flattened spectral response
US6421481B1 (en) 2000-02-04 2002-07-16 Zolo Technologies, Inc. Apparatus and method for producing a flat-topped filter response for diffraction grating (De) multiplexer
US20050135744A1 (en) 2001-08-27 2005-06-23 Greiner Christoph M. Amplitude and phase control in distributed optical structures
CN1867843A (en) 2003-11-28 2006-11-22 日本发条株式会社 Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide
CN202904056U (en) 2012-10-26 2013-04-24 浙江大学 Waveguide grating device with uniform channel loss

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5351262A (en) 1992-09-10 1994-09-27 Bell Communications Research, Inc. Multi-stripe array grating integrated cavity laser
CN1171559A (en) 1996-07-01 1998-01-28 康宁股份有限公司 Multiplexer/demultiplexer with flattened spectral response
US6421481B1 (en) 2000-02-04 2002-07-16 Zolo Technologies, Inc. Apparatus and method for producing a flat-topped filter response for diffraction grating (De) multiplexer
US20050135744A1 (en) 2001-08-27 2005-06-23 Greiner Christoph M. Amplitude and phase control in distributed optical structures
CN1867843A (en) 2003-11-28 2006-11-22 日本发条株式会社 Multichannel array waveguide diffraction grating multiplexer/demultiplexer and method of connecting array waveguide and output waveguide
CN202904056U (en) 2012-10-26 2013-04-24 浙江大学 Waveguide grating device with uniform channel loss

Also Published As

Publication number Publication date Type
CN102902010A (en) 2013-01-30 application

Similar Documents

Publication Publication Date Title
Janz et al. Planar waveguide echelle gratings in silica-on-silicon
US6266464B1 (en) Optical arrayed waveguide grating devices
US4746186A (en) Integrated optical multiplexer/demultiplexer utilizing a plurality of blazed gratings
US5165001A (en) Guided-wave optical branching device
Zaoui et al. Bridging the gap between optical fibers and silicon photonic integrated circuits
US20150098697A1 (en) System and method for mode division multiplexing
US6546161B2 (en) No polarization dependent waveguide type optical circuit
US6434303B1 (en) Optical waveguide slab structures
US6591038B1 (en) Optical interleaver and demultiplexing apparatus for wavelength division multiplexed optical communications
US5002350A (en) Optical multiplexer/demultiplexer
US5692076A (en) Antiresonant waveguide apparatus for periodically selecting a series of at least one optical wavelength from an incoming light signal
US6553165B1 (en) Optical waveguide gratings
US6049644A (en) Optical routing device having a substantially flat passband
US7680371B2 (en) Interface device for performing mode transformation in optical waveguides
US20130136389A1 (en) Optical device with echelle grating and wavefront tailoring
US6968096B2 (en) Diffraction device using photonic crystal
US6873766B2 (en) Efficient waveguide arrays with nearly perfect element patterns
Zhong et al. Focusing-curved subwavelength grating couplers for ultra-broadband silicon photonics optical interfaces
JP2002162528A (en) Planar optical circuit and optical circuit
US6442308B1 (en) Optical wavelength multiplexer/demultiplexer with uniform loss
US4755014A (en) Refractive optical waveguide interface and lens
US6493487B1 (en) Optical waveguide transmission devices
Kobayashi et al. Micro-optic devices for fiber-optic communications
US6396977B1 (en) Wavelength router with a wide passband realized using two gratings of opposite angular dispersions
US6219471B1 (en) Optical device having equal length waveguide paths

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted