CN102865062A - Physical analog device for electrical logging detector entity built by ultrafiltration - Google Patents

Physical analog device for electrical logging detector entity built by ultrafiltration Download PDF

Info

Publication number
CN102865062A
CN102865062A CN2012103694693A CN201210369469A CN102865062A CN 102865062 A CN102865062 A CN 102865062A CN 2012103694693 A CN2012103694693 A CN 2012103694693A CN 201210369469 A CN201210369469 A CN 201210369469A CN 102865062 A CN102865062 A CN 102865062A
Authority
CN
China
Prior art keywords
layer
analog
simulation
formation
ultrafiltration
Prior art date
Application number
CN2012103694693A
Other languages
Chinese (zh)
Other versions
CN102865062B (en
Inventor
鞠晓东
乔文孝
卢俊强
Original Assignee
中国石油天然气集团公司
中国石油大学(北京)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气集团公司, 中国石油大学(北京) filed Critical 中国石油天然气集团公司
Priority to CN201210369469.3A priority Critical patent/CN102865062B/en
Publication of CN102865062A publication Critical patent/CN102865062A/en
Application granted granted Critical
Publication of CN102865062B publication Critical patent/CN102865062B/en

Links

Abstract

The invention discloses a physical analog device for an electrical logging detector entity built by ultrafiltration. The physical analog device comprises a lower surrounding rock stratum analog layer, an original target layer stratum analog layer and an upper surrounding rock stratum analog layer which are connected with one another from bottom to top, wherein a target layer invaded zone stratum analog layer is arranged on the inner side of the original target layer stratum analog layer; a wellhole is formed in the central axial direction of the analog device; a detector is placed in the wellhole; an outer circular zone is arranged at the periphery of the analog device; a far-end loop electrode of the detector is arranged on the outer circular zone; each analog layer of the lower surrounding rock stratum analog layer, the original target layer stratum analog layer, the upper surrounding rock stratum analog layer and the target layer invaded zone stratum analog layer comprises a container wall which is formed by a flat ultrafiltration membrane in a hot-melting or adhering mode; insulating micro-beads are respectively filled in each container wall; inorganic salt ion solution with corresponding concentration is injected into each analog layer to form each analog layer with set resistivity; and a plurality of conductivity probes are arranged in each analog layer.

Description

超滤法构建电测井探测器实体物理模拟装置 Construction of a physical entity detector electrical logging simulation apparatus Ultrafiltration

技术领域 FIELD

[0001] 本发明属于石油电法测井装备研发领域,其涉及ー种能够对全尺寸电测井探測器进行复杂地层测井响应测试的实体物理模拟装置,用于验证电测井探測器的理论推导和数值模拟计算結果,特别是涉及ー种超滤法构建电测井探测器实体物理模拟装置。 [0001] The present invention belongs to the field of well logging equipment research oil electrical method, which involves ー species capable of complex formation logging log the whole size of the electrical detector means responding entity physical simulation tests for verifying electrical logging probe theoretical analysis and numerical simulation results, particularly to construct a physical entity electrically logging probe ultrafiltration simulation apparatus ー species.

背景技术 Background technique

[0002] 探測器物理模拟装置作为专用装备,用于对I : I全尺寸探測器进行测井响应特性(纵向、径向探測特性,測量精度,纵向分辨率,等)的物理模拟,是对探測器设计中的数值模拟算法以及探測器制作方法和エ艺的关键性验证环节,并为探测器优化设计提供可靠的依据。 [0002] The detector apparatus as a dedicated physical simulation equipment for I: I Logging full size probe response characteristics (longitudinal, radial detection characteristics, measurement accuracy, vertical resolution, etc.) of the physical simulation, is probe design algorithms and numerical simulation of the detector production methods and Ester Arts and verification of critical areas, and to optimize the design of the detector to provide a reliable basis. 物理模拟过程(也称为测井方法实验)是电测井探測器尤其是高端成像电测井探测器研发中不可或缺的重要环节。 Physical simulation (also referred to as a logging method experiment) electrically logging probe is especially high-end imaging electrically logging probe indispensable part in development.

[0003]目前对电测井探測器研究和生产中进行物理模拟和实验的主要方法如下。 [0003] The main method for physical simulation and experimental research and production to electrical detector logging follows.

[0004] I、导电橡胶法 [0004] I, the conductive rubber method

[0005] 用导电橡胶构建电测井探测器实体物理模拟装置是ー种传统的方法,这种方法的弊端是由于橡胶的非亲水性导致导电介质往往采用金属或非金属颗粒,导致在导电机理上与石油储层的离子导电相异,不同电性模块间的耦合困难,大体积的硫化成型非常困难、均匀性差、造价较高且容易老化等;因此没有得到普遍应用,尤其是没有在近年来高端成像电测井仪器(如阵列感应、三分量感应和阵列侧向等)的物理模拟中得到应用。 [0005] Construction of a physical entity electrical logging simulation detector device ー conductive rubber is such a conventional method, the drawbacks of this approach is that the rubber of the non-conductive medium tends to result in a hydrophilic metal or non-metallic particles, conductive leads the mechanism and different ionic conductivity petroleum reservoir, difficult between different modules are electrically coupled to a large volume of vulcanization molding is very difficult, poor uniformity, higher cost and easy to aging; therefore not been widely used, especially not in the in recent years, high-end imaging applications to obtain an electrical logging tool (sensor array, and an array of three-component sensing lateral, etc.) physical simulation.

[0006] 2、大体积水池法 [0006] 2, a bulky pool Method

[0007] 以一定体积(超出测井仪器有效探测范围,一般半径大于5米)的水池盛有一定矿化度的水,由于离子导电作用可以模拟无限大介质下的某个电导率环境,可用于验证仪器的K值(仪器系数,用于完成电阻与电阻率或电导与电导率之间的換算);但这种简单体积模型装置决定了完全无法考查仪器的纵向和径向探測特性,因此对于当今主流的成像电测井仪器研发中的探測器特性验证和优化无效。 [0007] In a volume (the effective detection range exceeds the logging tool, generally greater than 5 m radius) certain pool filled with water salinity, since the ion conductivity of a conductive effect may be simulated environment infinite medium, available to verify the value of K instrument (instrument coefficients, for performing conversion between the resistance and the resistivity or conductance and conductivity); however, this simple model means determines the volume of the longitudinal and radial detection characteristics can not be fully examined the instrument, thus detectors for today's mainstream imaging research and development of electric logging tools to verify and optimize invalid.

[0008] 3、导电环方法 [0008] 3. The method of conducting ring

[0009] 采用串有阻抗元件的金属导电环是传统感应式测井仪器检查和刻度的常规方法,这种方法不属于实体物理模拟。 [0009] The series impedance element is a conductive metal ring of conventional methods conventional induction logging tool and scale inspection, this method is not a physical entity simulation. 由于是采用集中參数模拟实际地层分布參数对接收线圈的贡献,因此该方法不能用于考查仪器的纵向和径向探測特性,对于当今主流的成像电测井仪器研发中的探測器特性验证和优化无效,而且此方法不适于电极式电测井仪器。 Since the actual distribution is the use of lumped parameter simulated formation parameter contribution of the receiving coil, so that the method can not be used to examine the longitudinal and radial detection characteristics of the instrument, the detector for the imaging characteristics of the mainstream of today's electrical logging instrument development validation and optimization invalid, this method is not suitable electrodes and electrical logging tool.

[0010] 4、实验井法 [0010] 4, experimental wells method

[0011] 实验井一般是指有一定深度、能够提供一定的压カ和温度环境、井中有典型岩性的地层(甚至已经部分下了套管),可对仪器的工作进行实验检测的非生产井;实验井对于不同和相同厂家、类型、型号的仪器间的对比和仪器稳定性的考察是有效的,因此是探測器研发后期的重要技术环节;但实验井中地层的实际參数(目的层、围岩的准确几何模型和电性參数)实际上是未知的,因此不可能对电测井尤其是电成像测井探測器的几何探测特性进行验证;实验井法应用中另ー个局限是所实验的探测器实际上必须是完整的仪器,其探測器子系统(电极系,线圈系)与电子控制、信号放大、数据采集和传输系统等必须按照一定的耐温耐压标准全部成型,这对于在原始性创新研究中需要对许多不同方案进行对比验证的前期阶段实际上是不现实的。 [0011] Experimental wells generally refers to a certain depth, it is possible to provide a certain pressure and temperature environment ka, typical wells have formation lithology (or even a portion of the lower casing has), the assay can be carried out non-productive working instrument well; same experimental wells and different manufacturers, type, and contrasts the stability of the instrument between the instrument model is valid, the detector is thus important technical aspects later developed; but the actual parameters of the experimental well formation (target layer , exact geometry and electrical parameters of the rock) is actually unknown, it is not possible, especially for electrical logging electrically logging probe imaging geometry detection characteristics for verification; found applications other method well a limitation ーthe experiment is actually detector must complete instrument, which detector subsystem (electrode system, coil system) electronic control, signal amplification, data acquisition and transmission systems must all be molded in accordance with certain standard temperature and pressure , which for early stage the need for many different scenarios were compared to verify the originality in innovative research is actually unrealistic.

[0012] 总之,目前没有任何ー种方法能够构建适用的电测井探测器实体物理模拟装置,尤其是没有能够在复杂地层模式下动态改变和实时监测模型电性參数的方法。 [0012] In summary, there are no ways to build ー detector electrical logging simulation apparatus applies a physical entity, especially without the ability to dynamically change and real-time monitoring of electrical parameters of the model in a method for the formation of complex patterns. 这导致长期以来,采用数值模拟方法(研究中已经把诸多复杂因素简化和理想化)设计的电测井探測器无法得到有效地验证和优化,限制了研发中设计水平的提高。 This results in a long time, by numerical simulation (study has simplified the many complex factors and idealized) electrically logging probe design can not be effectively verified and optimized, research and development to improve the design limits of the level. 本发明的目的即是解决高端电测井探測器研发中的重要技术瓶颈。 Object of the present invention is to solve important, i.e. the bottleneck in high electrical logging technique developed in the detector.

发明内容 SUMMARY

[0013] 本发明的目的是,提供一种超滤法构建电测井探测器实体物理模拟装置,解决电测井探測器在复杂地层环境下的物理模拟难题。 [0013] The object of the present invention is to construct a physical entity electrical logging detector means to provide an ultrafiltration simulation, to solve the problem of electrical logging simulation of physical detectors in complex formation environment.

[0014] 本发明的上述目的可采用下列技术方案来实现: [0014] The object of the present invention can be achieved by the following technical solution:

[0015] 一种超滤法构建电测井探测器实体物理模拟装置,所述模拟装置包括由下而上连接的下围岩地层模拟层,目的层原状地层模拟层和上围岩地层模拟层,所述目的层原状地层模拟层的内侧设有目的层侵入带地层模拟层,所述模拟装置的中央轴向上设有井孔,所述探测器放置于井孔内,所述模拟装置的外围设有外环带,所述外环带放置探测器远端回路电极;所述下围岩地层模拟层,目的层原状地层模拟层,上围岩地层模拟层和目的层侵入带地层模拟层的各个模拟层分别包括由平板超滤膜用热熔或粘接法制成的容器壁,各个容器壁内分别填充有绝缘微珠,各个模拟层中分别注入相应浓度的无机盐离子溶液形成具有设定电阻率的模拟层,各个模拟层内设有多个电导率探针。 [0015] A construct electrically logging probe ultrafiltration physical entity simulation apparatus, said simulation device comprising an analog ground connection layer surrounding rock bottom, the target layer and an upper layer in undisturbed surrounding rock formation analog emulation layer , the inner layer of the object of the undisturbed formation simulation object layer provided with a layer of the formation invaded emulation layer, the device is provided with a central axial borehole of the apparatus, the detector is placed in the wellbore, the simulation of the simulated is provided with a peripheral outer ring, the outer ring is placed with the distal end of the probe electrode circuit; said lower layer surrounding rock formation simulation, emulation layer undisturbed formation layer object, the object and the surrounding rock formation layer analog ground layer invasion zone emulation layer the respective layers are each comprised of an analog ultrafiltration plates or hot-melt adhesive into the legal container wall, are filled with an insulating bead in each container wall, the respective analog inorganic ion implanted layer, respectively, a solution is formed having the respective concentrations set analog given resistivity layer, each layer is equipped with a plurality of analog electrical conductivity probes.

[0016] 如上所述的超滤法构建电测井探测器实体物理模拟装置,所述容器壁的表面设有非金属制成的拉链。 [0016] Construction of electrically logging probe physical entity ultrafiltration simulation apparatus as described above, is provided with a wall surface of the container made of a non-metallic fastener.

[0017] 如上所述的超滤法构建电测井探测器实体物理模拟装置,所述下围岩地层模拟层,目的层原状地层模拟层,目的层侵入带地层模拟层和上围岩地层模拟层的各个模拟层的外缘安装有进液管和出液管,所述进液管和出液管分别由非金属材料制成。 [0017] Construction of electrically logging probe physical entity ultrafiltration simulation apparatus as described above, the lower layer surrounding rock formation simulation, simulation object layer undisturbed formation layer, object layer formation invaded zone surrounding rock strata and the upper layer analog simulation the outer edge of the respective layer emulation layer attached to liquid inlet tube and outlet tube, the inlet tube and the outlet tube are made of non-metallic material.

[0018] 如上所述的超滤法构建电测井探测器实体物理模拟装置,所述模拟装置还包括四个离子液浓度调节系统,每个离子液浓度调节系统分别与各个所述模拟层的进液管和出液管相连,用于调节进入各进液管中的无机盐离子溶液浓度。 [0018] constructed as described above ultrafiltration electrical logging simulation physical entity detector means, said simulation means further comprising four ion concentration control system, each of the ion concentration control system are simulated and the respective layers inlet tube and a liquid outlet pipe connected to regulate the concentration of inorganic ions for the solution of each inlet tube.

[0019] 如上所述的超滤法构建电测井探测器实体物理模拟装置,每个所述调节系统包括盐水罐,纯水罐,调节组件和循环组件;所述调节组件包括盐水阀,纯水阀和电导仪。 [0019] constructed as described above ultrafiltration electrical logging simulation physical entity detector means, each of said adjustment system comprises a brine tank, a pure water tank, and a circulation unit adjustment assembly; adjusting said valve assembly comprises a saline, pure valve and conductivity meter. 所述纯水罐的出口依次连接纯水阀和电导仪,电导仪的另一端连接进液管;所述盐水罐的出ロ连接盐水阀,盐水阀的另一端接往纯水阀的出ロ;所述循环组件包括依次连接的循环阀,循环泵和排放阀,所述循环阀的另一端连接纯水阀的出口端,循环泵和排放阀的连接端同时与出液管连接。 The pure water tank are sequentially connected to the outlet valve and pure conductivity meter, conductivity meter is connected to the other end of the inlet tube; said brine tank connected ro a brine valve, the other end of the brine valve into the pure water valve ro ; the circulation loop comprises a valve assembly connected in sequence, a circulation pump and a discharge valve, is connected at the other end of the circulating valve connected to the outlet end of pure water valve, circulation pump and at the same time the discharge valve is connected to the outlet pipe.

[0020] 本发明实施例的特点和优点是: [0020] Features and advantages of embodiments of the present invention is:

[0021] I、能够用于对全尺寸电测井探測器的物理模拟,可用于验证包括纵向、径向探測特性,测量精度,纵向分辨率在内的探测器测井响应特性。 [0021] I, can be used to simulate the physical size of the whole electrical logging probe, the probe can be used to verify the log includes a longitudinal, radial detection characteristics, measurement accuracy, including a vertical resolution response characteristics.

[0022] 2、在各个模拟地层模块中植入有若干个电导率探针,可通过实时监测所模拟的地层模块电性以准确验证探測器的測量性能。 [0022] 2, each of the modules in simulated formation conductivity implanted with a plurality of probes, the formation of the module may be electrically simulated by the real-time monitoring to accurately verify the performance of the detector measurements.

[0023] 3、各模拟地层采用绝缘微珠填充后,管道内液体的电导率与模型实际电导率出现差异,管道内液体电导率仅作为监测,对探测器进行物理模拟时采用在每个模块内埋敷的多个电阻率探针进行实时测量。 [0023] 3, the beads filling an insulated, electrical conductivity and the liquid pipe model the actual conductivity occurs respective analog difference formation, only the conductivity of the liquid in the pipeline monitoring, when employed in each module detector physical simulation a plurality of resistivity in the buried cladding time measurement probe.

附图说明 BRIEF DESCRIPTION

[0024] 为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 [0024] In order to more clearly illustrate the technical solutions in the embodiments of the present invention, as briefly described in the introduction to the accompanying drawings required for use in describing the embodiments. Apparently, the drawings in the following description are only some of the present invention. embodiments, those of ordinary skill in the art is concerned, without creative efforts, can derive from these drawings other drawings.

[0025] 图I是本发明实施例的超滤法构建电测井探测器实体物理模拟装置的示意图; [0026] 图2是本发明实施例的超滤法构建电测井探测器实体物理模拟装置的电阻率调节系统不意图。 [0025] Figure I is a diagram of the construction of physical entities electrically logging probe ultrafiltration simulation apparatus of the present embodiment of the invention; [0026] FIG. 2 is a physical modeling constructs electrically logging probe ultrafiltration entity embodiment of the present invention resistivity regulating system is not intended.

具体实施方式 detailed description

[0027] 下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。 [0027] below in conjunction with the present invention in the accompanying drawings, technical solutions of embodiments of the present invention are clearly and completely described, obviously, the described embodiments are merely part of embodiments of the present invention, but not all embodiments example. 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 Based on the embodiments of the present invention, all other embodiments of ordinary skill in the art without any creative effort shall fall within the scope of the present invention.

[0028] 实施方式I [0028] Embodiment I

[0029] 如图I所示,本发明实施例提出的超滤法构建电测井探测器实体物理模拟装置,其包括由下而上连接的下围岩地层模拟层1,目的层原状地层模拟层2和上围岩地层模拟层3,所述目的层原状地层模拟层2的内侧设有目的层侵入带地层模拟层4,所述模拟装置的中央轴向上设有井孔5,所述探测器6放置于井孔5内,所述模拟装置的外围设有外环带7,所述外环带7放置探测器远端回路电极。 [0029] As shown in FIG I, the physical entity detector constructed electrical logging simulation apparatus embodiment of the present invention, ultrafiltration proposed embodiment, which includes an analog undisturbed formation surrounding rock formation analog bottom layer 1 is connected, object layer layer 2 and layer 3 on the surrounding rock formation simulation, the object of the inner layer of virgin zone emulation layer 2 is provided on the object 5 is provided with a borehole invaded zone layer analog ground layer 4, the axial center of the simulation device, the detector 6 placed within the wellbore 5, the periphery of the simulation apparatus is provided with an outer ring 7, the outer distal end of the probe with the return electrode 7 is placed. 所述下围岩地层模拟层1,目的层原状地层模拟层2,上围岩地层模拟层3和目的层侵入带地层模拟层4的各个模拟层分别包括由平板超滤膜用热熔或粘接法制成的容器壁,各个容器壁内分别填充有绝缘微珠,各个模拟层中分别注入相应浓度的无机盐离子溶液形成具有设定电阻率的模拟层,各个模拟层内设有多个电导率探针。 Surrounding each analog ground layer emulation layer 1, layer object undisturbed formation emulation layer 2, the layer 3 and the surrounding rock formation simulation object layer formation invaded zone of the simulated layer 4 are lower plate comprises an ultrafiltration membrane or a hot-melt adhesive Method connected into the container wall, are filled with a bead in each container wall insulation, the respective analog inorganic ion implanted layer, respectively corresponding concentration of the solution layer is formed having a set simulated resistivity, each equipped with a plurality of electrically conductive layers analog rate probe.

[0030] 所述模拟装置在此处呈圆柱形,当然并不以此为限,模拟装置也可为其它合适的形状。 [0030] The simulation apparatus is cylindrical here, of course, is not limited to, an analog device may also be other suitable shapes. 所述外环带7可为地砖。 The outer band 7 may be tiles.

[0031] 本实施例中,所述下围岩地层模拟层1,目的层原状地层模拟层2,上围岩地层模拟层3和目的层侵入带地层模拟层4这四个模拟地层分别是通过各自模拟地层内的绝缘微珠以及所注入的相应浓度的无机盐离子溶液,来获得所需电阻率的模拟地层的。 [0031] In this embodiment, the four simulated formation 4 surrounding rock formation simulation layer 1, layer object undisturbed formation emulation layer 2, the layer 3 and the surrounding rock formation simulation object layer formation invaded zone layer are simulated by solution of each analog inorganic ion concentration and the corresponding insulating beads injected into the formation, to obtain the desired simulated formation resistivity. 例如在此处,这四个模拟地层的空间内分别填充绝缘微珠,井分别注入三种不同浓度的无机盐离子溶液,来获得相应的不同电阻率的模拟地层,其中此处的上、下围岩地层模拟层3、I内的绝缘微珠的种类与注入的无机盐离子溶液的浓度是相同的。 Here, for example, four analog ground space which are filled with an insulating beads, inorganic ions were injected into the wells at three different concentrations of the solution, to obtain the corresponding simulated formation of different resistivity, wherein the upper herein, the Surrounding analog ground layer 3, the type of insulating beads concentration in the inorganic ion implantation I and the solution is the same. 当然在其它实施例中,四个模拟地层的空间内则可分别填充四种不同的绝缘微珠,井分别注入四种不同浓度的无机盐离子溶液。 Of course, in other embodiments, the formation of the space can be simulated four four different insulation are filled beads, inorganic ion solution were injected into the wells of four different concentrations. [0032] 在各个模拟地层内分别埋设有多个电导率探针(也称电阻率測量探针),在此外,每个模拟地层内预置不少于三个电导率探针,电导率探针可采用双极四线方式,一对电流回路和一对电压回路,分别接屏蔽双绞线后再整体缠绕后引出;各个模拟地层内的电导率探针沿周向均分,作为实时測量模块电阻率的传感器,这些探针由于体积很小,对模拟地层电性的影响可以忽略。 [0032] are embedded in each of a plurality of simulated formation conductivity probes (also referred to as probe resistivity measurements), in addition, within each preset least three simulated formation conductivity probe, conductivity probe bipolar needle can be four-wire, a pair of current loops and a pair of loop voltage, respectively, then after the whole winding shielded twisted pair lead; conductivity probe along the circumferential direction within each of the average analog ground, as the resistance time measurement module rate sensors, since these probes are small, influence on the analog electrical formation is negligible.

[0033] 其中,在超滤膜内填充的绝缘微珠是比重稍重于水的非导电性微珠,例如塑料,瓷质、玻璃、树脂、陶瓷、硬橡胶或混合物质,微珠的比重稍重于水是为了避免微珠上浮,这样能够为模型提供更合理的导电通道,尤其是有利于较高电阻率的模拟,并避免了对溶液和循环系统的微量离子污染提出过于严格的要求。 [0033] wherein, in the ultrafiltration membrane is filled with an insulating beads slightly heavier than water, the proportion of the non-conductive beads, the proportion of e.g. plastic, porcelain, glass, resins, ceramics, hard rubber, or mixed, slightly heavier beads in water is to avoid the microbeads float, this can provide a reasonable model for the conductive path, especially conducive to simulate higher resistivity, and avoids the requirements for the solution circulation system and trace ionic contaminants pose unduly strict. 微珠的直径可在O. 5-5mm之间,微珠直径太大会使其填充率较低作用不明显,微珠直径太小会使其流动性差导致系统平衡时间加长,直径大小按照一定比例混合的微珠能够有效模拟高电阻率。 The diameter of the beads may be between O. 5-5mm, so that the filling factor too large bead diameter less obvious, bead diameter is too small it will result in poor fluidity longer equilibration time system, a certain percentage of the diameter simulation can be effectively mixed beads of high resistivity.

[0034] 采用微珠填充后,管道内液体的电导率与模型实际电导率出现差异,管道内液体电导率仅作为监测,对探测器进行物理模拟时采用在每个模块内埋敷的多个电阻率探针进行实时测量。 [0034] With the beads filling, conductivity and the liquid pipe model the actual discrepancy conductivity, the conductivity of the liquid conduit only monitored, the plurality of buried deposited in each of the detector modules during physical simulation probe resistivity measurements in real time.

[0035] 本实施例,在模型的制作エ艺上,超滤膜作为ー种特殊的多孔性塑料,可采用热熔或粘接的方式拼接成型,由于接缝导致的局部超滤功能丧失对模型的整体影响很小而可被忽略。 [0035] In the present embodiment, in the production model Ester arts, ー ultrafiltration membrane as a special kind of a porous plastic, adhesive or a hot melt can be spliced ​​molding, due to local joints caused by ultrafiltration loss of function the overall impact of the model is very small and can be ignored. 换句话说,平板超滤膜采用的是过滤性能接近纳滤的超滤材料形成的,膜的厚度为亚毫米级,特点是允许水分子自由通过而在一定程度上限制离子通过,从而以此构建不同电阻率的模拟地层模块。 In other words, flat membrane is used in filtration performance close nanofiltration ultrafiltration material, the thickness of the film is submillimetric, feature allows free water molecules is limited to some extent by the ions pass, so this Construction of different analog block formation resistivity. 进ー步而言,少量离子透过超滤膜是允许而且必须的。 Step into ー, the small amount of ions through the membrane is allowed and necessary. 之所以能够允许是由于不同模块间的滲透,具体有两点,一是使本装置中模拟的地层模型的电阻率能够动态调节和控制(參见图2),ニ是模块本身各自有较大的离子缓冲容量。 The reason is due to allow penetration between the different modules, specifically two, one model that the resistivity of the formation in the present apparatus is able to dynamically adjust the simulation and control (see FIG. 2), each module itself ni is greater ion buffering capacity. 这样,不同离子浓度的界面产生的双电层作用于实际上更接近滲透性储层的电测井响应机理。 Thus, the electric double layer effect of different concentrations of ions generated in the interface is actually closer to the responses of electrical logging reservoir permeability.

[0036] 本实施例中采用超滤膜间隔不同导电性的地层的核心作用是使这种由液体离子导电构建的复杂地层物理模型不仅适用于线圈式电测井探測器(基于电磁感应原理的感应测井仪器,感生电流以井轴为中心沿周向流动),还适用于电极式电测井探測器(基于直接传导的电流聚焦式侧向测井仪器,传导电流沿径向流动,且发散后沿层间流动)。 [0036] In this Example, the formation of the conductive membrane spacing is different embodiments of the central role that the formation of this complex physical model constructed by a liquid ion-conducting coil is applicable not only to electrical logging probe (based on the principle of electromagnetic induction induction tool, the induced current in the borehole axis as the center circumferential flow direction), but also for electrical logging probe electrode (based on the current-focusing lateral logging instrument direct conduction, the conduction current flowing in the radial direction, and the diverging flow along an inter-layer).

[0037] 根据本发明的一个实施方式,所述容器壁的表面设有非金属制成的拉链8。 [0037] According to an embodiment of the present invention, the surface of the container wall is provided with a fastener made of non-metallic 8. 容器壁上的拉链8的开ロ长度可不小于O. 5m,其可用于填充或更换绝缘微珠,拉链8面积由于远小于模型层间相交面积,因此对层间导电的影响可以忽略。 Ro open the slide fastener length of the container wall 8 is not less than O. 5m, which may be used to fill or replace insulating beads, since the area of ​​the slide fastener 8 is much smaller than the area of ​​the intersection between the model layer, the influence on the interlayer conductive negligible.

[0038] 所述下围岩地层模拟层1,目的层原状地层模拟层2,目的层侵入带地层模拟层4和上围岩地层模拟层3的各个模拟层的外缘安装有进液管9和出液管10,所述进液管9和出液管10分别由非金属材料制成。 Surrounding analog ground layer 1, layer object undisturbed formation emulation layer 2, the purpose of simulation of the formation invaded zone layer layer [0038] The lower layer 4 and an outer edge of the respective analog simulation layer 3 surrounding rock formations is attached inlet tube 9 and the liquid outlet pipe 10, the inlet pipe 9 and the liquid outlet pipe 10 are made of non-metallic material. 进ー步而言,所述下围岩地层模拟层1,目的层原状地层模拟层2,目的层侵入带地层模拟层4和上围岩地层模拟层3这四个模拟层的外侧分别安装有各自的进、出液管9、10,即整个装置共有四个进液管9和四个出液管10。 For further ー into the surrounding rock formation simulation layer 1, layer object undisturbed formation emulation layer 2, the purpose of the formation invaded zone analog layer and the outer layer 4 on layer 3 surrounding rock formation analog simulation four layers are attached the respective inlet and outlet pipe 9, 10, i.e., the entire apparatus has four and four inlet pipe 9 outlet pipe 10. 其中一个较特殊结构是,目的层侵入带地层模拟层4的进液、出液管要穿过目的层原状地层模拟层2。 Wherein a structure is a more specific object of the formation invaded zone layer into the liquid layer 4 in the simulation, through the liquid outlet pipe for the purpose of simulation layer 2 layer undisturbed formation. 本实施例中,各个模拟地层的进液管和出液管可分别呈180度设置,使得具有相对应浓度的无机盐离子溶液从进液管进入相应模拟地层内,经过绝缘微珠,并从另ー端的出液管流出。 In this embodiment, the inlet tube and the outlet tube of each analog ground respectively disposed 180 degrees, so that the corresponding concentrations of inorganic salt having an ionic solution into the formation from the corresponding analog inlet pipe, through an insulating bead, and from the other end of the liquid outlet pipe ー flows. 其中,进液管9和出液管10的管子直径可不大于2. 5cm,管的端点装有非金属过滤网,管的孔径小于绝缘微珠直径,以防止微珠溢出。 Wherein the diameter of the tube inlet of the tube 9 and outlet tube 10 is not greater than 2. 5cm, the tube end provided with a non-metallic filter, a pore size smaller than the tube diameter of the insulating bead, beads to prevent overflow. [0039] 为了防止装置中的各模拟层的内外壁因为重力而变形,可以在模拟层的内侧(即井孔5的内壁)和模拟层的外侧(即外环带的内侧)分别安放硬塑料卡箍环。 [0039] In order to prevent the inner and outer wall layers of each of the analog means as gravity deformation, respectively, may be placed inside the simulated hard plastic layer (i.e., the inner wall of the well bore. 5) and a simulated outer layer (i.e., the inner side of the outer ring band) clamp ring. 其中,内侧的卡箍环的高度应小于Icm,厚度小于O. 5cm,每个卡箍环的间距不小于20cm,对模拟结果影响即可以忽略;外侧的卡箍环的放置则自由的多,这是因为外侧卡箍环的位置已经超出了探测器的几何探测范围,可采用5cm高度,按照间距20cm连续放置,并注意让开模块的进出液管路。 Wherein the height of the inner clamp ring should be less than Icm of, a thickness of less than O. 5cm, the pitch of each clamp ring is not less than 20cm, i.e. impact on the simulation results can be ignored; clamp ring disposed outside of the multi-free, this is because the position of the outer clamp ring beyond the geometry of the detector's range, can be 5cm height, continuously disposed at a pitch of 20cm, and attention is paid to the liquid supply line opening out of the module.

[0040] 本装置的中心具有井孔5,如果装置是架设的,探测器则很方便设置在井孔5内;如果装置是直接放置在基础物(例如地面)上,那么需要在基础物上设置井孔延长部分11,井孔延长部分11是从井孔5向下延伸,井孔延长部分是为了方便放置探测器。 [0040] This device has a central wellbore 5, if the device is erected, the detector is easily disposed within the well bore 5; if the device is placed directly on the base material (e.g., ground), the then required on the base thereof extension 11 is provided wellbore, the wellbore extension 11 extends downwardly from the wellbore 5, wellbore to facilitate the extension of probe placement.

[0041] 下面给出本装置的具体示例,其模拟的是典型的高阻围岩、(钻井液)低浸、油水混合的砂泥岩储层。 [0041] Specific examples of the present apparatus is given below, which simulates a typical high resistance surrounding rock (drilling) low dip, mixed sand and shale oil reservoir.

[0042] 本装置的井孔5的直径可为0.2m,井液典型电阻率为2Ω ·πι。 Diameter [0042] The borehole apparatus of the present 5 may be 0.2m, a typical well fluid resistance of 2Ω · πι. 上围岩地层模拟层3的厚度可为大于探测器1/2长度,典型电阻率50 Ω ·πι。 The thickness of the layer of surrounding rock strata analog 3 may be greater than 1/2 of the length of the probe, typically the resistivity of 50 Ω · πι. 目的层侵入带地层模拟层4的层厚可为lm,侵入带典型电阻率5Ω ·πι。 Object layer thickness of the invaded zone formation layer 4 may be an analog lm, typically invaded zone resistivity 5Ω · πι. 目的层原状地层模拟层2的层厚可为lm,典型电阻率10Ω ·πι。 Object layer thickness of the undisturbed formation emulation layer 2 may be lm, a typical resistivity of 10Ω · πι. 下围岩地层模拟层I的厚度可大于探测器1/2长度,典型电阻率50 Ω ·πι。 The thickness of the layer surrounding rock strata analog I may be larger than 1/2 of the length of the probe, typically the resistivity of 50 Ω · πι. 井孔延长部分的深度可大于探测器1/2长度,外环带7的厚度可为O. 5m,电阻率小于I Ω -m,放置探测器远端回路电极。 Depth extension of the wellbore may be larger than 1/2 of the length of the probe, with the thickness of the outer ring 7 can be 5m, less than the resistivity of I Ω -m O., placing the distal end of the probe electrode circuit.

[0043] 本实施例能够用于对全尺寸电测井探测器的物理模拟,可用于验证包括纵向、径向探测特性,测量精度,纵向分辨率在内的探测器测井响应特性。 [0043] This embodiment can be used to simulate a full-size physical electrical logging probe, the probe can be used to verify the log includes a longitudinal, radial detection characteristics, measurement accuracy, including a vertical resolution response characteristics.

[0044] 本实施例为可进行复杂地层测井响应测试的实体物理模拟装置,可用于验证电测井探测器(包括电极式和线圈式)的理论和数值模拟结果,改进和优化探测器设计参数,该装置对于石油电法测井装备尤其是高端装备的研发具有重要的实用价值。 [0044] The present embodiment is a physical entity simulation apparatus for complex formation logging response to the test, the theory can be used to verify the results of numerical simulation and logging probe (including the coil electrode type and type), the improvement and optimization of detector design parameters, the device has important practical value for the oil electric logging equipment, especially high-end equipment research and development. 此外,本实施例是采用超滤薄膜制作所模拟的地层框架(包括了上下围岩、侵入带和原状地层、井筒等),各地层模块内部充盈一定浓度的无机盐溶液模拟不同电阻率,每个模块内的电性参数可以通过调节系统动态控制和监测,从而实现复杂地层的实体物理模型。 Further, the present embodiment is manufactured by using ultrafiltration membranes in simulated formation frame (including the upper and lower surrounding rock, and the invaded zone undisturbed formation, the wellbore, etc.), around the inner filling layer module a concentration of inorganic salt solution to simulate different resistivity, each electrical parameters within the module can be controlled and monitored by the system dynamically adjusted to achieve solid physical model complex formation.

[0045] 实施方式2 [0045] Embodiment 2

[0046] 如图2所示,本实施例的超滤法构建电测井探测器实体物理模拟装置A还包括离子液浓度调节系统。 [0046] As shown in FIG 2, the physical entity detector constructed electrical logging simulation apparatus of the present embodiment by ultrafiltration A further embodiment comprises an ion concentration control system. 所述调节系统包括盐水罐12,纯水罐13,调节组件和循环组件。 The adjustment system comprises a brine tank 12, a pure water tank 13, and circulation unit adjustment assembly. 所述调节组件包括盐水阀16,纯水阀14和电导仪15。 The adjustment assembly comprises a saline valve 16, pure valve 14 and conductivity meter 15. 所述纯水罐13的出口依次连接纯水阀14和电导仪15,电导仪15的另一端连接进液管9。 The pure water tank outlet 13 and 14 in turn connected to the pure water valve 15 conductivity meter, conductivity meter 15 and the other end is connected to the inlet pipe 9. 所述盐水罐13的出口连接盐水阀16,盐水阀16的另一端接往纯水阀14的出口。 The outlet 13 is connected to the brine tank brine valve 16, brine valve 16 of the other end to the outlet of the pure water valve 14. 所述循环组件包括依次连接的循环阀17,循环泵18和排放阀19,所述循环阀17的另一端连接纯水阀14的出口端,排放阀19的另一端连接出液管10。 The loop comprises a recirculation valve assembly 17 connected in turn, the circulation pump 18 and a discharge valve 19, the circulating valve 17 is connected to the other end of the outlet end of the pure water valve 14, the discharge valve 19 and the other end connected to the liquid pipe 10.

[0047] 本实施例中,通过控制纯水阀14和盐水阀16可以调节输往进液管9中的离子液浓度。 [0047] In this embodiment, by controlling the pure water valve 14 and the brine valve 16 may be adjusted ion concentration in the inlet pipe 9 exports. 进一步而言,装置中的每个模拟地层充盈导电液体,其纯水和饱和盐水(根据需要配制的无机盐溶液,可模拟不同离子类型,测井中最常见的是钠、钙、镁、钾的氯化物)的比例根据所设计的电阻率模拟值混合,并可根据需要随时动态调整。 Further, each of the simulated formation conductive liquid filling apparatus which pure water, and saturated brine (inorganic salt solution prepared as required, to simulate different types of ions, logging the most common is sodium, calcium, magnesium, potassium chloride ratio) according to the value of the resistivity model designed mixing and dynamically adjusted as needed at any time. 通过循环组件实现的自循环过程保证了模块内电阻率的均匀性。 By self-circulation unit cycle implemented within the module to ensure the uniformity of resistivity.

[0048] 为了描述的方便,上述实施例的描述以及图2所示只是显示了其中一套进液管9和出液管10,在这套进液管9和出液管10中连接了一个离子液浓度调节系统。 [0048] For convenience of description, the above embodiment described and shown in FIG. 2 shows only one set of inlet tubes 9 and the liquid outlet pipe 10, in this liquid inlet pipe 9 and the liquid outlet pipe 10 is connected to a ion concentration control system. 而本实施例中共有四套进液管9和出液管10,每一套进液管9和出液管10均连接了一个离子液浓度调节系统。 The present embodiment a total of four sets of the inlet tube 9 and the liquid outlet pipe 10, each set of inlet tubes 9 and outlet tube 10 are connected to an ion concentration control system. 当然在实现时,各套离子液浓度调节系统的纯水罐12和盐水罐13可共用,即四套离子液浓度调节系统使用一个纯水罐12和盐水罐13。 Of course, in implementation, each set of ion concentration of the pure water tank control system 12 and may share a brine tank 13, i.e., four sets of ion concentration control system using a pure water tank 12 and brine tank 13. 按照本发明所示的原理,将阀门组用电磁阀代替,对电阻率信号进行数据采集,就能组成模块电性自动控制系统。 According to the principles of the present invention is shown, with the valve group in place of the solenoid valve, resistivity signals for data acquisition module can be composed of electrically automatic control system.

[0049] 模型在制造尺寸上的一定误差和充填微珠后的不平度如不大于±3cm,所造成的影响(对径向和纵向响应特征)是可以忽略的,因为任何电测井探测器受物理方法和响应机理的限制其测量精确度和空间分辨率并不高,相对误差通常在±2%〜±10% (在测量动态范围的两端误差甚至还要大得多)。 [0049] The unevenness in the model size manufacturing and filling microbeads certain errors, such as not greater than ± 3cm, the influence caused by the (radial and longitudinal response characteristics) is negligible, since no electrically logging probe limited by physical methods of measurement and response mechanism accuracy and spatial resolution is not high, usually relative error (the measurement error of both ends of the dynamic range is even larger) in ± 2% ~ ± 10%.

[0050] 本实施方式的其他结构、工作原理和有益效果与实施方式I的相同,在此不再赘述。 [0050] Other structures of the embodiment according to the present embodiment, the same working principle and the advantageous effects I the embodiments, not described herein again.

[0051] 以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的可以对本发明实施例进行各种改动或变型而不脱离本发明的精神和范围。 Several [0051] The foregoing is only embodiments of the present invention, those skilled in the disclosed embodiments of the art of the present invention may be based on the application documents make various modifications or variations without departing from the spirit and scope of the invention.

Claims (5)

1. 一种超滤法构建电测井探测器实体物理模拟装置,其特征在于,所述模拟装置包括由下而上连接的下围岩地层模拟层,目的层原状地层模拟层和上围岩地层模拟层,所述目的层原状地层模拟层的内侧设有目的层侵入带地层模拟层,所述模拟装置的中央轴向上设有井孔,所述探测器放置于井孔内,所述模拟装置的外围设有外环带,所述外环带放置探测器远端回路电极; 所述下围岩地层模拟层,目的层原状地层模拟层,上围岩地层模拟层和目的层侵入带地层模拟层的各个模拟层分别包括由平板超滤膜用热熔或粘接法制成的容器壁,各个容器壁内分别填充有绝缘微珠,各个模拟层中分别注入相应浓度的无机盐离子溶液形成具有设定电阻率的模拟层,各个模拟层内设有多个电导率探针。 Construction of a physical entity detector electrical logging simulation An ultrafiltration apparatus, characterized in that said analog means comprises a bottom layer surrounding rock formation analog connection, the purpose of undisturbed formation layer and an upper layer simulation Surrounding analog ground layer, the inner layer of the object of the undisturbed formation layer is simulated wellbore is provided with a simulation object layer formation invaded zone layer, the axial center of the simulation device, the probe is placed in the wellbore, the the simulation device is provided with a peripheral outer band, the distal end of the outer band detector circuit electrode disposed; said lower layer surrounding rock formation simulation, emulation layer undisturbed formation layer object, the object and the surrounding rock formation simulation layer with layer intrusion analog ground layers each layer are simulated by a plate comprising an ultrafiltration membrane with a hot-melt adhesive or the container wall into the legal system, the microbeads are filled with an insulating wall in each container, each analog inorganic ion implanted layer, respectively corresponding concentration of the solution analog layer is formed having a resistivity set, equipped with a plurality of layers each analog conductivity probes.
2.根据权利要求I所述的超滤法构建电测井探测器实体物理模拟装置,其特征在于,所述容器壁的表面设有非金属制成的拉链。 2. Construction of a physical entity detector electrical logging simulation apparatus according to claim I of the ultrafiltration, characterized in that the surface of the container wall is provided with a non-metallic fastener made.
3.根据权利要求I所述的超滤法构建电测井探测器实体物理模拟装置,其特征在于,所述下围岩地层模拟层,目的层原状地层模拟层,目的层侵入带地层模拟层和上围岩地层模拟层的各个模拟层的外缘安装有进液管和出液管,所述进液管和出液管分别由非金属材料制成。 3. Construction of electrical logging simulation apparatus according to a physical entity detector as claimed in claim I of the ultrafiltration, characterized in that the layer surrounding rock formation simulation, emulation layer undisturbed formation layer object, object layer formation invaded zone emulation layer and outer layers on the respective analog simulation layer surrounding rock formations is attached to liquid inlet tube and outlet tube, the inlet tube and the outlet tube are made of non-metallic material.
4.根据权利要求3所述的超滤法构建电测井探测器实体物理模拟装置,其特征在于,所述模拟装置还包括四个离子液浓度调节系统,每个离子液浓度调节系统分别与各个所述模拟层的进液管和出液管相连,用于调节进入各进液管中的无机盐离子溶液浓度。 4. Construction of a physical entity detector electrical logging simulation apparatus according to claim 3 of the ultrafiltration, characterized in that the apparatus further comprises four ion concentration of the analog control system, each of the ion concentration control system, respectively inlet tube and a liquid outlet pipe connected to the respective layers of the analog, for regulating the concentration of solutions of inorganic salts inlet tube.
5.根据权利要求4所述的超滤法构建电测井探测器实体物理模拟装置,其特征在于,每个所述调节系统包括盐水罐,纯水罐,调节组件和循环组件;所述调节组件包括盐水阀,纯水阀和电导仪。 5. Construction of a physical entity detector electrical logging simulation apparatus according to claim 4, wherein the ultrafiltration, characterized in that each of said adjustment system comprises a brine tank, a pure water tank, and a circulation unit adjustment assembly; the adjustment a valve assembly including saline, pure water valves and conductivity meter. 所述纯水罐的出口依次连接纯水阀和电导仪,电导仪的另一端连接进液管;所述盐水罐的出口连接盐水阀,盐水阀的另一端接往纯水阀的出口;所述循环组件包括依次连接的循环阀,循环泵和排放阀,所述循环阀的另一端连接纯水阀的出口端,循环泵和排放阀的连接端同时与出液管连接。 The pure water tank are sequentially connected to the outlet valve and pure conductivity meter, conductivity meter is connected to the other end of the inlet tube; brine tank connected to an outlet of the brine valve and the other end to the pure water valve brine valve outlet; the said circulation loop comprises a valve assembly connected in sequence, a circulation pump and a discharge valve, is connected at the other end of the circulating valve connected to the outlet end of pure water valve, circulation pump and at the same time the discharge valve is connected to the outlet pipe.
CN201210369469.3A 2012-09-27 2012-09-27 Physical analog device for electrical logging detector entity built by ultrafiltration CN102865062B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210369469.3A CN102865062B (en) 2012-09-27 2012-09-27 Physical analog device for electrical logging detector entity built by ultrafiltration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210369469.3A CN102865062B (en) 2012-09-27 2012-09-27 Physical analog device for electrical logging detector entity built by ultrafiltration

Publications (2)

Publication Number Publication Date
CN102865062A true CN102865062A (en) 2013-01-09
CN102865062B CN102865062B (en) 2015-01-07

Family

ID=47444163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210369469.3A CN102865062B (en) 2012-09-27 2012-09-27 Physical analog device for electrical logging detector entity built by ultrafiltration

Country Status (1)

Country Link
CN (1) CN102865062B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277084A (en) * 2013-05-23 2013-09-04 北京航空航天大学 Horizontal well multi-parameter estimation method based on conducting probe array sensor
CN104699975A (en) * 2015-03-20 2015-06-10 中国石油天然气集团公司 Method for extracting parameters from acoustoelectric effect underground detector measurement data
CN107102381A (en) * 2017-05-17 2017-08-29 深圳朝伟达科技有限公司 The indoor test device and method of testing of high-density resistivity instrument

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547950A (en) * 1947-12-01 1951-04-10 Texas Co Electrical analogue
US5878372A (en) * 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US20030093223A1 (en) * 2001-03-02 2003-05-15 Baker Hughes, Inc. 2-D inversion of multi-component induction logging data to resolve anisotropic resistivity structure
US20110061863A1 (en) * 2009-09-15 2011-03-17 Schlumberger Technology Corporation Fluid monitoring and flow characterization
CN102606148A (en) * 2012-03-22 2012-07-25 中国电子科技集团公司第二十二研究所 Response testing device for electromagnetic wave resistivity logging-while-drilling tool
CN102619504A (en) * 2012-04-17 2012-08-01 中国电子科技集团公司第二十二研究所 Method for determining radial detection depth index of electromagnetic wave resistivity instrument while drilling

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2547950A (en) * 1947-12-01 1951-04-10 Texas Co Electrical analogue
US5878372A (en) * 1997-03-04 1999-03-02 Western Atlas International, Inc. Method for simultaneous inversion processing of well log data using a plurality of earth models
US20030093223A1 (en) * 2001-03-02 2003-05-15 Baker Hughes, Inc. 2-D inversion of multi-component induction logging data to resolve anisotropic resistivity structure
US20110061863A1 (en) * 2009-09-15 2011-03-17 Schlumberger Technology Corporation Fluid monitoring and flow characterization
CN102606148A (en) * 2012-03-22 2012-07-25 中国电子科技集团公司第二十二研究所 Response testing device for electromagnetic wave resistivity logging-while-drilling tool
CN102619504A (en) * 2012-04-17 2012-08-01 中国电子科技集团公司第二十二研究所 Method for determining radial detection depth index of electromagnetic wave resistivity instrument while drilling

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103277084A (en) * 2013-05-23 2013-09-04 北京航空航天大学 Horizontal well multi-parameter estimation method based on conducting probe array sensor
CN103277084B (en) * 2013-05-23 2015-07-15 北京航空航天大学 Horizontal well multi-parameter estimation method based on conducting probe array sensor
CN104699975A (en) * 2015-03-20 2015-06-10 中国石油天然气集团公司 Method for extracting parameters from acoustoelectric effect underground detector measurement data
CN104699975B (en) * 2015-03-20 2017-11-07 中国石油天然气集团公司 The method of extracting parameter from acoustoelectric effect downhole detector measurement data
CN107102381A (en) * 2017-05-17 2017-08-29 深圳朝伟达科技有限公司 The indoor test device and method of testing of high-density resistivity instrument

Also Published As

Publication number Publication date
CN102865062B (en) 2015-01-07

Similar Documents

Publication Publication Date Title
Ogilvy et al. Geophysical studies of water leakages from reservoirs
Liedl et al. Simulation of the development of karst aquifers using a coupled continuum pipe flow model
US7819181B2 (en) Method and an apparatus for evaluating a geometry of a hydraulic fracture in a rock formation
Ahmad A laboratory study of streaming potentials
US4486714A (en) Method and apparatus for measuring relative permeability and water saturation of a core of earthen material
Helander The effect of pore configuration, pressure, and temperature on rock resistivity
CA2834079C (en) Apparatus and method for multi-component wellbore electric field measurements using capacitive sensors
Cavanagh Benchmark calibration and prediction of the Sleipner CO2 plume from 2006 to 2012
Garrouch et al. Using diffusion and electrical measurements to assess tortuosity of porous media
Vaudelet et al. Induced polarization signatures of cations exhibiting differential sorption behaviors in saturated sands
US3376501A (en) Cell for determining the conductivity of liquids entrained in porous media
Eykholt Development of pore pressures by nonuniform electroosmosis in clays
CN101762829B (en) Analog measurement method and device of oil saturation in strata
Cosenza et al. Effective medium theories for modelling the relationships between electromagnetic properties and hydrological variables in geomaterials: a review
Yu et al. Time domain reflectometry automatic bridge scour measurement system: principles and potentials
US20140166274A1 (en) System and method for production reservoir and well management using continuous chemical measurement
CN101639540B (en) Method for detecting seepage passage hidden trouble of waterproof curtain
Sjödahl et al. Embankment dam seepage evaluation from resistivity monitoring data
Pirson et al. Prediction of relative permeability characteristics of intergranular reservoir rocks from electrical resistivity measurements
CN202673289U (en) Visual simulation experiment device for fracture-cavity carbonate reservoir
CN102520131B (en) Multi-layered aquifer underground flow system-based underground water pollution simulator
Kristinsdóttir et al. Electrical conductivity and P-wave velocity in rock samples from high-temperature Icelandic geothermal fields
EP1398630B1 (en) Method for determining the resistivity index, as a function of the water saturation, of certain rocks with complex porosity
Galama et al. Method for determining ion exchange membrane resistance for electrodialysis systems
US8598882B2 (en) Method of monitoring a hydrocarbon reservoir

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model