Connect public, paid and private patent data with Google Patents Public Datasets

Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer

Info

Publication number
CN102830381A
CN102830381A CN 201210291150 CN201210291150A CN102830381A CN 102830381 A CN102830381 A CN 102830381A CN 201210291150 CN201210291150 CN 201210291150 CN 201210291150 A CN201210291150 A CN 201210291150A CN 102830381 A CN102830381 A CN 102830381A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
device
cesium
laser
atom
bubble
Prior art date
Application number
CN 201210291150
Other languages
Chinese (zh)
Other versions
CN102830381B (en )
Inventor
周欣
刘国宾
孙献平
刘买利
叶朝辉
Original Assignee
中国科学院武汉物理与数学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention discloses a nuclear magnetic resonance (NMR) device based on a laser atomic magnetometer, and the NMR device comprises a cesium atom vapor bubble, a magnetic shielding bushing which is sleeved on the cesium atom vapor bubble, three groups of Helmholtz coils which are arranged inside the magnetic shielding bushing, a polarization device which is used for polarizing cesium atoms inside the cesium atom vapor bubble, a laser transmitting device which is used for transmitting detection laser to the cesium atom vapor bubble, a detection device which is used for detecting an NMR signal of the detection laser penetrating the cesium atom vapor bubble and a pneumatic sample feeding device which is used for pre-polarizing a sample to be detected and can place the pre-polarized sample on the cesium atom vapor bubble. The invention also discloses a measurement method of an NMR based on the laser atomic magnetometer. The device and the method are high in detection sensitivity, free from needing low-temperature refrigeration, low in running cost and lower in working temperature.

Description

—种基于激光原子磁力计的NMR装置及测量方法技术领域 - NMR apparatus and measuring method based on laser atom kinds BACKGROUND magnetometer

[0001] 本发明属于核磁共振(Nuclear magnetic resonance, NMR)波谱领域,更具体涉及ー种基于激光原子磁力计的NMR装置,还涉及ー种基于激光原子磁力计的NMR的測量方法,适用于在IOOuT〜InT (1uT=1(T6T,InT=I(T9T)磁场下检测NMR信号。u [0001] The present invention belongs to the NMR (Nuclear magnetic resonance, NMR) spectroscopy, and more particularly relates to a laser-based species NMR apparatus ー magnetometer atoms, and also relates to a method of NMR measurement ー kinds of laser based magnetometers atoms, suitable for IOOuT~InT (1uT = 1 (T6T, InT = I (T9T) detecting an NMR signal magnetic field .u

背景技术 Background technique

[0002] NMR是ー种用来获得有关原子和原子所组成的分子结构与动力学信息的技木。 [0002] NMR was used to obtain the kind of wood technology ー molecular structure and dynamics of the information relating to the composition of atoms and atomic. NMR对原子核起作用,而且仅对具有不为零自旋的原子核起作用,这些不为零的核自旋就像一个个具有南北极的小磁铁一祥,具有磁矩,从而能被用于NMR研究。 NMR nuclei to work, and only the non-zero spin nuclei having a function, such as a non-zero nuclear spin have one of a small magnet poles Cheung, posses a magnetic moment, so that can be used NMR studies. [0003] 当这些磁矩处于外部静磁场中吋,由于磁矩与外静磁场存在夹角,因为发生旋进,当用射频磁场照射原子核,原子核吸收射频能量,并发射出与旋进速率对应的射频信号,该射频信号能够反应原子核的特征信息。 [0003] When these magnetic moments in the external static magnetic field inches, due to the angle between the magnetic moments with the external static magnetic field, since the precession occurs, the RF field when irradiated with nuclei, nuclei absorb RF energy, and emit corresponding precession rate RF signal, the RF signal characteristic information capable of reacting nuclei. 原子核处于一定的环境中,这些环境与原子核发生不同程度的相互作用,反映在发射出来的射频信号上,会导致其在以射频振荡的同时有衰减现象,通过研究该衰减行为,可以获得原子核周围的空间结构和动态行为信息。 Nuclei in certain circumstances, these environments with different degrees nuclei interactions, reflected in the radio frequency signals emitted, which will lead to a radio frequency oscillation phenomena while attenuation by studying the decay behavior can be obtained around the nucleus the spatial structure and dynamic behavior information.

[0004] 在NMR波谱中,改变射频磁场的频率,测量原子核对不同频率射频磁场的吸收和发射强度,可以获得共振谱,这种NMR波谱能够掲示材料的元素成分与含量,与相关理论结合,甚至可获得各元素原子的结构和运动信息。 [0004] In the NMR spectrum, the change in frequency of the RF magnetic field, the measurement nuclei absorption and emission intensities of the different frequency of the RF magnetic field can be obtained resonance spectrum, this NMR spectrum can be kei shown elemental composition and content of the material, combined with the theory, even the structure and the motion information obtained atoms of each element.

[0005] NMR发明于20世纪50年代前后,在其几十年的发展历史中,为获得更高的NMR波谱分辨率,磁场强度及射频场频率一直在増加,从最初IOMHz量级的拉莫尔(Larmor)频率,到目前的900MHz,甚至有厂家在研制GHz射频场的NMR谱仪。 [0005] NMR invention before and after the 1950s, decades of development in its history, in order to obtain higher resolution NMR spectroscopy, magnetic field strength and radio frequency fields to increase in frequency has been, from the initial order of Rameau IOMHz Er (Larmor) frequency, to the current 900MHz, even manufacturers in the development GHz RF field NMR spectrometer.

[0006] 虽然高场NMR具有高分辨率,但从实际应用来看,高场强和高RF频率,在一些应用上受到限制。 [0006] Although the high field NMR have a high resolution, from a practical point of view, a high field strength and high RF frequency, is limited in some applications. 随着磁场的提高,样品磁导率分布的不均匀性会加剧,从而使信号增宽,尤其是包含铁钴镍等铁磁性元素的样品,通常是无法使用NMR技术来分析的。 With the improvement of the magnetic field, non-uniform distribution of the sample permeability will increase, so that the broadening signal, in particular a sample comprising a ferromagnetic elements iron, cobalt and nickel, generally can not be used to analyze the NMR technique. 另ー个常见问题是磁共振成像(Magnetic resonance imaging, MRI)中的磁化率伪影。 Another common problem is ー susceptibility artifact magnetic resonance imaging (Magnetic resonance imaging, MRI) of. 当不同种类样品或同类具有较高磁化率梯度的样品处于磁场中时,不同磁化率的样品成分会产生寄生梯度磁场。 When the same sample or of different types having a high magnetic susceptibility gradient in the magnetic field, the magnetic susceptibility of different components of the sample will produce spurious gradient magnetic field. 当这些寄生梯度场与用于编码的梯度场相当吋,MRI的图像严重扭曲。 When these spurious gradient field and for encoding gradient field quite inch, MRI images seriously distorted. 在医学成像中,金属补牙或珠宝饰物的存在可以破坏MRI ;身体内部固体-液体和固体-空气界面处磁化率的跳变,产生细微的变形。 In medical imaging, metal fillings or presence of jewelry can destroy the MRI; solid within the body - the solid and liquid - air interface susceptibility hopping produce subtle deformation.

[0007] 从科学研究来讲,通常化学样品和生物组织的真实环境是地磁场(4(T50uT),为尽可能获取分子样品和人体组织在实际环境下的结构与动力学信息,需要用在低场(地磁场及以下)条件下进行NMR和MRI的原位研究;然而,传统RF线圈探测技术因其在低场下的低灵敏度,在进行此类研究时存在一定的局限性。 [0007] From scientific approach, the real environment is typically the chemical sample is a biological tissue and the geomagnetic field (4 (T50uT), and to obtain kinetic information molecules and sample human tissue structures in the actual environment as much as possible, the need to use MRI and NMR studies situ under low-field (the geomagnetic field and below) conditions; however, the conventional RF coil detection technology due to its low sensitivity at low fields, there are some limitations when performing such studies.

[0008]虽然基于超导量子干涉器件(Superconducting quantum interference device,SQUID)的磁力计,也可在低场下实现很高的磁场探测灵敏度,并应用于低场NMR研究,但是它与NMR谱仪一祥,要工作在超导所需的低温环境,在应用方面依然有所局限。 [0008] Although based superconducting quantum interference device (Superconducting quantum interference device, SQUID) magnetometer, may also be implemented at low magnetic field of high detection sensitivity, low field NMR and applied research, but it is confirmed by NMR spectroscopy and a Xiang, required to work in low-temperature superconducting environment, the application still has limitations.

[0009] 综上所述,虽然NMR作为ー种強大的核自旋分析技术在各领域获得了广泛应用,但目前NMR技术所用RF (Radio Frequency)线圈在低场下的探测灵敏度较差,仍不能满足一些应用的要求。 [0009] In summary, although as ー NMR nuclear spin species powerful analytical techniques widely used in various fields, but the poor art NMR probe coil sensitivity at low field with a RF (Radio Frequency), still Some applications can not meet the requirements.

[0010] 因此,我们需要一些低场下的高灵敏度NMR仪器和技木。 [0010] Thus, we need some high sensitivity at low field NMR instrument and technology of wood. 近年来发展出了几种低场NMR仪器,这些技术弥补了传统NMR在低场下的低灵敏度缺陷。 Several recently developed a low-field NMR equipment, which make up the traditional techniques NMR low sensitivity at low field defects. IM Savukov等人在“NMR Detection with an Atomic Magnetometer^(Phys. Rev. Lett. 94, 123001 (2005))中用激光原子磁力计进行NMR检测,该激光原子磁力计使用处于180°C的钾(K)原子作为エ作介质,在直流到几百Hz的频段上具有20fT/Hz1/2的灵敏度,以信噪比(Signal to noiseratio, SNR)为10的单次采样测得水的NMR信号。VV Yashchuk等人在“HyperpolarizedXenon Nuclear Spins Detected by Optical Atomic Magnetometry,,(Phys. Rev. Lett.93,160801 (2004))中用原子磁力计测量了超极化Xe原子的T1常数。 With IM Savukov et al "NMR Detection with an Atomic Magnetometer ^ (Phys. Rev. Lett. 94, 123001 (2005)) for the laser atom magnetometers NMR detection, atomic magnetometers using the laser to 180 ° C in potassium ( K) for Ester atom as a medium having a sensitivity 20fT / Hz1 / 2 in the frequency band of DC to several hundred Hz, signal to noise ratio (signal to noiseratio, SNR) as a single sample of water measured NMR signal 10. VV Yashchuk et al "HyperpolarizedXenon Nuclear Spins Detected by Optical atomic Magnetometry ,, (Phys. Rev. Lett.93,160801 (2004)) with the atomic magnetometer measurements constants T1 hyperpolarized Xe atoms. MP Ledbetter等人在“Optical detection of NMR J-spectra at zero magnetic field”中用激光原子磁力计测量了こ醇的CH J耦合谱(NMR谱的ー种,可用于确定化学分子中的结构),而且该测量在零磁场下进行。 MP Ledbetter et al., "Optical detection of NMR J-spectra at zero magnetic field" by the laser atom magnetometer measurements alcohol CH J ko coupling spectroscopy (NMR spectrum ー species, may be used to determine the chemical structure of the molecule), and that the measurements were performed at zero magnetic field.

[0011] 激光原子磁力计基于原子与激光相互作用发生的ー种被称为非线性磁光旋转(Nonlinear magneto-optical rotation,NM0R)的量子力学现象。 [0011] Laser based magnetometers atoms ー quantum mechanical phenomenon is called nonlinear magneto-optical rotation species (Nonlinear magneto-optical rotation, NM0R) atom and the interaction of the laser. 由于该现象产生的NMOR信号具有极窄的线宽,且对磁场敏感,因此天然具有高灵敏度的磁场检测能力,另外,即使在如IOOurinT量级甚至更低的极弱磁场下,该灵敏度也不会变差。 Since the signal of the NMOR phenomenon having a very narrow linewidth, and is sensitive to magnetic fields, and therefore naturally has high sensitivity magnetic field detection capability, Further, even in a case such as the order or even lower IOOurinT very weak magnetic field, the sensitivity is not It will be worse.

[0012] 上述利用激光原子磁力计检测NMR信号的方法,还有一定的缺陷,比如激光原子磁力计的探头是ー个工作于17(T210°C左右的原子蒸气泡,其温度过高,对NMR样品有谱线加宽的影响,本发明将针对此问题,提出一种新的方法。 [0012] The atomic magnetometer using a laser method for detecting NMR signals, there are some defects, such as laser atom magnetometer probe 17 is operating in a ー (T210 ° C atom around the vapor bubble, the temperature is too high, on the NMR sample with a line broadening of the impact, the present invention is to solve this problem, a new method is proposed.

发明内容 SUMMARY

[0013] 本发明的目的是在于针对现有技术存在的上述问题,提供ー种基于激光原子磁力计的NMR装置,还提供一种基于激光原子磁力计的NMR的測量方法,从而解决低场下现存射频线圈方法灵敏度不足的困难,并解决新出现的原子蒸气泡温度过高的问题。 [0013] The object of the present invention is that the above problems of the prior art, to provide a laser-based species ー atoms NMR magnetometer means is also provided a method of NMR measurement based on laser atomic magnetometers, thereby solving the low field existing methods lack the sensitivity of the RF coil is difficult, and resolve the high temperature atomic vapor bubbles emerging issues.

[0014] 为了实现上述目的,本发明采用以下技术方案: [0014] To achieve the above object, the present invention employs the following technical solution:

ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡,包括套设在铯原子蒸气泡上的磁屏蔽套筒、设置在磁屏蔽套筒内的三组亥姆霍兹线圈、用于极化铯原子蒸气泡内铯原子的激光极化装置、用于向铯原子蒸气泡发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡上方的气动进样装置。 NMR apparatus based on a laser seed ー atoms magnetometer, including cesium vapor bubble, comprising three sets of Helmholtz coils disposed Cesium vapor Paoshang magnetic shielding sleeve, the sleeve disposed within the magnetic shield for polarization means the laser polarization cesium cesium vapor bubble, the bubble-emitting means for emitting a laser to the probe laser cesium vapor, through the NMR signal detecting means for detecting the probe laser cesium vapor bubbles and means for the samples tested and may be pre-polarized samples were placed into pre-polarized pneumatic cesium vapor bubbles above the sampling device.

[0015] 如上所述的激光极化装置包括抽运激光器和用于将抽运激光器发出的激光转换为圆偏振光后传送到铯原子蒸气泡的四分之一波片。 [0015] Laser polarization means comprises a pump laser and a quarter wave plate for transmitting the pump laser beam emitted from the laser transported into circularly polarized light to the cesium vapor bubble as described above.

[0016] 如上所述的激光发射装置包括探测激光器和用于将探测激光器发出的激光转换成线偏振探测激光后传送到铯原子蒸气泡的偏振棱镜。 [0016] The above apparatus comprises a laser emitting a laser and detecting means for detecting laser light emitted by the laser is transmitted to convert the cesium atomic vapor bubbles back to the polarizing prism linearly polarized probe laser.

[0017] 如上所述的NMR信号检测装置包括用于对穿过铯原子蒸气泡的线偏振探测激光进行分束的偏振分束棱镜、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器的光电探测器、用于调整抽运激光器的输出频率并输出方波同步信号到乘法器的信号发生器、用于对检测信号及方波同步信号进行乘法运算的乘法器和用于对乘法器的输出进行滤波并传送到上位机的低通滤波器。 [0017] NMR signal detecting means comprises a polarization as described above for the cesium atomic vapor bubbles through the linear polarization of the probe laser beam splitting prism, and a laser detection signal line after detecting the beam polarization detection sent to the multiplier photodetector, for adjusting the pump laser output frequency and output square wave synchronization signal to the multiplier to a signal generator, for detecting signals and square-wave synchronous signal multiplied by the multiplier and at the output of the multiplier is filtered and sent to the host computer of the low pass filter.

[0018] 如上所述的气动进样装置包括气缸、设置在气缸内且一端设置有与气缸内壁贴合的活塞的样品管、套设在气缸一端的环形预极化磁体和用于控制样品管在气缸内往复运动的驱动装置,所述的磁屏蔽套筒上开设有通孔,气缸一端穿过通孔设置在铯原子蒸气泡上方。 [0018] As described above pneumatic injection means comprises a cylinder disposed within the cylinder and one end of the sample tube is provided with a cylinder inner wall and the bonded piston, one end of the cylinder sleeve is provided in the annular pre-polarizing magnet and the sample tube for controlling the driving means reciprocating in the cylinder, defines a through hole, one end of the cylinder through a through hole provided above said cesium vapor bubble magnetic shielding sleeve.

[0019] 如上所述的气缸一端套设有导引线圈,另一端套设有小角度脉冲线圈,所述的驱动装置包括提供气压源的空气压缩机和用于切换空气压缩机输入到气缸的气流方向的电磁阀。 [0019] As described above one end of the cylinder sleeve is provided with a guide coil, the other end of the sleeve is provided with a small angle pulse coil, said driving means comprises a source of air pressure provided for switching the compressor and the air input to the air compressor cylinder solenoid valve air flow direction.

[0020] 如上所述的三组亥姆霍兹线圈包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 [0020] The three sets of Helmholtz coils comprise three pairs of Helmholtz coils annular described above, each pair of Helmholtz coils coincides with the center line, the center line of the three pairs of Helmholtz coils perpendicular to each other, wherein ー direction parallel to the centerline of the probe laser beam Helmholtz coil.

[0021] ー种基于激光原子磁力计的NMR的測量方法,包括以下步骤: [0021] NMR measurement method based on laser atom kinds ー magnetometer, comprising the steps of:

步骤I、控制铯原子蒸气泡温度升至20-60°C,控制抽运激光器的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器的电流进行调制,实现同步光抽运; Step I, the control cesium vapor bubble temperature was raised to 20-60 ° C, the control output of the laser pump laser frequency and the alkali metal cesium atomic transition line Dl F = 4 -> F '= 3 resonance, and controls the output of the laser probe the laser frequency deviates from the resonance frequency lOOMHflOOGHz, pump laser current is modulated optical pumping synchronization;

步骤2、调整偏振棱镜和四分之一波片的角度,获得线偏振探测激光和圆偏振光; 2, adjusting the polarization prism and quarter-wave plate angle step of obtaining linearly polarized and circularly polarized probe laser;

步骤3、调整偏振分束棱镜的角度,直至光电探测器输出的信号为零; Step 3, to adjust the angle of the polarization splitting prism, the photodetector until the signal output from zero;

步骤4、通过调整三组亥姆霍兹线圈的电流,使得磁屏蔽套筒内的残余磁场为最小,得到三组亥姆霍兹线圈的调整电流; Step 4, the current through the three sets of Helmholtz coils is adjusted so that the residual magnetic field in the magnetic shield sleeve to a minimum, the current is adjusted in three sets of Helmholtz coils;

步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等的正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器输出的磁场鉴别信号; Step 5, the current-scanning parallel pair of Helmholtz coils in three sets of Helmholtz coils with the probe laser centerline, negative current from a negative value to the current value of the set of absolute values ​​ーvalue equal to the positive current, is superimposed on the adjustment of the current in the step 4, to give the magnetic field discrimination output signal of the low pass filter;

步骤6、重复步骤疒步骤5直至単位磁场变化时,低通滤波器输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; Step 6. Repeat step 5 until the radiolabeling step epileptic bit change in magnetic field, the change in the output voltage value of the low-pass filter in response to the largest linear range of the magnetic field B is set to the center value of the bias magnetic field;

步骤7、取适量液体样品倒入样品管,放入气缸中; Step 7, an appropriate amount of the liquid sample is poured into the sample tube placed in the cylinder;

步骤8、上位机通过继电器控制电磁阀,进而控制空气压缩机吹入到气缸中的方向,使得样品管浮起到环形预极化磁体的内部中心; Step 8, the host computer through the relay control solenoid valve, thereby controlling the air compressor is blown in the direction of the cylinder, so that the sample tube into the central inner annular float prepolarization magnet;

步骤9、保持样品管悬浮设定时间,使其充分预极化,上位机通过继电器控制电磁阀,进而改变空气压缩机吹入到气缸中的方向,使样品管向下穿过导引线圈,到达铯原子蒸气泡的上方; Step 9, the set time holding the sample tube suspension to fully pre-polarized, the host computer through the relay controlling the solenoid valve, thereby changing the direction of air blown into the compressor cylinder, the sample down through the guide tube coil, reaches the top of the cesium atom vapor bubble;

步骤10、控制小角度脉冲线圈中的电流,产生直流或交流脉冲,改变样品磁矩方向;步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; Step 10, the control angle of the pulse current is small coils, generates a DC or AC pulse, changing the direction of the magnetic moment of the sample; step 11, there is a small angle of 5~15 ° with the direction of the sample moments bias magnetic field, the magnetic moments in the sample ka subjected ー a moment about the physical and precessional a bias magnetic field, the magnetic field perturbation is applied to obtain the NMR signal in the time domain;

步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 Step 12 NMR spectrum was obtained by NMR signal in the frequency domain signal a time domain.

[0022] 本发明与现有技术相比,具有以下优点和效果: [0022] Compared with the prior art the present invention has the following advantages and effects:

1、在低磁场下,与现有的线圈探测技术相比,具有更高的探测灵敏度; 1, at a low magnetic field, compared with the prior art detection coil, has a higher detection sensitivity;

2、与现有低场利用SQUID探测NMR技术相比,不需要低温制冷,节约运行成本; 2, the conventional SQUID probe using low field NMR techniques, do not require cryogenic refrigeration operating cost savings;

3、与现有的基于原子磁力计的NMR探測装置相比,具有更低的工作温度。 3, compared with the conventional NMR probe apparatus based on atomic magnetometers, a lower operating temperature. 附图说明 BRIEF DESCRIPTION

[0023] 图I是本发明的总体结构示意图; [0023] FIG. I is a schematic diagram of the overall structure of the present invention;

图2是本发明的高灵敏度激光原子磁力检测部分的原理示意图; FIG 2 is a simplified schematic of the high-sensitivity magnetic detection portion of the present invention, the laser atom;

图3是本发明的预极化与气动进样部分的原理示意图。 FIG 3 is a schematic view of the principle of the present invention is pre-polarized and pneumatic injector portion.

[0024] 图中:1_探测激光器;2_抽运激光器;3_偏振棱镜;4_四分之一波片;5_磁屏蔽套筒;6_三组亥姆霍兹线圈;7_铯原子蒸气泡;8_偏振分束棱镜;9_光电探测器;10_乘法器;11-信号发生器;12_低通滤波器;13_上位机;14_空气压缩机;15_电磁阀;16_继电器;17-样品管;18_气缸;19-环形预极化磁体;20-导引线圈;21_小角度脉冲线圈;a-样品预极化与气动进样装置;b_激光原子磁力计装置。 [0024] FIG: 1_ probe laser; 2_ pump laser; 3_ polarizing prism; 4_ quarter-wave plate; 5_ magnetic shield sleeve; 6_ three sets of Helmholtz coils; 7_ cesium vapor bubble; 8_ polarization splitting prism; 9_ photodetector; 10_ multiplier; 11- signal generator; 12_ low-pass filter; 13_ host computer; 14_ air compressor; 15_ electromagnetic valve; 16_ relay; 17- sample tube; 18_ cylinder; 19- annular pre-polarizing magnet; coil guide 20; 21_ small angle pulse coil; A- prepolarization sample and pneumatic injection means; B_ laser apparatus atomic magnetometers.

具体实施方式 detailed description

[0025] 下面结合附图对本发明作进ー步详细描述: [0025] The following detailed description of the present invention will be further intake ー DRAWINGS:

实施例: Example:

ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡7,包括套设在铯原子蒸气泡7上的磁屏蔽套筒5、设置在磁屏蔽套筒5内的三组亥姆霍兹线圈6、用于极化铯原子蒸气泡7内铯原子的激光极化装置、用于向铯原子蒸气泡7发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡7的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡7上方的气动进样装置。 NMR apparatus based on a laser seed ー atoms magnetometer, including cesium vapor bubble 7, comprising a sleeve disposed Cesium vapor bubble magnetic shield 7 on the sleeve 5, the sleeve disposed within the magnetic shield 5 three sets of Helmholtz coil 6, a cesium atomic vapor bubble polarized laser polarization means 7 of the cesium atom, a cesium atomic vapor bubble to the laser emitting apparatus 7 probe laser emission laser detector for detecting vapor bubbles through cesium 7 NMR signal detecting means and for a test sample is pre-polarized and pre-placed in the sample after polarization cesium vapor bubble pneumatic means 7 above the sample.

[0026] 激光极化装置包括抽运激光器2和用于将抽运激光器2发出的激光转换为圆偏振光后传送到铯原子蒸气泡7的四分之一波片4。 [0026] The laser comprises a pump laser polarization means 2 for converting the laser light emitted from the pump laser 2 to transmit circularly polarized light. Cesium vapor bubble to the quarter-wave plate 7 4.

[0027] 激光发射装置包括探测激光器I和用于将探测激光器I发出的激光转换成线偏振探测激光后传送到铯原子蒸气泡7的偏振棱镜3。 [0027] The laser emitting apparatus comprising detection means for detecting a laser I and the laser emitted from the laser I after transmitting the converted into a linearly polarized probe laser to the cesium vapor bubble polarizing prism 7 3.

[0028] NMR信号检测装置包括用于对穿过铯原子蒸气泡7的线偏振探測激光进行分束的偏振分束棱镜8、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器10的光电探測器9、用于调整抽运激光器2的输出频率并输出方波同步信号到乘法器10的信号发生器11、用于对检测信号及方波同步信号进行乘法运算的乘法器10和用于对乘法器10的输出进行滤波并传送到上位机13的低通滤波器12。 [0028] NMR means includes means for detecting a signal passing through line 7 Cesium vapor bubble detecting polarized laser beam of the polarization splitting prism 8, the line for detecting polarized laser beam to detect the detection signal is sent to the 9 multiplier photodetector 10 for adjusting the pump laser 2 and the output frequency of the synchronizing signal output square wave signal generator 11 to the multiplier 10, and a detection signal for a square wave synchronization signal multiplication multiplication 10 and for the output of multiplier 10 is filtered and transmitted to the host computer 13 is a low pass filter 12.

[0029] 气动进样装置包括气缸18、设置在气缸18内且一端设置有与气缸18内壁贴合的活塞的样品管17、套设在气缸18 —端的环形预极化磁体19和用于控制样品管17在气缸18内往复运动的驱动装置,所述的磁屏蔽套筒5上开设有通孔,气缸18 —端穿过通孔设置在铯原子蒸气泡7上方。 [0029] The pneumatic injection means comprises a cylinder 18 disposed in the cylinder 18 and one end of the cylinder 18 is provided with an inner wall of the sample tube bonded to a piston 17, provided in the cylinder sleeve 18 - end of the annular pre-polarizing magnet 19 and a control drive means 17 reciprocates within the cylinder 18 of the sample tube, defines a through hole, the cylinder sleeve 18 on the magnetic shield 5 - end through the through holes provided in the top 7 cesium vapor bubble.

[0030] 气缸18—端套设有导引线圈20,另一端套设有小角度脉冲线圈21,所述的驱动装置包括提供气压源的空气压缩机14和用于切换空气压缩机14输入到气缸18的气流方向的电磁阀15。 [0030] The guide cylinder 18 is provided with a coil end of sleeve 20, the other end of the sleeve 21 with a small angle pulse coil, said driving means comprises providing a source of air pressure and the air compressor 14 for switching the input to the air compressor 14 the direction of air flow the electromagnetic valve 15 of the cylinder 18.

[0031] 三组亥姆霍兹线圈6包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 [0031] The three sets of Helmholtz coils 6 comprises three pairs of Helmholtz coils annular center line of each pair of Helmholtz coils coincides with the center line of the three pairs of Helmholtz coils perpendicular to each other, wherein the pair ーa direction parallel to the center line of the probe laser beam Helmholtz coil.

[0032] ー种基于激光原子磁力计的NMR的測量方法,包括以下步骤: [0032] NMR measurement method based on laser atom kinds ー magnetometer, comprising the steps of:

步骤I、控制铯原子蒸气泡7温度升至20-60°C,控制抽运激光器2的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器I的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器2的电流进行调制,实现同步光抽运; Step I, 7 control cesium vapor bubble temperature was raised to 20-60 ° C, the control output of the laser pump laser frequency and the alkali metal cesium atom Dl transition line 2 F = 4 -> F '= 3 resonance, and controls the laser probe I output laser frequency deviates from the resonance frequency lOOMHflOOGHz, current pump laser 2 is modulated optical pumping synchronization;

步骤2、调整偏振棱镜3和四分之一波片4的角度,获得线偏振探测激光和圆偏振光; 步骤3、调整偏振分束棱镜8的角度,直至光电探测器9输出的信号为零; 2, the step of adjusting the polarization angle of the prisms 3 and 4, a quarter wave plate, linearly polarized probe laser to obtain circularly polarized light; step 3, to adjust the angle of the polarization splitting prism 8, and 9 until the output of the photodetector signal is zero ;

步骤4、通过调整三组亥姆霍兹线圈6的电流,使得磁屏蔽套筒5内的残余磁场为最小,得到三组亥姆霍兹线圈6的调整电流; Step 4, 6 by adjusting the current three sets of Helmholtz coils, so that the residual magnetic field in the magnetic shield sleeve 5 is minimized to obtain three sets of Helmholtz coils 6 of the current adjustment;

步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等的正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器12输出的磁场鉴别信号; Step 5, the current-scanning parallel pair of Helmholtz coils in three sets of Helmholtz coils with the probe laser centerline, negative current from a negative value to the current value of the set of absolute values ​​ーvalue equal to the positive current, is superimposed on the adjustment of the current in the step 4, to give the magnetic field discrimination signal output from the low pass filter 12;

步骤6、重复步骤步骤5直至単位磁场变化时,低通滤波器12输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; Step 6. Step 5 was repeated till the magnetic field changes. Unit, change the low pass filter 12 in response to the maximum output voltage, the linear range of the magnetic field B is set to the center value of the bias magnetic field;

步骤7、取适量液体样品倒入样品管17,放入气缸18中; Step 7, an appropriate amount of the liquid sample is poured into the sample tube 17, into the cylinder 18;

步骤8、上位机13通过继电器16控制电磁阀15,进而控制空气压缩机14吹入到气缸18中的方向,使得样品管17浮起到环形预极化磁体19的内部中心; Step 8, the host computer 1316 through the relay control solenoid valve 15, thereby controlling the air compressor 14 is blown to the direction of the cylinder 18, such that the sample tube 17 floats inside the annular prepolarization center of the magnet 19;

步骤9、保持样品管17悬浮设定时间,使其充分预极化,上位机13通过继电器16控制电磁阀15,进而改变空气压缩机14吹入到气缸18中的方向,使样品管17向下穿过导引线圈20,到达铯原子蒸气泡7的上方; Step 9, the set time of the sample holder 17 suspension tube 17 sufficiently pre-control solenoid valve 16 to the relay 15, thereby changing the air compressor 14 is blown to the direction of the cylinder 18, the sample tube polarized by the host computer 13 the guide passes through the coil 20, cesium vapor bubble reaches above 7;

步骤10、控制小角度脉冲线圈21中的电流,产生直流或交流脉冲,改变样品磁矩方向;步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; Step 10, the control current 21 in the small angle pulse coil, generates a DC or AC pulse, changing the direction of the magnetic moment of the sample; step 11, there is a small angle of 5~15 ° with the direction of the sample moments bias magnetic field, the magnetic moment of the sampleー grades by a moment about the action of a bias magnetic field precessional applying perturbations to the magnetic field, the NMR signal to obtain a time domain physically;

步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 Step 12 NMR spectrum was obtained by NMR signal in the frequency domain signal a time domain.

[0033] 本发明是一种通过在特斯拉磁场中预极化,使用激光原子磁力计检测,在纳特斯拉磁场中获得液体NMR谱,从而检测NMR信号的方法和装置。 [0033] The present invention is a pre-Tesla magnetic field by polarization, a magnetometer using a laser detection atom, to obtain a liquid NMR spectra nanoTesla magnetic field, so that the method and apparatus for detecting the NMR signal. 由于激光原子磁力计的灵敏度和频率无关,通过在极低的磁场中检测NMR,能同时增加SNR和谱的分辨率,即使对于非常不均匀的磁场,NMR谱线也足够窄。 Since the laser atom independent magnetometer sensitivity and frequency, by detecting very low magnetic field NMR, simultaneously increasing SNR and spectral resolution, even for highly non-uniform magnetic field, but also narrow enough NMR spectrum.

[0034] 本发明工作于超低磁场中进行检测,通常约为IOOu疒InT,并且使用0. IT到2T的磁场进行预极化,样品体积很小,从Icm3量级到Imm3量级。 [0034] Working according to the present invention ultra low magnetic field detection, usually about IOOu epileptic InT, using 0. IT to 2T pre-polarizing magnetic field, the sample volume is small, on the order of from Icm3 Imm3 to the order. 检测装置可设计成ー种微型激光原子磁力计,是检测探头可以非常靠近室温下的样品。 Detecting means may be designed as a miniature laser atom kinds ー magnetometers, the detection probe can be very close to the sample at room temperature.

[0035] 激光原子磁力计使用铯原子作为探头气泡工作介质,它工作于室温附近(2(T60°C),由于探头和被检测样品在空间上有距离,因此对化学或生物样品的影响非常小,可忽略不计。因此,样品可与激光原子磁力计探头靠得非常近,一般激光原子磁力计的探头可做到Icm大小,样品与探头距离可到1cm,若利用微加工技术将作为探头的原子蒸气泡做到Imm大小,则该距离也可縮小到1_,将提高样品磁场与激光原子磁力计探头的耦合效果,提高NMR信号的检测灵敏度。同时,激光原子磁力计的灵敏度与待检测信号的频率无关,可以在拉莫尔频率为几Hz到几百Hz时将其检测出来。与该量级拉莫尔频率对应的磁场只在ImT水平,即使该磁场的相对均匀性(如1%。〜1%)远低于传统NMR超导磁体的均匀性(10_8〜10_6),所获取的NMR信号线宽也非常之窄,接近原子核自旋共振的本征线 [0035] The laser atom magnetometers cesium atoms as probes bubbles working medium, which operates in the vicinity of room temperature (2 (T60 ° C), since the probe and the test sample with a distance in space, so the impact of chemical or biological samples is very small, negligible. Thus, the sample with the laser atom magnetometer probe in very close proximity, typically a laser atomic magnetometer probe can be achieved Icm size of the sample and the probe distance to 1cm, when using micro-machining techniques as probe Imm atomic vapor bubbles do size, the distance may be reduced to 1_, the magnetic coupling effect of increased sample magnetometer laser atom probe, improving the detection sensitivity of the NMR signal. Meanwhile, the laser atom magnetometer sensitivity to be detected independent of the frequency of the signal, may be Larmor frequency of several Hz to several hundreds Hz will detect it. corresponding to the Larmor frequency magnetic field magnitude only ImT level, even if the relative uniformity of the magnetic field (e.g., 1 % .~1%) is much lower than the conventional uniformity NMR superconducting magnet (10_8~10_6), NMR signal acquired linewidth is also very narrow, approaching the intrinsic nuclear spin resonance line 。在低场中原子核的化学位移信息将不能展现出来,只有与磁场无关的标量耦合(如J耦合等)信息留下来,这些信息可以提供共价键的特征參数。总之,本发明可实现ー种简单的利用激光原子磁力计的“键检测器”,在IOOuT至InT的磁场中产生有关异核标量耦合的精确信息。 Atomic nucleus in the low-field chemical shift information will not show up, only the scalar coupling magnetic field independent (e.g., J coupling, etc.) information to stay, this information may be provided wherein the parameter a covalent bond. In summary, the present invention may be implementedー atomic species with a laser simple magnetometer "key detector", producing accurate information about the heteronuclear scalar coupling to InT in IOOuT magnetic field.

[0036] 与背景内容部分提出的已有相关方案不同,本发明使用一种新的工作介质,利用其物理特性,将激光原子磁力计的探头工作温度大大降低,到室温附近,从而消除对待检测NMR样品的谱线加宽效应,另外该工作温度与人体温度接近,可望用于活体生物应用,如人体表面或器官成像等。 [0036] Different solutions have been proposed related to content and background portion, the present invention uses a new working medium, utilizing the physical properties, will greatly reduce the laser atom probe magnetometer operating temperature near room temperature, thereby eliminating to be detected NMR line broadening effects of the sample, while the working temperature and body temperature close to, living organisms could be used for applications such as body surface or organ imaging.

[0037] 本发明包括了两大部分:ー个是基于激光与碱金属铯(Cs)原子相互作用发生的非线性磁光旋转(Nonlinear magnetic-optical rotation, NM0R)现象制作而成的高灵敏度的激光原子磁力计装置部分,一个是样品的预极化与气动进样装置;下面分别对这两个装置进行操作步骤的说明。 [0037] The present invention includes two parts: one is based on nonlinear ー magneto-optical laser with an alkali metal cesium (Cs) atoms rotation interaction (Nonlinear magnetic-optical rotation, NM0R) made of the phenomenon of high sensitivity atomic magnetometers laser device section, a sample is pre-polarized and pneumatic injection means; respectively following the two devices will be described operating steps.

[0038] 本发明装置由探测激光器I和抽运激光器2、偏振棱镜3和四分之一波片4、磁屏蔽套筒5和三组亥姆霍兹线圈6、铯原子蒸气泡7、偏振分束棱镜8和光电探测器9、乘法器10和信号发生器11、低通滤波器12和上位机13、空气压缩机14、电磁阀15和继电器16、 样品管17和气缸18、环形预极化磁体(钕铁硼永磁体)19、导引线圈20和小角度脉冲线圈21组成。 [0038] The present invention, by the detecting means I and a laser pump laser 2, a polarizing prism and quarter-wave plate 4 3, sleeve 5 and the magnetic shielding three sets of Helmholtz coils 6, 7 cesium vapor bubble, polarizing splitting prism 8 and the photodetector 9, the multipliers 10 and signal generator 11, a low pass filter 12 and host computer 13, the air compressor 14, solenoid valve 15 and relay 16, the sample tube 17 and the cylinder 18, an annular pre polarizing magnet (NdFeB magnet) 19, the guiding coil 20 and the coil 21 is composed of small-angle pulses. 抽运激光器2通过四分之一波片4之后,与铯原子蒸气泡7中的原子作用将其极化,信号发生器11输出正弦波信号到抽运激光器2,调制其输出频率;磁屏蔽套筒5以铯原子蒸气泡7为中心将其包裹,提供InT水平的剰余磁场,三组亥姆霍兹线圈6与由干电池加电阻组成的电流源相连,产生磁场补偿磁屏蔽的剩余磁场;探测激光器I产生激光通过偏振棱镜3之后进入铯原子蒸气泡7与之作用,穿过蒸气泡的透射光到达偏振分束棱镜8,被分束后照射到光电探测器9上面,经光电效应产生输出电流流入到乘法器10,与来自信号发生器11的同步信号进行乘法运算,输出到低通滤波器12,产生所要的信号被上位机13记录。 After the pump laser 2 through the quarter wave plate 4, and 7 atoms in the role of cesium atomic vapor bubble which polarized signal generator 11 outputs a sine wave signal to the pump laser 2, the output frequency modulation; magnetic shield the sleeve 5 is cesium vapor bubble wrap 7 as the center thereof, I provide a magnetic field for surplus InT level, three sets of Helmholtz coils by the current source 6 is connected to the battery plus the resistors, generating a magnetic field compensating residual magnetic shield; I probe laser generates a laser after entering through the polarizing prism 3 7 with cesium vapor bubble effect, the light transmission through the vapor bubble reaches the polarization splitting prism 8, the beam is irradiated to the photodetector 9 above, produce a photoelectric effect the output current flows to the multiplier 10, multiplied with a synchronization signal from the signal generator 11, and outputs to the low pass filter 12, a signal is generated to the host computer 13 is recorded. 样品预极化与气动进样装置与激光原子磁力计装置保持电气隔离,但样品管可经由气动进样装置到达铯原子蒸气泡7的上方,样品预极化产生的磁矩拉莫尔进动信号被激光原子磁力计感应被探測到。 Sample pre-polarized and pneumatic sampling device and the laser apparatus atomic magnetometers remain electrically isolated from, the sample tube may be via a pneumatic injection device reaches above the cesium vapor bubbles 7, samples were pre-polarized magnetic moment generated Larmor precession the laser signal atom magnetometer sensor is detected. 气动进样装置连接方式如下所述:空气压缩机14输出气流到电磁阀15,上位机13控制继电器16与电磁阀15连接并使其切换不同的工作状态,从而使气流在五位二通电磁阀内的流向切換;从电磁阀出来的气流经气管到达气缸18,气流推动样品管17在气缸内上下运动,气缸上方有ー个环形预极化磁体(钕铁硼永磁体)19,样品被其预极化后在气流推动下向下运动达到铯原子蒸气泡7的上方约1cm,其磁矩进动信号被探測。 Air sampling device connections as follows: the air compressor air flow 14 outputs to the solenoid valve 15, the host computer 13 controls the relay 16 is connected to the electromagnetic valve 15 and allowed to switch to a different operating state, so that the air flow in five two-way solenoid the flow switching valve; cylinder 18 from reaching the gas flow out of the solenoid valve transtracheal, the sample tube 17 to promote gas flow up and down movement above the annular cylinder has ー pre-polarizing magnet (NdFeB) within the cylinder 19, the sample is after the pre-polarization which is pushed downward movement under a stream reaches about 1cm cesium vapor bubbles above 7, the magnetic moments precess signal is detected.

[0039] 图I中a为样品预极化与气动进样装置,b为激光原子磁力计装置;a中的气缸(图3中的18)由两个长约Im的有机玻璃管组成,其中外管直径约20mm,内管直径约15mm,厚度很薄,忽略不计。 [0039] FIG. I is a sample into the sample pre-polarized with a pneumatic device, b is the atomic magnetometers laser means; the cylinder (18 in FIG. 3) in a length of about Im by two plexiglass tubes, wherein an outer tube diameter of about 20mm, an inner tube diameter of about 15mm, thin thickness, is negligible. 在激光原子磁力计装置b的磁屏蔽套筒(图2中的5)壁上打外径20mm的孔,使气动进样装置的气缸可以穿过该孔,底端可以与激光原子磁力计的探头7相邻,约10mm,这样可以使激光原子磁力计探头与样品磁场充分相互作用,使得填充因子最大,也即使激光原子磁力计探测NMR信号的整体灵敏度最高。 In the magnetic shield sleeve atomic magnetometers laser device (b) of (5 in FIG. 2) of the hole wall of an outer diameter of 20mm to play, so that the cylinder may be a pneumatic injection device through the hole, the bottom end may be laser atom magnetometer 7 adjacent the probe, about 10mm, so that the laser beam can atoms magnetometer probe interaction with a sample magnetic field sufficiently so that the maximum fill factor, even though the overall maximum sensitivity but also the laser atom probe NMR magnetometer signals.

Claims (8)

1. ー种基于激光原子磁力计的NMR装置,包括铯原子蒸气泡(7),其特征在于:包括套设在铯原子蒸气泡(7)上的磁屏蔽套筒(5)、设置在磁屏蔽套筒(5)内的三组亥姆霍兹线圈(6)、用于极化铯原子蒸气泡(7)内铯原子的激光极化装置、用于向铯原子蒸气泡(7)发射探测激光的激光发射装置、用于检测穿过铯原子蒸气泡(7)的探测激光的NMR信号检测装置和用于对被测样品进行预极化并可将预极化后的样品放置到铯原子蒸气泡(7)上方的气动进样装置。 1. ー laser atom kinds NMR apparatus based magnetometer, comprising a cesium atomic vapor bubble (7), characterized in that: the magnetic shield comprising a sleeve sleeved on the Cesium vapor bubble (7) (5), disposed in the magnetic three sets of Helmholtz coils screening sleeve (5) (6) for polarizing cesium vapor bubble (7) of cesium atoms within the laser polarization means for transmitting to cesium atomic vapor bubble (7) means for detecting laser emitting a laser beam, detecting means for detecting an NMR signal through the probe laser cesium vapor bubble (7) and for a test sample pre-polarized and pre-placed in the sample after polarization cesium atomic vapor bubble (7) above the pneumatic injection device.
2.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的激光极化装置包括抽运激光器(2)和用于将抽运激光器(2)发出的激光转换为圆偏振光后传送到铯原子蒸气泡(7)的四分之一波片(4)。 The laser-based atomic species ー magnetometer NMR apparatus according to claim I, wherein: said laser comprises a pump laser polarization means (2) for the pump laser (2) emitted laser light into a quarter wave plate (4) to transmit circularly polarized cesium vapor bubble (7).
3.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的激光发射装置包括探测激光器(I)和用于将探测激光器(I)发出的激光转换成线偏振探測激光后传送到铯原子蒸气泡(7)的偏振棱镜(3)。 I according to claim ー NMR apparatus based on a laser seed atoms magnetometer, wherein: said detecting means comprises a laser emitting a laser (I) and the probe laser for the laser (I) emitted into transmitting the linearly polarized laser beam to detect the cesium vapor bubble (7) of the polarizing prism (3).
4.根据权利要求2所述的ー种基于激光原子磁力计的匪R装置,其特征在于:所述的NMR信号检测装置包括用于对穿过铯原子蒸气泡(7)的线偏振探測激光进行分束的偏振分束棱镜(8)、用于检测分束后的线偏振探測激光并将检测信号发送到乘法器(10)的光电探测器(9)、用于调整抽运激光器(2)的输出频率并输出方波同步信号到乘法器(10)的信号发生器(11)、用于对检测信号及方波同步信号进行乘法运算的乘法器(10)和用于对乘法器(10)的输出进行滤波并传送到上位机(13)的低通滤波器(12)。ー species according to claim 2, said laser apparatus R based bandit atom magnetometer, wherein: the NMR signal detecting means for detecting includes means for polarizing cesium vapor bubble through line (7) of the laser dividing polarizing beam splitting prism (8), for detecting the line polarized laser beam to detect the detection signal is sent to the multiplier (10) of the photodetector (9) for adjusting the pump laser (2 ) multiplier (10) and the output frequency of the output square wave synchronization signal to the multiplier (10) a signal generator (11) for detecting signals and a square wave synchronization signal to be multiplied and a multiplier ( output 10) is filtered and transmitted to the host computer (13) low-pass filter (12).
5.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的气动进样装置包括气缸(18)、设置在气缸(18)内且一端设置有与气缸(18)内壁贴合的活塞的样品管(17)、套设在气缸(18)—端的环形预极化磁体(19)和用于控制样品管(17)在气缸(18)内往复运动的驱动装置,所述的磁屏蔽套筒(5)上开设有通孔,气缸(18)—端穿过通孔设置在铯原子蒸气泡(7)上方。 According to claim I of the NMR apparatus based on a laser seed ー atoms magnetometer, wherein: said sampling device comprises a pneumatic cylinder (18), disposed within the cylinder (18) at one end and provided with a cylinder (18) the sample tube of the piston (17) is bonded to the inner wall, provided in the cylinder jacket (18) - end of the pre-polarizing magnet ring (19) for controlling the sample tube (17) to reciprocate within the cylinder (18) drive means defines a through hole, the cylinder (18) on said magnetic shield sleeve (5) - the upper end of the through hole provided through a cesium atomic vapor bubble (7).
6.根据权利要求5所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的气缸(18)—端套设有导引线圈(20),另一端套设有小角度脉冲线圈(21),所述的驱动装置包括提供气压源的空气压缩机(14)和用于切换空气压缩机(14)输入到气缸(18)的气流方向的电磁阀(15)。ー according to claim 5 species based laser apparatus atoms NMR magnetometer, wherein: said cylinder (18) - end of the guide sleeve is provided with a coil (20), the other end of the sleeve is provided with a small angle pulse coil (21), said drive means comprising an air compressor providing a source of air pressure (14) and for switching the air compressor (14) is input to the solenoid valve (15) cylinder air flow direction (18).
7.根据权利要求I所述的ー种基于激光原子磁力计的NMR装置,其特征在于:所述的三组亥姆霍兹线圈(6)包括三对环形的亥姆霍兹线圈,每对亥姆霍兹线圈的中心线重合,三对亥姆霍兹线圈的中心线相互垂直,其中ー对亥姆霍兹线圈的中心线与探测激光的光束方向平行。 The laser-based atomic species ー magnetometer NMR apparatus according to claim I, wherein: said three sets of Helmholtz coils (6) comprises three pairs of Helmholtz coils annular, each pair Helmholtz coil center line coincides with the center line of the three pairs of Helmholtz coils perpendicular to each other, wherein ー direction parallel to the centerline of the probe laser beam Helmholtz coil.
8. ー种基于激光原子磁力计的NMR的測量方法,其特征在于,包括以下步骤: 步骤I、控制铯原子蒸气泡(7)温度升至20-60°C,控制抽运激光器(2)的输出激光频率与碱金属铯原子Dl线跃迁F=4 -> F'=3共振,并控制探测激光器(I)的输出激光频率偏离该共振频率lOOMHflOOGHz,对抽运激光器(2)的电流进行调制,实现同步光抽运; 步骤2、调整偏振棱镜(3)和四分之一波片(4)的角度,获得线偏振探测激光和圆偏振光; 步骤3、调整偏振分束棱镜(8)的角度,直至光电探测器(9)输出的信号为零; 步骤4、通过调整三组亥姆霍兹线圈(6)的电流,使得磁屏蔽套筒(5)内的残余磁场为最小,得到三组亥姆霍兹线圈(6)的调整电流; 步骤5、扫描三组亥姆霍兹线圈中的中心线与探测激光平行的一对亥姆霍兹线圈中的电流,从设定的负电流值到ー个绝对值与设定的负电流值相等 8. The method of NMR measurement ー kinds of laser-based atomic magnetometers, characterized in that it comprises the following steps: Step I, the control cesium vapor bubble (7) temperature was raised to 20-60 ° C, the control pump laser (2) the output of the laser frequency of the alkali metal cesium atom Dl line transition F = 4 -> F '= 3 resonance, and controls the probe laser (I) output of the laser frequency deviates from the resonance frequency lOOMHflOOGHz, current to the pump laser (2) is modulation, synchronized optical pumping; step 2, adjusting the polarization prism (3) and a quarter wave plate (4) angle, to obtain linearly polarized probe laser and circularly polarized light; step 3, to adjust the polarization splitting prism (8 ) angle, until the photodetector (9) is a zero output signal; step 4, by (6) to adjust the current three sets of Helmholtz coils, so that the residual magnetic field in the magnetic shield sleeve (5) is minimized, to obtain three sets of Helmholtz coils (6) of the current adjustment; step 5, three sets of Helmholtz coils scan current in the center line of one pair of probe laser Helmholtz coils in parallel, from the set of negative current value to a negative current value ー absolute values ​​is equal to the set 正电流值,叠加在步骤4中所述的调整电流上,得到低通滤波器(12)输出的磁场鉴别信号; 步骤6、重复步骤步骤5直至単位磁场变化时,低通滤波器(12)输出电压响应的变化值最大,设定磁场线性范围中心的B值为偏置磁场; 步骤7、取适量液体样品倒入样品管(17),放入气缸(18)中; 步骤8、上位机(13)通过继电器(16)控制电磁阀(15),进而控制空气压缩机(14)吹入到气缸(18)中的方向,使得样品管(17)浮起到环形预极化磁体(19)的内部中心; 步骤9、保持样品管(17)悬浮设定时间,使其充分预极化,上位机(13)通过继电器(16)控制电磁阀(15 ),进而改变空气压缩机(14 )吹入到气缸(18 )中的方向,使样品管(17 )向下穿过导引线圈(20),到达铯原子蒸气泡(7)的上方; 步骤10、控制小角度脉冲线圈(21)中的电流,产生直流或交流脉冲,改变样品磁矩 Positive current value, is superimposed on the adjustment of the current in said step 4, to obtain a low-pass filter (12) output from the field discrimination signal; 6, Step repeated until the change in magnetic field. Unit Step 5, a low pass filter (12) change in response to the maximum value of the output voltage, the linear range of the magnetic field B is set to the center value of the bias magnetic field; step 7, an appropriate amount of the liquid sample is poured into the sample tube (17), placed in a cylinder (18); step 8, PC (13) controlled by a relay (16) solenoid valve (15), thereby controlling the air compressor (14) is blown to the direction of the cylinder (18), such that the sample tube (17) to the annular pre-polarizing magnet float (19 ) internal center; step 9, holding the sample tube (17) was set the time to fully pre-polarized, the host computer (13) controlling the solenoid valve (15), thereby changing the air compressor (14 through a relay (16) ) blown into the direction of the cylinder (18) in the sample tube (17) downwardly through a guide coil (20), the vapor bubble reaches the top of the cesium atoms (7); a step 10, the control pulse coil small angle (21 current) and generates alternating current or direct current pulse, the magnetic moment of the sample changes 方向; 步骤11、样品磁矩与偏置磁场的方向存在5〜15度的小夹角,样品磁矩在物理上受到ー个カ矩的作用而绕偏置磁场作进动,对磁场施加扰动,获得时间域的NMR信号; 步骤12、通过时间域的NMR信号获得频率域的NMR谱信号。 Direction; a step 11, the presence of a bias magnetic field direction of the sample and the magnetic moment of the small angle of 5~15 degrees, the magnetic moment of a sample by a ka ー action moments precess about the bias magnetic field for physically applying a magnetic field disturbance to obtain a time domain NMR signal; step 12 to obtain the NMR signal in the frequency domain by a time domain NMR spectrum signal.
CN 201210291150 2012-08-15 2012-08-15 Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer CN102830381B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210291150 CN102830381B (en) 2012-08-15 2012-08-15 Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210291150 CN102830381B (en) 2012-08-15 2012-08-15 Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer

Publications (2)

Publication Number Publication Date
CN102830381A true true CN102830381A (en) 2012-12-19
CN102830381B CN102830381B (en) 2014-11-12

Family

ID=47333578

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210291150 CN102830381B (en) 2012-08-15 2012-08-15 Nuclear magnetic resonance (NMR) device and measurement method based on laser atomic magnetometer

Country Status (1)

Country Link
CN (1) CN102830381B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383399A (en) * 2013-07-25 2013-11-06 中国科学院武汉物理与数学研究所 Air-operated sample feeding device for laser detection nuclear magnetic resonance (NMR) signal device
CN103969604A (en) * 2014-05-30 2014-08-06 华南师范大学 Radio-frequency atom magnetometer and method for measuring nuclear magnetic resonance (NMR) signal by same
CN104807848A (en) * 2015-05-15 2015-07-29 中国科学院武汉物理与数学研究所 Device and method for positioning and sample feeding of low-field magnetism resonance system
CN104833690A (en) * 2015-06-04 2015-08-12 中国人民解放军国防科学技术大学 Method for measuring alkali metal atomic polarizability of nuclear magnetic resonance gyro in real time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038450B2 (en) * 2002-10-16 2006-05-02 Trustees Of Princeton University High sensitivity atomic magnetometer and methods for using same
US7521928B2 (en) * 2006-11-07 2009-04-21 Trustees Of Princeton University Subfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection
US20090243610A1 (en) * 2008-03-26 2009-10-01 Canon Kabushiki Kaisha Atomic magnetometer and magnetic force measuring method
CN101692121A (en) * 2009-10-15 2010-04-07 中国科学院电工研究所 Optical pumping effect based magnetic resonance signal detection method
WO2010120783A1 (en) * 2009-04-13 2010-10-21 The Regents Of University Of California Detection of j-coupling using atomic magnetometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7038450B2 (en) * 2002-10-16 2006-05-02 Trustees Of Princeton University High sensitivity atomic magnetometer and methods for using same
US7521928B2 (en) * 2006-11-07 2009-04-21 Trustees Of Princeton University Subfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection
US20090243610A1 (en) * 2008-03-26 2009-10-01 Canon Kabushiki Kaisha Atomic magnetometer and magnetic force measuring method
WO2010120783A1 (en) * 2009-04-13 2010-10-21 The Regents Of University Of California Detection of j-coupling using atomic magnetometer
CN101692121A (en) * 2009-10-15 2010-04-07 中国科学院电工研究所 Optical pumping effect based magnetic resonance signal detection method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
I.M. SAVUKOV等: "Detection of NMR signals with a radio-frequency atomic magnetometer", 《JOURNAL OF MAGNETIC RESONANCE》, vol. 185, no. 2, 31 March 2007 (2007-03-31) *
LIU QIANG等: "A Picotesla Atomic Magnetometer Operating at Normal Temperature", 《2011 ACADEMIC INTERNATIONAL SYMPOSIUM ON OPTOELECTRONICS AND MICROELECTRONICS TECHNOLOGY (AISOMT)》, 16 October 2011 (2011-10-16), XP032123731, DOI: doi:10.1109/AISMOT.2011.6159341 *
王丰 等: "Cs原子磁力仪共振谱线宽度的研究", 《光电子#激光》, vol. 21, no. 6, 30 June 2010 (2010-06-30) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103383399A (en) * 2013-07-25 2013-11-06 中国科学院武汉物理与数学研究所 Air-operated sample feeding device for laser detection nuclear magnetic resonance (NMR) signal device
CN103969604A (en) * 2014-05-30 2014-08-06 华南师范大学 Radio-frequency atom magnetometer and method for measuring nuclear magnetic resonance (NMR) signal by same
CN103969604B (en) * 2014-05-30 2017-03-15 华南师范大学 RF atom magnetometer and method for measuring nuclear magnetic resonance signals
CN104807848A (en) * 2015-05-15 2015-07-29 中国科学院武汉物理与数学研究所 Device and method for positioning and sample feeding of low-field magnetism resonance system
CN104833690A (en) * 2015-06-04 2015-08-12 中国人民解放军国防科学技术大学 Method for measuring alkali metal atomic polarizability of nuclear magnetic resonance gyro in real time
CN104833690B (en) * 2015-06-04 2017-03-01 中国人民解放军国防科学技术大学 An atomic NMR gyroscope alkali metal atom polarizability measurement in real time

Also Published As

Publication number Publication date Type
CN102830381B (en) 2014-11-12 grant

Similar Documents

Publication Publication Date Title
Comment et al. Design and performance of a DNP prepolarizer coupled to a rodent MRI scanner
Wertz Electron spin resonance: elementary theory and practical applications
De Leluw et al. Magnetic properties and molecular quadrupole moment of HF and HCl by molecular-beam electric-resonance spectroscopy
Hinshaw et al. An introduction to NMR imaging: From the Bloch equation to the imaging equation
US4633181A (en) Apparatus and method for increasing the sensitivity of a nuclear magnetic resonance probe
Leroux et al. Orientation-dependent entanglement lifetime in a squeezed atomic clock
US20020140425A1 (en) Magnetic resonance fluid analysis apparatus and method
Auzinsh et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer?
US20080106261A1 (en) Subfemtotesla radio-frequency atomic magnetometer for nuclear quadrupole resonance detection
Blümich et al. NMR at low magnetic fields
Waters et al. A nuclear magnetometer
Schearer et al. Optically pumped nuclear magnetometer
US20100289491A1 (en) Radio frequency atomic magnetometer
US20100327866A1 (en) Nuclear magnetic resonance spectroscopy using light with orbital angular momemtum
US7061237B2 (en) Remote NMR/MRI detection of laser polarized gases
Potenza Measurement and applications of dynamic nuclear polarization
Yashchuk et al. Hyperpolarized xenon nuclear spins detected by optical atomic magnetometry
Bloch The principle of nuclear induction
Savukov et al. Optical detection of liquid-state NMR
Chann et al. Measurements of 3 He spin-exchange rates
US20070205767A1 (en) Atomic magnetic gradiometer for room temperature high sensitivity magnetic field detection
Bulatowicz et al. Laboratory Search for a Long-Range T-Odd, P-Odd Interaction from Axionlike Particles Using Dual-Species Nuclear Magnetic Resonance with Polarized Xe 129 and Xe 131 Gas
Usher et al. A self-oscillating rubidium vapour magnetometer for geomagnetic measurements
Brunner et al. Surface NMR Using Laser-Polarized129Xe under Magic Angle Spinning Conditions
Grosse et al. Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model