CN102822777A - 显示装置、压力检测装置和显示装置的制造方法 - Google Patents

显示装置、压力检测装置和显示装置的制造方法 Download PDF

Info

Publication number
CN102822777A
CN102822777A CN 201180016744 CN201180016744A CN102822777A CN 102822777 A CN102822777 A CN 102822777A CN 201180016744 CN201180016744 CN 201180016744 CN 201180016744 A CN201180016744 A CN 201180016744A CN 102822777 A CN102822777 A CN 102822777A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
electrode
formed
layer
substrate
upper
Prior art date
Application number
CN 201180016744
Other languages
English (en)
Inventor
福山惠一
木村知洋
国吉督章
Original Assignee
夏普株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/13338Input devices, e.g. touch-panels
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 -G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices

Abstract

本发明的液晶显示装置(100)包括:具有第一主表面的玻璃基板(140);与玻璃基板(140)隔开间隔配置的玻璃基板(156);填充在玻璃基板(156)与玻璃基板(140)之间的液晶层(160);形成在第一主表面上的开关元件;配置在第一主表面与第二主表面之间的下部电极(172);与下部电极(172)隔开间隔配置在比下部电极(172)更靠第二主表面侧的位置,并且以与下部电极(172)相对的方式配置的上部电极(171);和能够检测由上部电极(171)和下部电极(172)规定的电信号的检测部,该液晶显示装置(100)中,通过按压玻璃基板(156),上部电极(171)和下部电极(172)中的至少一方能够沿另一方变形。

Description

显示装置、压カ检测装置和显示装置的制造方法

技术领域

[0001] 本发明涉及显示装置、压カ检测装置和显示装置的制造方法,特别涉及具有检测由下部电极和上部电极规定的电特性的检测部的显示装置、压カ检测装置和该显示装置的制造方法。

背景技术

[0002] 在日本特开2001 — 75074号公报(专利文献I)中记载的触摸传感器一体型液晶显示元件具有第一基板、第二基板和在第一基板与第二基板之间插入的液晶层。在第一基板和第二基板的相対的面设置有用于图像显示的显示电极和用于检测触摸位置的触摸电极。

[0003] 在日本特开2005 — 233798号公报(专利文献2)中记载的位置压カ检测装置包括:在单面形成有电阻膜的基底;和在单面形成有导电体的基底。电阻膜和导电体相对地配置, 并且在两基底间设置有间隔物。向电阻膜的两端的电极对供给电压,电阻膜的电压从电阻膜的一端侧向另一端侧直线性变高。在导电体设置电极,而且包括:基于从导电体的电极得到的信号输出位置信号的电路;和基于从电阻膜的两端的电极对得到的信号输出压力信号的电路。

[0004] 在日本特开2002 — 287660号公报(专利文献3)中记载的带输入功能的显示装置包括:第一基板;第二基板;形成于第一基板并从该第一基板向第二基板突出的接触位置检测用电极;形成于第一基板并与接触位置检测用电极电连接的第一接触位置检测用信号线;和形成于第二基板的第二接触位置检测用信号线。

[0005] 在日本特开平11 一 271712号公报(专利文献4)中记载的液晶显示装置包括:阵列基板;对置基板;用于保持阵列基板与对置基板的间距的间隔物;和夹在间隔物与对置基板之间的压力检测元件。作为压カ检测元件采用:在绝缘材料中散布导电性的微粒而得的压カ检测元件;或产生表面电荷的压电体等。

[0006] 在藤仓技术学报(Fujikura Technical Review,フジクラ技報)中记载的触摸模式电容型压カ传感器包括:由于施加压カ而变形的隔膜;与隔膜相対的基板;形成干基板的电极;和在电极上形成的电介质膜。

[0007] 现有技术文献

[0008] 专利文献

[0009] 专利文献I :日本特开2001 — 75074号公报

[0010] 专利文献2 :日本特开2005 — 233798号公报

[0011] 专利文献3 :日本特开2002 — 287660号公报

[0012] 专利文献4 :日本特开平11 - 271712号公报

[0013] 非专利文献

[0014] 非专利文献I :山本敏等其他4人,《触摸模式电容型压カ传感器》,(online), 2001年10月,藤仓技术学报,(平成21年12月20日检索),网址:(URL:http:"www. fujikura.co. jp/00/gihou/gihou101/pdf101/101_17. pdf)发明内容

[0015] 发明要解决的课题

[0016] 在日本特开2001 — 75074号公报中记载的触摸传感器通过使形成于第一基板的触摸电极与形成于第二基板的触摸电极接触,检测触摸位置。但是,该触摸传感器不能够检测施加的压カ的大小。

[0017] 在日本特开2005 — 233798号公报中记载的位置压カ检测装置中,存在由于间隔物的尺寸的偏差而导致检测压力存在偏差的问题。而且,由于间隔物的散布密度,在灵敏度中产生偏差。进ー步,需要在电阻膜中总是流过电流,因此存在电カ消耗很大的问题。

[0018] 在日本特开2002 — 287660号公报中记载的带输入功能的显示装置中,不能够检测出施加于接触位置的压力。

·[0019] 在日本特开平11 一 271712号公报中记载的压力检测元件难以正确检测施加于基板的压力。

[0020] 具体地说,当在压カ检测元件中采用产生表面电荷的压电体时,压电体的电容根据压电体的电极间的距离而变动。即使电极间的距离变动,电容也不会大幅变动。特别是,在电极间的距离的缩小量小时,电极间的电容的变化率小。因此,在接触基板的力小时,难以检测电容的变动,即使手指等触摸到基板,也难以检测接触力。

[0021] 在作为压カ检测元件采用在绝缘树脂内散布有导电性粒子的压カ检测元件时,由于导电性粒子的分布的偏差,在检测的压カ中也产生差別。而且由于导电性粒子的大小的偏差,也会在检测的压カ中产生差別。

[0022] 在藤仓技术学报中记载的触摸模式电容型压カ传感器用于胎压的检测,是与显示装置为完全没有关系的技术领域的传感器。

[0023] 本发明鉴于上述问题提出,其目的在于提供能够正确检测施加于基板的压カ并且能够减少电カ消耗的显示装置、压カ检测装置和显示装置的制造方法。

[0024] 解决课题的方法

[0025] 本发明的显示装置包括:具有第一主表面的第一基板;与第一基板隔开间隔地配置,且具有与第一主表面相対的第二主表面的第二基板;位于第一基板与第二基板之间的显示介质层;配置于第一主表面与第二主表面之间的下部电极;上部电极,其与下部电极隔开间隔地配置于比下部电极更靠第二主表面ー侧的位置,并且与下部电极相对地配置;和能够检测由上部电极和下部电极规定的电特性的检测部。另外,在本说明书中,电特性包括第一电极与第二电极间的电容、在第一电极与第二电极之间流通的电流量、和当第一电极与第二电极接触时的接触部分的电阻值等概念。

[0026] 通过按压上述第二基板,上部电极和下部电极中的至少ー个能够沿另ー个变形。

[0027] 优选显示装置还包括在上部电极与下部电极之间形成的电极间绝缘层,检测部能够检测上部电极与下部电极之间的电容。优选通过按压上述第二基板,上部电极与下部电极能够相互接触,检测部能够检测在上部电极与下部电极之间流通的电流量。

[0028] 优选显示装置还包括通过第二基板被按压而按压上部电极的按压部件。上部电极能够通过来自按压部件的按压カ而以挠曲的方式变形。

[0029] 优选在上述上部电极下形成有接受以挠曲的方式变形后的上部电极的凹部。优选显示装置还包括:像素电极;和与像素电极连接,且在第一主表面上形成的像素电极用开关元件。

[0030] 上述像素电极用开关元件包括:第一半导体层;以覆盖第一半导体层的方式形成的第一栅极绝缘层;在第一栅极绝缘层上、且在第一半导体层的上方形成的第一栅极电极;与第一半导体层连接的第一电极;和位于第一栅极电极的与第一电极相反的ー侧,且与第一半导体层连接的第二电极。

[0031] 上述上部电极上部电极位于第一栅极绝缘层上,且位于从第一栅极电极离开的位置,上部电极包括与第一栅极电极相同材质的材料。优选上述上部电极的宽度大于第一栅极电极的宽度。

[0032] 优选显示装置还包括在第一主表面上形成的基底层,第一半导体层形成于基底层上,下部电极设置于基底层上并且包括与第一半导体层相同材质的材料。

[0033] 优选显不装置还包括位于第一半导体层的下方,能够反射光的导电性的遮光层。 下部电极包括与遮光层相同材质的材料。优选还包括:包含第一基板的矩阵基板;和包含第二基板的对置基板。上部电极和下部电极形成于矩阵基板

[0034] 优选显示装置还包括:包含第一基板的矩阵基板;和包含第二基板的对置基板。上部电极形成于对置基板,下部电极形成于矩阵基板。

[0035] 优选上述矩阵基板还包括:像素电极;与像素电极连接,且在第一主表面上形成的像素电极用开关元件;和覆盖像素电极用开关元件的层间绝缘层。下部电极和像素电极形成于层间绝缘层上。

[0036] 优选在上述第二基板没有被按压的状态下,使下部电极和上部电极与电极间绝缘层接触。优选在上述第二基板没有被按压的状态下,使下部电极与上部电极接触。

[0037] 优选上述上部电极和下部电极中的至少ー个包括:能够弹性变形的突出部;和在突出部的表面形成的导电层。优选显示装置还包括:在上部电极与下部电极之间形成的电极间绝缘层;和在第一基板形成的检测用开关元件,

[0038] 上述检测用开关元件包括:第二半导体层;以覆盖第二半导体层的方式形成的第ニ栅极绝缘层;在第二栅极绝缘层上形成的第二栅极电极;与第二半导体层连接的第三电扱;和位于第二栅极电极的与第三电极相反的ー侧,且与第二半导体层连接的第四电极。上述下部电极与第二栅极电极连接。

[0039] 优选显示装置还包括在第一基板形成的检测用开关元件。上述检测用开关元件包括:第二半导体层;以覆盖第二半导体层的方式形成的第二栅极绝缘层;在第二栅极绝缘层上形成的第二栅极电极;与第二半导体层连接的第三电极;和位于第二栅极电极的与第三电极相反的ー侧,且与第二半导体层连接的第四电极。上述下部电极与第三电极连接,并且能够与上部电极接触。

[0040] 优选显示装置还包括位于第一主表面的上方,能够反射来自外部的光的导电性的反射板。上述下部电极与反射板连接。

[0041] 本发明的压カ检测装置,在ー个方面中,包括:基板;配置于基板上的下部电极;从下部电极离开,并且以与下部电极相対的方式配置的上部电极;和检测部,当通过按压上部电极,下部电极与上部电极接触时,检测部检测在下部电极与上部电极之间流通的电流量。[0042] 优选压カ检测装置还包括按压上部电极的按压部件,上部电极能够通过被按压部件按压而以挠曲的方式变形。

[0043] 本发明的压カ检测装置,在另ー个方面中,包括:基板;配置于基板上的下部电扱;与下部电极隔开间隔地配置,并且与下部电极相对地配置的上部电极;和检测由上部电极和下部电极规定的电特性的检测部。上述下部电极和上部电极中的至少ー个包括:能够弹性变形的突出部;和在突出部的表面形成的导电层。

[0044] 优选压カ检测装置还包括在上部电极与下部电极之间形成的电极间绝缘层。上述检测部能够检测上部电极与下部电极之间的电容。

[0045] 优选通过按压上述上部电极,上部电极与下部电极能够相互接触,检测部检测在上部电极与下部电极之间流通的电流量。

[0046] 本发明的显示装置的制造方法,在ー个方面中,包括:准备具有第一主表面的第一基板的エ序;形成下部电极的エ序;形成与下部电极隔开间隔地配置的半导体层的エ序; 在下部电极和半导体层上形成栅极绝缘层的エ序;在栅极绝缘层上形成第一导电层的エ序;和将第一导电层图案化,在栅极绝缘层的上表面中的位于半导体层的上方的部分形成栅极电极,并且在栅极绝缘层的上表面中的位于下部电极的上方的部分形成上部电极的エ序。

[0047] 优选显示装置的制造方法还包括形成半导体覆膜的エ序,将半导体覆膜图案化,形成半导体层和下部电极。

[0048] 优选显示装置的制造方法还包括:形成第二导电层的エ序;和将第二导电层图案化,形成遮光层的エ序。半导体层位于遮光层上。上述下部电极通过将第二导电层图案化而形成。优选显示装置的制造方法还包括在下部电极与上部电极之间形成空隙部的エ序。

[0049] 本发明的显示装置的制造方法,在另一方面中,包括:准备具有第一主表面的第一基板的エ序;准备具有第二主表面的第二基板的エ序;在第二主表面形成能够弹性变形的突起部的エ序;在突起部的表面形成上部电极的エ序;在第一基板形成下部电极的エ序;和以下部电极与上部电极相対的方式将第一基板和第二基板相对配置的エ序。

[0050] 优选显不装置的制造方法还包括:在第一主表面上形成第一半导体层和与第一半导体层隔开间隔地配置的第二半导体层的エ序;以覆盖第一半导体层和第二半导体层的方式形成栅极绝缘层的エ序;在栅极绝缘层上形成第一导电层的エ序;和将第一导电层图案化,形成位于第一半导体层的上方的第一栅极电极和位于第二半导体层的上方的第二栅极电极的エ序。

[0051] 上述下部电极位于第二栅极电极的上方,与第二栅极电极连接。优选显示装置的制造方法还包括以覆盖下部电极的方式形成上层绝缘层的エ序。

[0052] 发明效果

[0053] 根据本发明的显示装置,能够检测施加于基板的压力,并且能够减少电カ消耗。附图说明

[0054] 图I是示意性地表示实施方式I的液晶显示装置的电路图的电路图。

[0055] 图2是从对置基板一侧平视液晶显示装置的一部分的平面图。

[0056] 图3是位于对置基板下的TFT阵列基板的平面图。[0057] 图4是示意性地表示图2的IV-IV截面的截面图。

[0058] 图5是图2的V-V截面图。

[0059] 图6是对置基板被按压时的液晶显示装置的截面图。

[0060] 图7是示意性地表示上部电极与上层绝缘层136接触的区域的平面图。

[0061] 图8是对实施方式I的压カ传感器的特性和作为比较例的压カ传感器的特性进行比较的图表。

[0062] 图9是表示具有作为比较例的压カ传感器的显示装置的截面图。

[0063] 图10是表示TFT阵列基板的制造エ序的第一エ序的截面图。

[0064] 图11是表示TFT阵列基板的制造エ序的第二エ序的截面图。

[0065] 图12是表示TFT阵列基板的制造エ序的第三エ序的截面图。

[0066] 图13是表示TFT阵列基板的制造エ序的第四エ序的截面图。

[0067] 图14是表示TFT阵列基板的制造エ序的第五エ序的截面图。

[0068] 图15是表示TFT阵列基板的制造エ序的第六エ序的截面图。

[0069] 图16是表示TFT阵列基板的制造エ序的第七エ序的截面图。

[0070] 图17是表示对置基板的制造エ序的第一エ序的截面图。

[0071] 图18是表示对置基板的制造エ序的第二エ序的截面图。

[0072] 图19是表不对置基板的制造エ序的第二エ序的截面图。

[0073] 图20是表示对置基板的制造エ序的第四エ序的截面图。

[0074] 图21是表示对置基板的制造エ序的第五エ序的截面图。

[0075] 图22是实施方式2的液晶显示装置的截面图,是表示TFT元件的截面图。

[0076] 图23是实施方式2的液晶显示装置的截面图,是输出用元件的截面图。

[0077] 图24是表示实施方式2的液晶显示装置的TFT阵列基板的制造エ序中图15所示的制造エ序后的制造エ序的截面图。

[0078] 图25是表不图24所不的TFT阵列基板的制造エ序后的制造エ序的截面图。

[0079] 图26是表不图25所不的制造エ序后的TFT阵列基板的制造エ序的截面图。

[0080] 图27是实施方式3的液晶显示装置的截面图,是表示TFT元件的截面图。

[0081] 图28是实施方式3的液晶显示装置的截面图,是表示压カ传感器的截面图。

[0082] 图29是示意性地表示对置基板被按压时的液晶显示装置的状态的截面图。

[0083] 图30是表示上部电极和栅极绝缘层由于来自按压部件的按压カ而变形之前的状态下的上部电极和栅极绝缘层的截面图。

[0084] 图31是上部电极的平面图。

[0085] 图32是表示由于来自按压部件的按压力,上部电极和栅极绝缘层变形后的状态的截面图。

[0086] 图33是如图32所示上部电极变形时的上部电极的平面图。

[0087] 图34是表示TFT阵列基板的制造エ序的第一エ序的截面图。

[0088] 图35是表示TFT阵列基板的制造エ序的第二エ序的截面图。

[0089] 图36是表示TFT阵列基板的制造エ序的第三エ序的截面图。

[0090] 图37是表示图28所示的TFT阵列基板的变形例的截面图。

[0091] 图38是示意性地表示实施方式4的液晶显示装置的电路图的电路图。[0092] 图39是实施方式4的液晶显示装置的截面图,是表示TFT元件的截面图。

[0093] 图40是实施方式4的液晶显示装置的截面图,是表示选择用TFT元件和压カ传感器的截面图。

[0094] 图41是示意性地表示对置基板被按压时的状态的截面图。

[0095] 图42是表示TFT阵列基板的制造エ序的第一エ序的截面图。

[0096] 图43是表示TFT阵列基板的制造エ序的第二エ序的截面图。

[0097] 图44是表示TFT阵列基板的制造エ序的第三エ序的截面图。

[0098] 图45是表不对置基板的制造エ序的第一エ序的截面图。

[0099] 图46是表示对置基板的制造エ序的第二エ序的截面图。

[0100] 图47是表不对置基板的制造エ序的第二エ序的截面图。

[0101] 图48是表不对置基板的制造エ序的第四エ序的截面图。

[0102] 图49是表不对置基板的制造エ序的第五エ序的截面图。

[0103] 图50是实施方式5的液晶显示装置的截面图,是表示TFT元件的截面图。

[0104] 图51是液晶显示装置的截面图,是表示选择用TFT元件和压カ传感器的截面图。

[0105] 图52是表示TFT阵列基板的制造エ序中形成有TFT元件和选择用TFT元件时的エ序的截面图。

[0106] 图53是表示图52所示的制造エ序后的TFT阵列基板的制造エ序的截面图。

[0107] 图54是表不图53所不的制造エ序后的制造エ序的截面图。

[0108] 图55是表示对置基板的制造エ序中形成有彩色滤光片基板时的截面图。

[0109] 图56是表不图55所不的制造エ序后的エ序的截面图。

[0110] 图57是表不图56所不的制造エ序后的エ序的截面图。

[0111] 图58是表示实施方式6的液晶显示装置的电路的电路图。

[0112] 图59是实施方式6的液晶显示装置的截面图,是表示TFT元件的截面图。

[0113] 图60是实施方式6的液晶显示装置的截面图,是表示压カ传感器的截面图。

[0114] 图61是表示对置基板没有被按压的状态下(初始状态)的上部电极和半导体层的截面图。

[0115] 图62是上部电极的平面图。

[0116] 图63是表示对置基板被按压的状态下的上部电极和半导体层的截面图。

[0117] 图64是表示TFT阵列基板的制造エ序的第一エ序的截面图。

[0118] 图65是表示TFT阵列基板的制造エ序的第二エ序的截面图。

[0119] 图66是表示TFT阵列基板的制造エ序的第三エ序的截面图。

[0120] 图67是表示TFT阵列基板的制造エ序的第四エ序的截面图。

[0121] 图68是表示TFT阵列基板的制造エ序的第五エ序的截面图。

[0122] 图69是表示TFT阵列基板的制造エ序的第六エ序的截面图。

[0123] 图70是表示TFT阵列基板的制造エ序的第七エ序的截面图。

[0124] 图71是表示TFT阵列基板的制造エ序的第八エ序的截面图。

[0125] 图72是表示TFT阵列基板的制造エ序的第九エ序的截面图。

[0126] 图73是表示TFT阵列基板的制造エ序的第十エ序的截面图。

[0127] 图74是表示TFT阵列基板的制造エ序的第i^一エ序的截面图。[0128] 图75是实施方式7的液晶显示装置的截面图,是表示TFT元件的截面图。

[0129] 图76是实施方式7的液晶显示装置的截面图,是表示压カ传感器的截面图。

[0130] 图77是表示TFT阵列基板的制造エ序的第一エ序的截面图。

[0131] 图78是表示TFT阵列基板的制造エ序的第二エ序的截面图。

[0132] 图79是表示TFT阵列基板的制造エ序的第三エ序的截面图。

[0133] 图80是表示TFT阵列基板的制造エ序的第四エ序的截面图。

[0134] 图81是表示实施方式7的液晶显示装置的变形例的截面图。

具体实施方式

[0135] 使用图I〜图81,说明本发明的压カ传感器、显示装置和显示装置的制造方法。另夕卜,在以下进行说明的实施方式中,在言及个数、量等时,除了有特殊记载的情况之外,本发明的范围并不限定于该个数、量等。此外,在以下的实施方式中,各个构成要素除了有特殊记载的情况之外,并非是本发明必需的结构。此外,当以下存在多个实施方式时,除了有特殊记载的情况之外,适当组合各个实施方式的特征部分的内容是ー开始就预定会进行的。

[0136](实施方式I)

[0137] 图I是示意性地表示本实施方式I的液晶显示装置100的电路图的电路图。如该图I所示,液晶显示装置100包括控制部105和阵列状配置的多个像素110,像素110包括多个TFT (Thin Film Transistor :薄膜晶体管)元件115 (像素电极用开关元件)和与该TFT元件115连接的像素电极114。

[0138] 液晶显示装置100包括:沿第一方向延伸并且在第二方向上隔开间隔地配置有多个的栅极配线112和传感器用栅极配线113 ;沿第二方向延伸,并且在第一方向上隔开间隔地配置的多个源极配线111。

[0139] 各栅极配线112与栅极驱动器102连接,各源极配线111与源极驱动器101连接。传感器用栅极配线113配置于相邻的栅极配线112之间,沿第一方向延伸并在第二方向上隔开间隔地形成有多个。各传感器用栅极配线113与传感器驱动器103连接。

[0140] 源极驱动器101、栅极驱动器102、传感器驱动器103与控制部105连接。而且,利用相邻的两个栅极配线112和相邻的两个源极配线111规定像素110。

[0141] 在像素110内配置有TFT元件115、选择用TFT元件116和压カ检测元件120。TFT元件115的源极电极与源极配线111连接,TFT元件115的栅极电极与栅极配线112连接。TFT元件115的漏极电极与像素电极114连接。

[0142] 选择用TFT元件116的源极电极与源极配线111连接,选择用TFT元件116的栅极电极与传感器用栅极配线113连接。选择用TFT元件116的漏极电极与压カ检测元件120连接。

[0143] 压カ检测元件120包括:与选择用TFT元件116的漏极电极连接的输出用元件117 ;和与该输出用元件117的栅极电极连接的压カ传感器(压カ检测装置)118。输出用元件117包括:与选择用TFT元件116的漏极电极连接的源极电极;与源极配线111连接的漏极电极;和与压カ传感器118的下部电极连接的栅极电扱。另外,选择用TFT元件116的源极电极所连接的源极配线111是与输出用元件117的漏极电极所连接的源极配线111相邻的其他的源极配线111。[0144] 此处,选择用TFT元件116的导通/断开以分时的方式被适当地切換,控制部105对来自与被选择的选择用TFT元件116连接的压カ检测元件120的输出进行检测。具体地说,检测来自压カ检测元件120的作为电特性的电流量。这样,控制部105作为对由上部电极和下部电极规定的电特性即电流量进行检测的检测部发挥功能。

[0145] 输出用兀件117的输出根据施加于输出用兀件117的栅极电极的电压而变动。施加于该栅极电极的电压由与栅极电极连接的压カ传感器118的下部电极的电位決定。压カ传感器118的下部电极的电位由与另一方的上部电极之间的电容決定。上部电极与下部电极之间的电容根据对设置有上部电极的基板施加的按压カ而变动。即,控制部105能够根据来自输出用元件117的电流量检测施加于基板的按压力。

[0146] 图2是从对置基板150 —侧平视液晶显示装置100的一部分的平面图。如该图2所不,对置基板150包括:彩色滤光片基板151 ;和配置于该彩色滤光片基板151的下表面的对置电极152。

[0147] 彩色滤光片基板151包括:形成为栅格状的黑矩阵155 ;和形成于该黑矩阵155的框内,且具有红色、緑色、蓝色各种颜色的着色感应材料的着色层153。另外,在一个像素110的上方配置有ー个着色层153。

[0148] 对置电极152例如是由ITO (Indium Tin Oxide :氧化铟锡)形成的透明电极。

[0149] 图3是位于对置基板150下的TFT阵列基板(有源矩阵基板)130的平面图,在该图3和上述图2中,源极配线111和栅极配线112位于黑矩阵155之下。而且,选择用TFT元件116和压カ检测元件120相对于像素电极114配置干与TFT元件115相反的ー侧。

[0150] 如该图3所示,选择用TFT元件116包括:半导体层123 ;与半导体层123和源极配线111连接的源极电极121 ;与传感器用栅极配线113连接的栅极电极122 ;和漏极电极125。

[0151] 输出用元件117的源极电极183与选择用TFT元件116的漏极电极125通过连接配线124连接。另外,本实施方式中,将选择用TFT元件116的半导体层123与输出用元件117的半导体层180分离,通过连接配线124将选择用TFT元件116的漏极电极125与输出用元件117的源极电极183连接,但也可以以连接漏极电极125与源极电极183的方式使半导体层123和半导体层180 —体化。

[0152] 图4是示意性地表示图2的IV-IV截面的截面图。另外,图4和后述的图5、图6等所示的截面图是为了方便说明而简化后的截面图,各图中的纵横比等并不正确。

[0153] 如图4所示,液晶显示装置100包括:TFT阵列基板130 ;以与TFT阵列基板130相对的方式隔开间隔地配置的对置基板150 ;和填充在对置基板150与TFT阵列基板130之间的液晶层(显示介质层)160。另外,在TFT阵列基板130与对置基板150之间形成有将TFT阵列基板130与对置基板150的间隔维持为规定的间隔的间隔物161。

[0154] 液晶显不装置100还包括:配置于对置基板150的上表面的偏光板;和配置于TFT阵列基板130的下表面的偏光板和背光源单兀。

[0155] 以配置在对置基板150的上表面的偏光板的偏光方向与配置在TFT阵列基板130下的偏光板的偏光方向正交的方式,配置各偏光板。背光源单兀向TFT阵列基板130照射光。另外,该背光源単元和上述两个偏光板未图示。

[0156] 对置基板150包括:具有主表面的玻璃基板156 ;在玻璃基板156的主表面形成的彩色滤光片基板151 ;和在该彩色滤光片基板151下形成的对置电极152。

[0157] TFT阵列基板130包括:具有主表面(第一主表面)的玻璃基板(第一基板)140 ;和位于玻璃基板140的上方的像素电极114,在该玻璃基板140的主表面上形成有TFT元件(开关元件)115。

[0158] 在玻璃基板140的主表面上,形成有由氧化娃层(SiO2层)、氮化娃层(SiN)和氮氧化硅层(SiNO层)等绝缘层形成的基底层131。该基底层131的膜厚例如为Onm以上500nm以下,优选为Onm以上400nm以下。

[0159] TFT兀件115包括:在基底层131的上表面上形成的半导体层(第一半导体层)132 ;以覆盖该半导体层132的方式形成的栅极绝缘层(第一栅极绝缘层)133 ;在栅极绝缘层133的上表面上形成的栅极电极134 ;和与半导体层132连接的漏极电极137和源极电极138。 [0160] 栅极电极134在栅极绝缘层133的上表面上,位于半导体层132的上方。漏极电极137与栅极电极134隔开间隔地配置。源极电极138相对于栅极电极134配置在与漏极电极137相反的ー侧。源极电极138与源极配线111连接,漏极电极137与像素电极114连接。

[0161] 通过对栅极电极134施加规定的电压,TFT元件115成为导通,通过对源极配线111和源极电极138施加规定的电压,而对漏极电极137和像素电极114施加规定的电压。

[0162] 通过由TFT元件115切换对像素电极114施加的电压,控制位于像素电极114与对置电极152之间的液晶层160内的液晶的朝向。通过切换液晶的朝向,切換来自背光源单元的光通过在对置基板150的上表面配置的偏光板的状态和由配置在对置基板150的上表面的偏光板遮光的状态。

[0163] 半导体层132例如采用连续晶界结晶硅膜等,半导体层132的膜厚例如为20nm以上200nm以下。另外,半导体层132的膜厚优选为30nm以上70nm以下程度。

[0164] 栅极绝缘层133例如由Si02、SiN、SiN0等的绝缘层形成。栅极绝缘层133的膜厚例如为20nm以上200nm以下,优选为50nm以上120nm以下。

[0165] 栅极电极134是一种导电层,该导电层例如包括:鹤(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属层;包含它们的合金;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等元素的化合物等。栅极电极134的膜厚例如为50nm以上600nm以下,栅极电极134的膜厚优选为IOOnm以上500nm以下。

[0166] 以覆盖栅极电极134的方式,在栅极绝缘层133的上表面上形成有层间绝缘层135。层间绝缘层135例如由Si02、SiN和SiNO等的绝缘层形成。层间绝缘层135的膜厚例如为IOOnm以上IOOOnm以下,层间绝缘层135的膜厚优选为IOOnm以上700nm以下。

[0167] 源极配线111位于层间绝缘层135的上表面上,源极电极138与源极配线111连接。漏极电极137也以到达层间绝缘层135的上表面的方式形成。

[0168] 源极配线111、源极电极138和漏极电极137例如可以是铝(Al)、铜(Cu )、金(Au )、钛(Ti)等金属层、或依次叠层这些金属层而形成的叠层金属层。这些源极配线111等的膜厚例如为300nm以上IOOOnm以下,源极配线111等的膜厚优选是400nm以上800nm以下。

[0169] 在层间绝缘层135的上表面上,以覆盖源极配线111的方式形成有上层绝缘层(电极间绝缘层)136。上层绝缘层136例如由Si02、SiN和SiNO等的绝缘层形成。上层绝缘层136的膜厚例如为50nm以上500nm以下,上层绝缘层136的膜厚优选为50nm以上200nm以下。

[0170] 像素电极114形成在上层绝缘层136的上表面上。像素电极114由ITO等透明导电层形成。

[0171] 图5是图2的V-V截面图。如该图5所示,在玻璃基板140的主表面上形成有基底层131,在该基底层131的上表面上形成有输出用元件117。

[0172] 输出用元件117包括:在基底层131上形成的半导体层180 ;以覆盖半导体层180的方式形成的栅极绝缘层133 ;在栅极绝缘层133的上表面中位于半导体层180的上方的部分形成的栅极电极181 ;和与半导体层180连接的源极电极183和漏极电极182。

[0173] 源极电极183与栅极电极181隔开间隔地配置,漏极电极182相对于栅极电极181配置在与源极电极183相反的ー侧。

[0174] 层间绝缘层135以覆盖栅极电极181的方式形成在栅极绝缘层133的上表面上。 [0175] 漏极电极182贯通栅极绝缘层133、层间绝缘层135,与在层间绝缘层135的上表面形成的源极配线111连接。源极电极183也贯通栅极绝缘层133和层间绝缘层135,以到达层间绝缘层135的上表面的方式形成。

[0176] 在层间绝缘层135的上表面形成有下部电极172和连接配线124。连接配线124与图3所示的选择用TFT元件116的漏极电极125连接。下部电极172利用接触件184与栅极电极181连接。因此,施加于栅极电极181的电压由下部电极172的电位決定。

[0177] 在下部电极172上形成有上层绝缘层136。下部电极172形成为平坦面状。上层绝缘层136中的至少位于下部电极172上的部分沿下部电极172的上表面形成为平坦面状。

[0178] 压カ传感器(压カ检测装置)118包括:上述下部电极172 ;和位于该下部电极172的上方的上部电极171。

[0179] 在本实施方式中,上部电极171形成于对置基板150,上部电极171包括:在彩色滤光片基板151的下侧形成的突起部170 ;和以覆盖该突起部170的方式形成的对置电极152。

[0180] 突起部170例如包括丙烯酸树脂、可塑性树脂等能够弹性变形的材料。也可以使突起部170包括能够弹性变形的导电性树脂。

[0181] 突起部170的高度例如为I μ m以上10 μ m以下。突起部170的高度优选为I. 5 μ m以上5 μ m以下。

[0182] 在该图5所示的例子中,对置电极152中的位于突起部170的顶点部的部分与上层绝缘层136接触。

[0183] 在本实施方式中,突起部170的与突出方向垂直的截面以成为圆形形状的方式形成,突起部170的表面为圆滑的弯曲面状。而且,如图2所示,突起部170隔开间隔地形成有多个。

[0184] 突起部170的形状并不限定于上述形状。例如,也可以以跨多个压カ传感器118的下部电极172延伸的方式形成突起部170。此外,突起部170的形状并不限于截面形状为圆形形状,而且外表面也并不限于圆滑的弯曲面。

[0185] 图6是对置基板150被按压时的液晶显示装置100的截面图。如该图6所示,当被笔或人的手指按压时,对置基板150中被按压的部分和其附近挠曲。[0186] 由于玻璃基板156挠曲,上部电极171接近下部电极172。由于上部电极171接近下部电极172,上部电极171被上层绝缘层136按压,突起部170弹性变形,上部电极171沿着下部电极172变形。

[0187] 图7是示意性地表示上部电极171与上层绝缘层136接触的区域的平面图。在该图7中,区域Rl是被图7中的虚线包围的区域,区域R2是被实线包围的区域。区域Rl表示对置基板150未被按压的状态(初始状态)下的上部电极171与上层绝缘层136的接触区域。

[0188] 区域R2表示图6所示的状态下的上部电极171与上层绝缘层136的接触区域。如该图7所示,通过上部电极171稍微发生变位,上部电极171与上层绝缘层136的接触面积

变得非常大。

[0189] 在上部电极171与上层绝缘层136接触的部分,上部电极171和下部电极172均与上层绝缘层136接触,上部电极171与下部电极172之间的间隔成为上层绝缘层136的·

厚度的量。

[0190] 具体地说,位于上部电极171的表面上的对置电极152与下部电极172之间的距离是上层绝缘层136的厚度的量。

[0191] 由此,图7所示的状态下的上部电极171和下部电极172所规定的电容远大于图6所示的初始状态下的上部电极171和下部电极172所规定的电容。

[0192] 图8是对本实施方式的压カ传感器118的特性与作为比较例的压カ传感器的特性进行比较的图表。

[0193] 另外,在该图8所示的图表中,横轴表示上部电极的行程量,纵轴表示上部电极与下部电极间的电容变化率。图表的实线LI表示本实施方式的压カ传感器的特性,虚线L2表示比较例的压カ传感器的特性。

[0194] 图9是表示具有作为比较例的压カ传感器的显示装置的截面图。该图9所示的比较例的压カ传感器与本实施方式的压カ传感器118不同,不包含突起部170。因此,比较例的压カ传感器包括:在彩色滤光片基板151的下表面形成为平坦面状的对置电极152 ;和下部电极172。

[0195] 另外,比较例的对置基板150与TFT阵列基板130之间的距离和本实施方式的对置基板150与TFT阵列基板130之间的距离均为3. 3 μ m。

[0196] 在该比较例中,当对置基板150被按压时,对置电极152向下部电极172接近。而且,由于对置电极152与下部电极172之间的距离变小,因此对置电极152与下部电极172之间的电容变大。

[0197] 而且,如上述图8所示,当上部电极的变位量(行程量)较小吋,比较例的压カ传感器的电容变化率小于本实施方式的压カ传感器118的电容变化率。

[0198] 在比较例的压カ传感器中,当施加于对置基板150的按压カ较小时,难以正确地检测电容的变化,难以正确地检测施加的压カ。

[0199] 另ー方面,如图8所示,可知在本实施方式的压カ传感器118中,在上部电极的行程量较小吋,电容变化率也较大。因此,在本实施方式的压カ传感器118中,在上部电极的行程量较小时,也能够使施加于图5所示的栅极电极181的电压大幅变化。由此,控制部能够正确地检测被施加的按压カ。[0200] 当行程量超过规定值时,比较例的压カ传感器的电容变化率急剧变大。在电容急剧变化的范围中,即使在上部电极与下部电极之间仅稍稍变窄吋,电容也会急剧地变化。因此,在电容急剧变化的范围中,施加于输出用兀件的栅极电极的电压也急剧变化,来自输出用元件117的电流量也大幅变化。因此,控制部难以正确地计算出按压力。

[0201] 另ー方面,本实施方式的压カ传感器118,即使行程量较大,电容变化率也大致ー定。这样,在本实施方式的压カ传感器118中,电容的变化率大致一定,因此能够容易地根据上部电极与下部电极间的电容计算出施加的压力,能够正确地计算出压力。

[0202] 这样,本实施方式的压カ传感器118包括:下部电极172 ;与该下部电极172隔开间隔地配置,并且与下部电极相对地配置的上部电极171 ;和在上部电极171与下部电极172之间形成的上层绝缘层(绝缘层)136,上部电极171形成于能够弹性变形的突起部170的表面上。突起部170与上层绝缘层136抵接,而且被上层绝缘层136按压,由此突起部170上的对置电极152以沿着下部电极172的方式变形。而且,下部电极172与上部电极171之间的电容以规定的大小保持一定的变化率而进行变化。因此,通过检测来自输出用元件 117的电流量,能够检测上部电极171与下部电极172之间的电容,能够正确地计算出施加的压力。

[0203] 这样,在本实施方式I的液晶显示装置100中,搭载有能够正确输出电容变化的压力传感器118,因此,即使对置基板150没有大幅挠曲,也能够正确地计算出施加于对置基板150的按压力。由此,即使将对置基板150的玻璃基板156的厚度形成得比玻璃基板140厚,也能够计算出施加的压力。因此能够提高对置基板150的刚性。

[0204] 另外,玻璃基板140由背光源単元等支承,因此即使使玻璃基板140的厚度比玻璃基板156薄,也能够抑制TFT阵列基板130的变形。另外,图8的实线所示的压カ传感器118的特性是ー个例子。因此,当上部电极的行程量变大吋,电容变化率并非必须像图8所示那样以一次函数的形式増大。也可以是电容变化率的増加率局部地不同,电容变化率以曲线状变化。

[0205] 在图5中,半导体层180与图4所示的半导体层132同样地在栅极绝缘层133的上表面上形成,半导体层180包括与半导体层132相同材质(相同)的材料,实质上为相同的膜厚。具体地说,例如,采用连续晶界结晶硅膜等,半导体层132的膜厚例如为20nm以上200nm以下。另外,半导体层132的膜厚优选为30nm以上70nm以下程度。

[0206] 栅极电极181也与图4所示的栅极电极134同样地在栅极绝缘层133上形成。而且,栅极电极181包括与栅极电极134相同材质(相同)的材料,栅极电极181的膜厚也与栅极电极134的膜厚实质上一致。

[0207] 漏极电极182、源极电极183、下部电极172和接触件184采用与图4所示的漏极电极137和源极电极138相同的叠层金属膜。

[0208] 这样,输出用元件117的结构与TFT元件115大致相同,因此,输出用元件117的各部件能够在形成TFT元件115的各部件时同时形成。而且,压カ传感器118的下部电极也能够在形成TFT元件115的漏极电极137和源极电极138时同时形成。

[0209] 因此,能够不增加TFT阵列基板130的制造エ序数,抑制制造成本的增加。

[0210] 使用图10〜图21,说明本实施方式的液晶显示装置100的制造方法。

[0211] 在制造液晶显示装置100吋,首先,各自单独地形成TFT阵列基板130和对置基板150。之后,在TFT阵列基板130的上表面涂敷液晶层,之后将对置基板150配置在TFT阵列基板130的上方,形成TFT阵列基板130。

[0212] 于是,首先说明TFT阵列基板130的制造方法。

[0213] 图10是表示TFT阵列基板130的制造工序的第一工序的截面图。如图10所示,准备玻璃基板140。之后,在玻璃基板140的主表面上,堆积SiO2、SiN, SiNO等的绝缘层,形成基底层131。

[0214] 图11是表示TFT阵列基板130的制造工序的第二工序的截面图。在该图11中,首先形成非晶质半导体层。作为非晶质半导体膜的材质,只要导电性是半导体则没有特别限定,能够举出硅(Si )、锗(Ge )、砷化镓(GaAs )等,但在其中,从廉价性和量产性的观点出发,优选硅。作为非晶质半导体膜的形成方法没有特别限定,例如能够举出通过CVD法等形成非晶硅(a-Si)膜的方法。 [0215] 之后,在上述非晶质半导体层中添加催化剂元素。催化剂元素能够助长非晶质半导体膜的结晶化,由此,能够实现半导体层的连续晶界结晶硅化,以达到TFT的高性能化。作为催化剂元素能够举出铁、钴、镍、锗、钌、铑、钯、锇、铱、钼、铜、金等,优选包含从上述组中选出的至少一种元素,其中Ni优选使用。作为催化剂元素的添加方法没有特别限定,能够举出电阻加热法、涂敷法等。

[0216] 之后,使非晶质半导体层结晶化,形成连续晶界结晶硅层(CG硅层)。作为结晶化的方法,优选将利用退火处理而进行结晶化的固相结晶生长(Solid Phase Crystallizati ;SPC)法、SPC法和利用受激准分子激光等的照射而进行熔融再结晶化的激光退火法组合而得的方法。

[0217] 这样,在形成连续晶界结晶硅层之后,将该连续晶界结晶硅层通过光刻法等进行图案化,形成半导体层132和半导体层180。另外,在该第二工序中,也形成图3所示的半导体层123。另外,说明了半导体层180和半导体层123由连续晶界结晶硅层形成的例子,但作为半导体层180和半导体层123并不限于连续晶界结晶硅层,也可以适当地选择其它材料。

[0218] 图12是表示TFT阵列基板130的制造工序的第三工序的截面图。如该图12所示,通过CVD法等将Si02、SiN和SiNO等的绝缘层以覆盖半导体层180和半导体层132的方式形成在基底层131上。由此形成栅极绝缘层133。

[0219] 图13是表示TFT阵列基板130的制造工序的第四工序的截面图。如该图13所示,使用溅射法、CVD法等,在使叠层金属层堆积之后,通过光刻法等进行图案化,由此形成栅极电极134和栅极电极181。

[0220] 栅极电极134形成于栅极绝缘层133的上表面中的位于半导体层132的上方的部分。栅极电极181形成于栅极绝缘层133的上表面中位于半导体层180的上方的部分。

[0221] 另外,在该第四工序中,也形成图2所示的栅极配线112、传感器用栅极配线113和栅极电极122。

[0222] 图14是表示TFT阵列基板130的制造工序的第五工序的截面图。如该图14所示,以覆盖栅极电极134和栅极电极181的方式,在栅极绝缘层133的上表面形成层间绝缘层

135。

[0223] 图15是表示TFT阵列基板130的制造工序的第六工序的截面图。如该图15所示,通过干蚀刻等对层间绝缘层135和栅极绝缘层133进行图案化,形成接触孔162〜166。

[0224] 接触孔162和接触孔163以到达半导体层132的方式形成,接触孔164和接触孔166以到达半导体层180的方式形成。接触孔165以到达栅极电极181的上表面的方式形成。

[0225] 图16是表示TFT阵列基板130的制造工序的第七工序的截面图。在该图16中,通过溅射形成金属层。此时,金属层也进入图15所示的接触孔162〜接触孔166内。

[0226] 另外,在漏极电极137、182、源极电极138、183、下部电极172、接触件184和连接配线124由叠层金属层形成的情况下,通过溅射,依次叠层多个金属层。

[0227] 而且,将形成的金属层或叠层金属层图案化,形成漏极电极137、182、源极电极138、183、下部电极172、接触件184和连接配线124。 [0228] 另外,在该第七工序中,也形成图2所示的源极配线111、选择用TFT元件116的源极电极121和漏极电极125。

[0229] 之后,如上述图4和图5所示,形成上层绝缘层136。具体地说,将氮化娃层(SiN层)例如通过等离子体化学气相生长法形成为200nm左右。之后,将上层绝缘层136图案化,形成使漏极电极137的一部分露出的接触孔。然后,形成ITO膜,将该ITO膜图案化,形成像素电极114。

[0230] 另外,在将间隔物161形成于TFT阵列基板130时,将丙烯酸树脂等树脂层形成在上层绝缘层136的上表面上,使该树脂层图案化,形成间隔物161。另外,间隔物161的高度为4μπι左右。由此能够形成TFT阵列基板130。

[0231] 这样,根据本实施方式的TFT阵列基板130的制造方法,能够形成TFT元件115的半导体层、栅极电极、源极电极和漏极电极,并且形成选择用TFT元件116、输出用元件117的半导体层等,而且也能够形成压力传感器的下部电极。因此能够抑制制造工序数的增大。

[0232] 使用图17〜图21说明对置基板150的制造方法。图17是表示对置基板150的制造工序的第一工序的截面图。

[0233] 如该图17所示,准备具有主表面的玻璃基板156。而且,在玻璃基板156的主表面上,例如利用旋转涂胶等形成具有I〜IOym左右的厚度的高遮光性树脂层。优选为2〜5μπι左右。之后,进行曝光、显影、清洗、后烘焙。由此,在玻璃基板156的主表面形成图2所示的黑矩阵155。另外,作为树脂的材料,只要是一般作为黑色感光性树脂使用的丙烯酸树脂等的感光性树脂,则即可以是负型也可以是正型。另外,在使黑矩阵155具有导电性时,由导电性的树脂材料、钛(Ti)等金属材料形成黑矩阵155。

[0234] 图18是表示玻璃基板156的制造工序的第二工序的截面图。在该图18中,黑矩阵155是例如具有60 μ mX 100 μ m左右的开口部的宽度20 μ m左右的栅格状的图案。以喷墨方式在黑矩阵155的开口部涂敷着色层153的墨。这样,彩色滤光片基板151在玻璃基板156的主表面上形成。另外,着色层153的膜厚例如为I〜10 μ m左右,优选为2〜5 μ m左右。

[0235] 图19是表示对置基板150的制造工序的第三工序的截面图。如该图19所示,例如将丙烯酸等可塑性树脂层157例如形成为I〜10 μ m左右。另外,优选为1.5〜5μπι&右。例如使可塑性树脂层157的膜厚为3. 5 μ m。

[0236] 图20是表不对直基板150的制造工序的第四工序的截面图。如该图20所不,通过光刻将可塑性树脂层157图案化,形成树脂图案158。图21是表示对置基板150的制造工序的第五工序的截面图,在该图21中,对树脂图案158施以退火处理(树脂退火),形成突起部170。

[0237] 具体地说,将形成有树脂图案158的玻璃基板156插入炉中,例如在100°C以上300°C以下的温度实施退火处理。另外,退火处理温度优选为100°C以上200°C以下。例如在炉中以220°C烘焙60分钟左右。

[0238] 通过对树脂图案158施以退火处理,表面的树脂流通,形成表面光滑的突起部

170。

[0239] 另外,将可塑性树脂层157的膜厚设为3. 5μπι,当对图案化后的树脂图案158在220°C中施以60分钟的退火处理时,突起部170的高度为3. 4μπι左右。 [0240] 之后,以覆盖突起部170的方式涂敷ITO层等透明导电层,形成对置电极152。另夕卜,对置电极152的膜厚例如为50nm以上400nm以下程度。对置电极152的膜厚优选为50nm以上200nm以下程度。例如对置电极152的膜厚为200nm。

[0241] 这样,在突起部170上形成对置电极152,由此形成上部电极171。另外,在对置基板150形成间隔物161的情况下,将丙烯酸树脂等树脂层形成在对置电极152的上表面上,使该树脂层图案化,形成间隔物161。另外,间隔物161的高度为4μπι左右。这样形成对置基板150。

[0242] 然后,在TFT阵列基板130的上表面涂敷液晶层,进而在TFT阵列基板130的上方配置对置基板150。

[0243] 此时,以上部电极171位于对置电极152的上方的方式叠层TFT阵列基板130和对置基板150。之后经由各种工序,由此能够形成图4和图5所不的液晶显不装置100。

[0244] 在这样得到的液晶显示装置100中,当从TFT阵列基板130 —侧施加有IN左右的力时,能够检测到没有施加按压力的状态的6倍的静电电容。而且,从开始按压起到按压至IN的期间,相对于按压力,静电电容以一次函数的方式增加。

[0245](实施方式2)

[0246] 使用图22〜图26说明本发明的实施方式2的压力传感器118和液晶显示装置100。

[0247] 在图22到图26所示的结构中,存在对与上述图I到图21所示的结构相同或相当的结构标注相同的附图标记并省略其说明的情况。

[0248] 图22是本实施方式2的液晶显示装置100的截面图,是表示TFT元件115的截面图。图23是本实施方式2的液晶显示装置100的截面图,是输出用元件117的截面图。

[0249] 如该图22和图23所示,液晶显示装置100具备TFT元件115和输出用元件117,以覆盖TFT元件115和输出用元件117的方式形成有层间绝缘层135。

[0250] TFT元件115的漏极电极137和源极电极138的上端部、输出用元件117的漏极电极182和源极电极183的上端部、接触件184的上端部、源极配线111、连接配线124位于层间绝缘层135的上表面。

[0251] 在接触件184的上端部形成有垫部185,液晶显示装置100包括层间绝缘层139,该层间绝缘层139形成为覆盖:垫部185 ;TFT元件115的漏极电极137和源极电极138的上端部;输出用元件117的漏极电极182和源极电极183的上端部;接触件184的上端部;源极配线111 ;和连接配线124。

[0252] 在该层间绝缘层139的上表面形成有:反射电极187 ;和与该反射电极187连接的下部电极189。反射电极187与下部电极189 —体连接。

[0253] 下部电极189和反射电极187与垫部185通过连接部186连接。垫部185通过接触件184与栅极电极181连接。这样,下部电极189与栅极电极181连接。

[0254] 在下部电极189和反射电极187上形成有上层绝缘层136。下部电极189形成为平坦面状。上层绝缘层136中的位于下部电极189的上表面上的部分沿下部电极189的上表面形成为平坦面状。

[0255] 图22所示的像素电极114形成在上层绝缘层136上,贯通上层绝缘层136和层间绝缘层139,与漏极电极137连接。

[0256] 在位于下部电极189的上方的对置基板150的下表面形成有上部电极171。另外,在本实施方式2中,上部电极171也包括:在彩色滤光片基板151的下表面形成的突起部170 ;和在该突起部170的表面上形成的对置电极152。

[0257] 在本实施方式2的液晶显示装置100中,通过按压对置基板150,上部电极171与上层绝缘层136接触,突起部170变形。具体地说,上部电极171以沿下部电极189的方式变形。而且,在突起部170上形成的对置电极152与下部电极189夹着上层绝缘层136相对的面积急剧增大,下部电极189的电位大幅变化。而且,能够使施加于栅极电极181的电压大幅变化。

[0258] 使用图24〜图26说明本实施方式2的液晶显示装置100的制造方法。

[0259] 另外,本实施方式2的液晶显示装置100的TFT阵列基板130与上述实施方式I的液晶显示装置100的TFT阵列基板130的制造工序一部分重复。具体地说,从图10所示的制造工序到图14所示的制造工序与本实施方式的TFT阵列基板130的制造工序是共通的。

[0260] 图24是表示作为本实施方式2的液晶显示装置100的TFT阵列基板130的制造工序的、图14所不的制造工序后的制造工序的截面图。

[0261] 如该图24所示,将层间绝缘层135和栅极绝缘层133图案化,形成多个接触孔。之后将金属层或叠层金属层形成在层间绝缘层135上。

[0262] 将金属层或叠层金属层图案化,形成漏极电极137、源极电极138、漏极电极182、接触件184、源极电极183、垫部185和连接配线124。另外,源极配线111、垫部185形成在层间绝缘层135的上表面上。

[0263] 图25是表示图24所示的TFT阵列基板130的制造工序后的制造工序的截面图。如该图25所示,以覆盖源极配线111和垫部185的方式形成层间绝缘层139。

[0264] 然后,将层间绝缘层139图案化。此时,在形成连接部186的部分形成接触孔,并且在层间绝缘层139的上表面中的设置反射电极187的预定部分形成凹凸部。

[0265] 这样,将层间绝缘层139图案化后,在层间绝缘层139的上表面上形成以下任意一层,即:招(Al)、银(Ag)、钥(Mo)等金属层;包含铝(Al)、银(Ag)、钥(Mo)等金属元素的金属化合物层;或叠层铝(Al)层、银(Ag)层、钥(Mo)层而形成的叠层金属层。

[0266] 通过在层间绝缘层139的上表面形成金属层或叠层金属层,在形成于层间绝缘层139的接触孔内形成连接部186。[0267] 然后,通过将金属层或叠层金属层图案化,形成下部电极189和反射电极187。

[0268] 另外,在层间绝缘层139的上表面中的形成反射电极187的部分预先形成有凹凸部,因此反射电极187沿该凹凸部的表面形成凹凸状。

[0269] 图26是表示图25所示的制造工序后的TFT阵列基板130的制造工序的截面图。

[0270] 如该图26所示,以覆盖下部电极189和反射电极187的方式在层间绝缘层139上形成上层绝缘层136。

[0271] 之后,将上层绝缘层136和层间绝缘层139图案化,形成从上层绝缘层136的上表面到漏极电极137的上端部的接触孔。在形成接触孔后,在上层绝缘层136的上表面形成ITO膜,将该ITO膜图案化,形成像素电极114。这样形成图22和图23所示的TFT阵列基板 130。

[0272] 这样,下部电极189和与该下部电极189连接的连接部186,能够在形成反射电极 187的工序中与反射电极187—同形成。因此,在本实施方式中,也能够不导致制造工序增加地将压力传感器118的下部电极形成在TFT阵列基板130内。

[0273](实施方式3)

[0274] 使用图27〜图37说明本发明的实施方式3的压力传感器118、液晶显示装置100和液晶显示装置100的制造方法。另外,对于图27到图37所示的结构中的与上述图I到图26所示的结构相同或相当的结构,存在标注相同的附图标记并省略其说明的情况。

[0275] 图27是本实施方式3的液晶显示装置100的截面图,是表示TFT元件115的截面图。图28是本实施方式3的液晶显示装置100的截面图,是表示压力传感器118的截面图。

[0276] 如该图27所示,液晶显示装置100包括:在玻璃基板140的主表面上形成的基底层141 ;在该基底层141的上表面上形成的基底层131 ;和在该基底层131上形成的TFT元件 115。

[0277] 基底层141由Si02、SiN, SiNO等的绝缘层形成。基底层141的膜厚例如大于Onm且为500nm以下。基底层141的膜厚优选为400nm以下。

[0278] TFT元件115包括:在基底层131上形成的半导体层132 ;隔着栅极绝缘层133在半导体层132的上方形成的栅极电极134 ;和与半导体层132连接的漏极电极137和源极电极138。栅极电极134被在栅极绝缘层133上形成的层间绝缘层135覆盖。漏极电极137和源极电极138以到达层间绝缘层135的上表面的方式形成。在层间绝缘层135上形成有上层绝缘层136,在该上层绝缘层136的上表面上形成有像素电极114。像素电极114与漏极电极137的上端部连接。

[0279] 如图28所示,压力传感器118包括:在基底层141的上表面上形成的下部电极172 ;和位于下部电极172的上方,以与下部电极172相对的方式配置的上部电极171,在上部电极171下形成有允许上部电极171以挠曲的方式变形的凹部147。另外,下部电极172被基底层131覆盖。下部电极172形成为平板状。

[0280] 基底层131中的位于下部电极172上的部分沿着下部电极172的上表面延伸,形成为平坦面状。

[0281] 接触件146与下部电极172连接,该接触件146以到达层间绝缘层135的上表面的方式形成。接触件146的上端部与在层间绝缘层135的上表面形成的源极配线111连接。

[0282] 上部电极171在栅极绝缘层133的上表面上形成,凹部147形成于作为上部电极171与下部电极172之间的、栅极绝缘层133与基底层131之间。

[0283] 上部电极171形成为平板状。栅极绝缘层133中的位于上部电极171下的部分沿上部电极171的下表面延伸,形成为平坦面状。

[0284] 连接配线124与上部电极171连接,该连接配线124与图I所示的选择用TFT元件116的漏极电极连接。

[0285] 上层绝缘层136以覆盖与下部电极172连接的源极配线111和连接配线124的方式形成。

[0286] 本实施方式3的液晶显示装置100的对置基板150包括:玻璃基板156 ;在该玻璃基板156的下表面形成的彩色滤光片基板151 ;在该彩色滤光片基板151的下表面形成的对置电极152 ;和在该对置电极152的下表面形成的按压部件145。按压部件145包括丙烯酸树脂等树脂。·

[0287] 控制部105读出与接触件146连接的源极配线111和与选择用TFT元件116连接的源极配线111的输出。

[0288] 由此,控制部105能够检测上部电极171与下部电极172之间的电容。控制部105根据上部电极171与下部电极172之间的电容的变化,计算施加于对置基板150的按压力。

[0289] 此处,当使用者用笔或手指按压对置基板150时,对置基板150中被按压的部分稍稍挠曲。

[0290] 图29是示意性地表示对置基板150被按压时的液晶显示装置100的状态的截面图。

[0291] 如该图29所示,当按压部件145按压TFT阵列基板130的上表面时,上部电极171和位于该上部电极171下的栅极绝缘层133挠曲。

[0292] 而且,位于上部电极171下的栅极绝缘层133与位于下部电极172上的基底层131抵接,上部电极171变形。

[0293] 图30是表示上部电极171和栅极绝缘层133在由于来自按压部件145的按压力而变形之前的状态下的上部电极171和栅极绝缘层133的截面图。

[0294] 如该图30所示,在上部电极171和栅极绝缘层133形成有多个孔部173、174。另夕卜,孔部173和孔部174以相互连通的方式形成。

[0295] 图31是上部电极171的平面图。如该图31所示,上部电极171形成为大致正方形形状,在上部电极171形成的孔部173也形成为正方形形状。孔部173以在上部电极171均匀分布的方式形成。上部电极171的一边例如为30 μ m左右,孔部173的一边例如为2μπι左右。另外,上部电极171以其宽度比栅极电极134的宽度更宽的方式形成。因此,上部电极171容易由于来自外部的按压力而变形。

[0296] 上部电极171的膜厚例如为50nm以上600nm以下,优选为IOOnm以500nm以下。

[0297] 这样,上部电极171的边的长度以远大于上部电极171的厚度的方式形成。因此,当上部电极171的上表面的中央部被按压时,上部电极171能够容易地以挠曲的方式变形。

[0298] 另外,上部电极171包括与栅极电极相同的金属材料,例如包括:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属层;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等元素的合金;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)的化合物。

[0299] 优选上部电极171和栅极电极包括:370nm左右的钨(W)层;和在该钨(W)层上形成的50nm左右的TaN (氮化钽)层。

[0300] 另外,作为上部电极171的形状并不限于正方形形状,也可以是长方形,能够采用五边形形状以上的多边形形状、圆形形状、椭圆形状等各种形状。

[0301] 图32是表示由于来自按压部件145的按压力,上部电极171和栅极绝缘层133变形后的状态的截面图。

[0302] 如该图32所示,栅极绝缘层133和上部电极171以进入凹部147内的方式挠曲。

[0303] 此处,凹部147的开口缘部比上部电极171的外周边部稍小,上部电极171的大部分以进入凹部147的方式挠曲。

[0304] 凹部147由在半导体层180形成的孔部和基底层131的上表面形成。因此,凹部147的高度与半导体层180的厚度相同。半导体层180的厚度例如为20nm以上200nm以下,优选为30nm以上70nm以下。上部电极171的一边的长度远大于凹部147的高度。

[0305] 因此,通过上部电极171和栅极绝缘层133稍微变形,栅极绝缘层133与基底层131的上表面抵接。

[0306] 进一步,当由按压部件145按压上部电极171和栅极绝缘层133时,如图32所示,栅极绝缘层133中位于凹部147内的部分的大部分与基底层131抵接。

[0307] 此时,栅极绝缘层133以沿基底层131的上表面的方式变形,位于栅极绝缘层133上的上部电极171也以沿基底层131的方式变形。

[0308] 基底层131沿下部电极172的上表面形成为平坦面状,因此上部电极171沿下部电极172的形状形成为平坦面状。

[0309] 因此,上部电极171的大部分与下部电极172夹着栅极绝缘层133和基底层131,上部电极171的大部分和下部电极172隔着栅极绝缘层133和基底层131相互对置。

[0310] 图33是如图32所示上部电极171发生变形时的上部电极171的平面图。在该图33中,被虚线包围的区域表示沿下部电极172的上表面变形的区域,该被虚线包围的区域是隔着基底层131和基底层131与基底层141相对的区域。

[0311] 如该图33所示,通过上部电极171稍微变形,上部电极171的大部分沿下部电极172变形。

[0312] 该被虚线包围的区域的面积由于按压部件145向下方稍微变位而急剧上升。因此,上部电极171与下部电极172之间的电容也急剧变大。

[0313] 这样,在本实施方式3的压力传感器118中,上部电极也以沿下部电极的形状的方式变形,压力传感器118的特性显示图8的实线所示的特性。

[0314] 因此,本实施方式3的液晶显示装置100能够正确地计算出施加于对置基板150的压力。

[0315] 使用图34〜图36说明本实施方式3的液晶显示装置100的制造方法。在本实施方式3的液晶显示装置100中也分别单独地形成TFT阵列基板130和对置基板150。之后使TFT阵列基板130与对置基板150相对配置。

[0316] 图34是表示TFT阵列基板130的制造工序的第一工序的截面图。如该图34所示,准备具有主表面的玻璃基板140。在该玻璃基板140的主表面上形成基底层141。基底层141例如由Si02、SiN, SiNO等的绝缘层形成,例如为50nm左右的氮氧化硅层(SiNO层)和在该氮氧化硅层(SiNO层)上形成的IlOnm左右的氧化硅层(SiO2层)。[0317] 例如,基底层141形成为厚度大于Onm且为500nm以下。另外,优选基底层141的膜厚为400nm以下。

[0318] 之后,通过溅射等将钥(Mo)、钨(W)等金属层形成在基底层141的上表面上。然后,将该金属层图案化,形成下部电极172。下部电极172的膜厚例如为50nm以上600nm以下。另外,下部电极172的膜厚为50nm以上300nm以下。

[0319] 以覆盖下部电极172的方式形成Si02、SiN、SiN0等的绝缘层,形成基底层131。基底层131的膜厚为50nm以上400nm以下程度,优选为50nm以上200nm以下。

[0320] 在基底层141上堆积非晶质半导体层。非晶质半导体层的膜厚例如为20nm以上200nm以下。另外,非晶质半导体层的I旲厚优选为30nm以上70nm左右。之后,使该非晶质半导体层结晶化,形成连续晶界结晶硅层(CG硅层)。将连续晶界结晶硅层图案化,形成半导体层132和半导体层180。另外,半导体层180在基底层131的上表面中的位于下部电极172的上方的部分形成。 [0321] 图35是表示TFT阵列基板130的制造工序的第二工序的截面图。如该图35所示,形成Si02、SiN、SiN0等的绝缘层,形成栅极绝缘层133。另外,栅极绝缘层133的膜厚例如为20nm以上200nm以下,优选为50nm以上120nm以下。具体地说,栅极绝缘层133为80nm左右的SiO2层。

[0322] 在形成栅极绝缘层133之后,将P+在45KV、5E15cm_2的条件下向半导体层132和半导体层180注入。

[0323] 然后,在栅极绝缘层133的上表面上形成金属层。该金属层例如为:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属膜;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等的合金膜;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)元素的化合物。

[0324] 该金属层的膜厚例如为50nm以上600nm以下,优选为IOOnm以上500nm以下。

[0325] 之后,将该金属层图案化,形成栅极电极134和上部电极171。此时,在上部电极171同时形成孔部173。

[0326] S卩,根据本实施方式3的液晶显示装置100的制造方法,能够同时形成栅极电极134和上部电极171,抑制制造工序的增大化。

[0327] 在形成上部电极171和栅极电极134之后,形成覆盖上部电极171以外的部分的抗蚀剂掩膜,使用上部电极171和该掩膜,蚀刻栅极绝缘层133。另外,栅极绝缘层133使用HF (氟化氢)水溶液等酸性溶液进行蚀刻。由此在栅极绝缘层133形成孔部174。

[0328] 图36是表示TFT阵列基板130的制造工序的第三工序的截面图。如该图36所示,首先,以覆盖上部电极171和栅极电极134的方式在栅极绝缘层133的上表面上形成抗蚀齐U,对该抗蚀剂实施图案化。由此形成抗蚀剂图案223。在该抗蚀剂图案223形成孔部,孔部173和孔部174露出于外部。然后,将基板浸溃于氢氧化钾(KOH)等碱性溶液中。溶液从孔部173和孔部174进入,半导体层180被蚀刻。由此在半导体层180形成凹部147。

[0329] 之后,如图28所示,首先除去抗蚀剂图案223,以覆盖栅极电极134和上部电极171的方式形成层间绝缘层135。对层间绝缘层135实施图案化,在形成多个接触孔之后,利用溅射将金属层形成在层间绝缘层135的上表面上。将该金属层图案化,形成漏极电极137、源极电极138、源极配线111、接触件146和连接配线124。

[0330] 然后,堆积上层绝缘层136,对该上层绝缘层136实施图案化,形成接触孔。之后,堆积ITO膜,将该ITO膜图案化,形成像素电极114。这样,形成本实施方式3的液晶显示装置100的TFT阵列基板130。

[0331] 另一方面,在形成对置基板150时,首先准备玻璃基板156。在该玻璃基板156的主表面上形成彩色滤光片基板151之后形成对置电极152。然后,在该对置电极152堆积丙烯酸树脂等树脂。将该丙烯酸树脂图案化,形成按压部件145。这样,形成本实施方式3的液晶显示装置100的对置基板150。之后,在形成的TFT阵列基板130的上表面上涂敷液晶层160,在TFT阵列基板130的上表面侧配置对置基板150。这样形成本实施方式的液晶显示装置100。

[0332] 图37是表示图28所示的TFT阵列基板130的变形例的截面图。在该图37所示的例子中,在基底层141的上表面中位于半导体层132下的部分形成有遮光层148。该遮光层148包括与下部电极172相同(同材质)的材料,遮光层148的膜厚和下部电极172的膜厚实质上一致。具体地说,遮光层148例如为:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属膜;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等的合金膜;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo) 元素的化合物。遮光层148的膜厚例如为50nm以上600nm以下,优选为IOOnm以上500nm以下。

[0333] 遮光层148抑制光向半导体层132照射,抑制由光电效应引起的TFT元件115的特性的变化。

[0334] 在制造TFT阵列基板130的工序中,遮光层148与下部电极172通过将堆积在基底层141上的金属层图案化而形成。这样,能够在同一工序中形成下部电极172和遮光层148,因此能够抑制液晶显示装置100的制造工序的增大,并且能够形成下部电极172和遮光层148。

[0335](实施方式4)

[0336] 使用图38〜图49说明本发明的实施方式4的压力传感器118、液晶显示装置100和液晶显示装置100的制造方法。另外,对于图38到图49所示的结构中与上述图I到图37所示的结构相同或相当的结构,存在标注相同的附图标记并省略其说明的情况。

[0337] 图38是示意性地表示本实施方式4的液晶显示装置100的电路图的电路图。

[0338] 如该图38所示,本实施方式4的压力传感器190的一个电极(下部电极)与选择用TFT元件116的漏极电极连接,压力传感器190的另一个电极(上部电极)与对置电极152连接。

[0339] 控制部105通过切换选择用TFT元件116的导通/断开,选择进行传感的压力传感器190。

[0340] 在被选择的选择用TFT元件116为导通时,对被选择的选择用TFT元件116所连接的传感器用栅极配线113施加规定的电压。而且,对该被选择的选择用TFT元件116的源极电极所连接的源极配线111施加规定电压。

[0341] 压力传感器190形成为根据从外部施加的压力使电流量变化。

[0342] 因此,控制部105读出在选择用TFT元件116所连接的源极配线111与对置电极152之间流通的电流量,由此能够计算出施加于被选择的压力传感器190的压力。

[0343] 图39是本实施方式4的液晶显示装置100的截面图,是表示TFT元件115的截面图。[0344] 如该图39所示,液晶显示装置100包括:TFT阵列基板130 ;配置在TFT阵列基板130的上方的对置基板150 ;和填充在TFT阵列基板130与对置基板150之间的液晶层160。

[0345] TFT阵列基板130包括:玻璃基板140 ;在玻璃基板140的主表面上形成的基底层131 ;和在该基底层131上形成的TFT元件115。

[0346] TFT元件115包括:在基底层131上形成的半导体层132 ;以覆盖半导体层132的方式形成的栅极绝缘层133 ;在该栅极绝缘层133上形成的栅极电极134 ;和与半导体层132连接的漏极电极137和源极电极138。

[0347] 在栅极绝缘层133上以覆盖栅极电极134的方式形成层间绝缘层135,漏极电极137和源极电极138以到达该层间绝缘层135的上表面的方式形成。而且,在漏极电极137的上端部形成漏极垫210,像素电极114与漏极垫210连接。

[0348] 在源极电极138的上端部形成有配线211,在该配线211的上表面形成有透明导电层212。由配线211和透明导电层212形成TFT元件115所连接的源极配线111。

[0349] 在对置基板150与TFT阵列基板130之间配置有间隔物161。

[0350] 图40是本实施方式4的液晶显示装置100的截面图,是表示选择用TFT元件116和压力传感器190的截面图。

[0351] 如该图40所示,在TFT阵列基板130形成有选择用TFT元件116,在对置基板150与TFT阵列基板130之间形成有压力传感器190。

[0352] 选择用TFT元件116包括:在基底层131上形成的半导体层200 ;以覆盖该半导体层200的方式形成的栅极绝缘层133 ;在栅极绝缘层133的上表面上形成的栅极电极201 ;和与半导体层200连接的漏极电极202和源极电极203。

[0353] 在栅极绝缘层133上以覆盖栅极电极201的方式形成有层间绝缘层135。漏极电极202的上端部以到达层间绝缘层135的上表面的方式形成,在漏极电极202的上端部连接有电极部213。电极部213位于层间绝缘层135的上表面上,形成为平坦面状。

[0354] 源极电极203的上端部以到达层间绝缘层135的上表面的方式形成,配线214与该源极电极203的上端部连接。配线214位于层间绝缘层135的上表面,形成为平坦面状。在配线214的上表面形成有透明导电层215,透明导电层215由ITO层等形成。由配线214和透明导电层215形成选择用TFT元件116所连接的源极配线111。

[0355] 压力传感器190包括:在对置基板150形成的上部电极171 ;和在TFT阵列基板130形成的下部电极191。

[0356] 上部电极171包括:在彩色滤光片基板151的下表面形成的突起部(突出部)170 ;和位于该突起部170上的对置电极152。突起部170包括丙烯酸树脂等可塑性树脂,能够弹性变形。

[0357] 下部电极191在电极部213的上表面形成。下部电极191例如包括ITO膜等透明导电层、Si等电阻层等。下部电极191的膜厚例如为50nm以上400nm以下。优选为50nm以上200nm以下。

[0358] 在该图40所示的例子中,在外力没有施加于对置基板150的状态下,在上部电极171与下部电极191之间稍稍形成有间隙。

[0359] 在外力没有施加于对置基板150的状态下,上部电极171与下部电极191不接触,在上部电极171与下部电极191之间不流通电流,能够减少电力消耗。[0360] 图41是示意性地表示按压对置基板150时的状态的截面图。如该图41所示,通过按压对置基板150,对置基板150变形,上部电极171与下部电极191接触。

[0361] 通过上部电极171与下部电极191的接触,在上部电极171与下部电极191之间流过电流。控制部105对选择用TFT元件116所连接的源极配线111和对置电极152进行传感,由此,控制部105能够检测在下部电极191与上部电极171之间流通的电流量。

[0362] 而且,当按压对置基板150的压力变大时,突起部170变形。通过突起部170的变形,对置电极152中的位于突起部170上的部分也沿下部电极191的形状变形。

[0363] 由此,下部电极191与对置电极152的接触面积急剧增大,在下部电极191与上部电极171之间流通的电流量也增大。因此,控制部105能够容易地检测电流量的变化,容易计算出施加于对置基板150的按压力。 [0364] 因此,在本实施方式4的压力传感器190和液晶显示装置100中,也能够正确地检测施加于对置基板150的按压力。另外,上部电极171和下部电极191在初始状态下也可以稍有接触。在该情况下,通过向对置基板150稍微施加按压力,就能够使在上部电极171与下部电极191之间流通的电流量变化。

[0365] 使用图42〜图49说明本实施方式4的液晶显示装置100的制造方法。

[0366] 另外,在本实施方式4的液晶显示装置100中,也分别形成对置基板150和TFT阵列基板130,之后,通地以夹着液晶层的方式贴合对置基板150和TFT阵列基板130,形成液晶显示装置100。

[0367] 图42是表示TFT阵列基板130的制造工序的第一工序的截面图。如该图42所示,准备具有主表面的玻璃基板140。在玻璃基板140的主表面上形成基底层131。另外,基底层131由Si02、SiN, SiNO等的绝缘层形成。基底层131例如形成为500nm以下,优选形成为400nm以下。

[0368] 之后,在基底层131的上表面上堆积非晶质半导体层。非晶质半导体层的膜厚例如为20nm以上200nm以下。另外,非晶质半导体层的膜厚优选为30nm以上70nm左右。之后,使该非晶质半导体层结晶化,形成连续晶界结晶硅层(CG硅层)。将连续晶界结晶硅层图案化,形成半导体层132和半导体层200。

[0369] 这样,能够在同一图案化工序中形成TFT元件115的半导体层132和选择用TFT元件116的半导体层200。

[0370] 图43是表示TFT阵列基板130的制造工序的第二工序的截面图。如该图43所示,以覆盖半导体层132和半导体层200的方式,在基底层131上形成栅极绝缘层133。栅极绝缘层133由Si02、SiN、SiN0等的绝缘层形成,栅极绝缘层133的膜厚例如为20nm以上200nm以下,优选为50nm以上120nm以下。

[0371] 在栅极绝缘层133的上表面上通过溅射等形成金属层。该金属层例如为:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属膜;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等的合金膜;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)元素的化合物。该金属层的膜厚例如为50nm以上600nm以下,优选为IOOnm以上500nm以下。

[0372] 然后,将该金属层图案化,形成栅极电极134和栅极电极201。这样,能够在同一图案化工序中形成TFT元件115的栅极电极134和选择用TFT元件116的栅极电极201。

[0373] 图44是表示TFT阵列基板130的制造工序的第三工序的截面图。如该图44所示,以覆盖栅极电极201和栅极电极134的方式形成层间绝缘层135。层间绝缘层135例如由SiO2, SiN和SiNO等的绝缘层形成。层间绝缘层135的膜厚例如为IOOnm以上IOOOnm以下,层间绝缘层135的膜厚优选为IOOnm以上700nm以下。

[0374] 将层间绝缘层135图案化,形成多个接触孔。在形成接触孔之后,在层间绝缘层135上通过溅射形成导电层。该金属层例如包括:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属层;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等元素的合金;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)的化合物。

[0375] 将该金属层图案化,形成漏极电极137、漏极垫210、源极电极138、配线211、漏极电极202、电极部213、源极电极203和配线214。

[0376] 之后,以覆盖漏极垫210、配线211、电极部213和配线214的方式形成ITO等透明导电层。将该透明导电层图案化,形成图39和图40所示的像素电极114、透明导电层212、下部电极191和透明导电层215。

[0377] 由此,能够形成图39和图40所示的TFT阵列基板130。这样,根据本实施方式4的液晶显示装置100的制造方法,能够在形成TFT元件115的工序中形成选择用TFT元件116和压力传感器190的下部电极191,能够抑制制造工序数的增大。

[0378] 图45是表示对置基板150的制造工序的第一工序的截面图。如该图45所示,准备具有主表面的玻璃基板156。然后,在该玻璃基板156的主表面上形成彩色滤光片基板

151。

[0379] 图46是表示对置基板150的制造工序的第二工序的截面图。如该图46所示,在彩色滤光片基板151的主表面上形成可塑性树脂层157。

[0380] 可塑性树脂层157的膜厚例如形成为I〜10 μ m左右。另外,优选为2〜5μπι左右。

[0381] 图47是表不对置基板150的制造工序的第二工序的截面图。如该图47所不,将可塑性树脂层157图案化,形成树脂图案158。图48是表示对置基板150的制造工序的第四工序的截面图。在该图48中,对树脂图案158施以退火处理,形成表面光滑的突起部170。

[0382] 图49是表不对直基板150的制造工序的第五工序的截面图,如该图49所不,以覆盖突起部170的方式,在彩色滤光片基板151的表面形成对置电极152。由此形成上部电极。

[0383] 在形成对置电极152之后,形成丙烯酸树脂等树脂层。将该树脂层图案化,形成多个间隔物161。贴合这样形成的对置电极152和TFT阵列基板130,形成液晶显示装置100。

[0384](实施方式5)

[0385] 使用图50〜图57和图38,说明本发明的实施方式5的压力传感器118、液晶显示装置100和液晶显示装置100的制造方法。另外,在图50到图57所示的结构中,对于与上述图I到图49所示的结构相同或相当的结构,存在标注相同的附图标记并省略其说明的情况。此外,本实施方式5的液晶显示装置100的电路是上述图38所示的电路。

[0386] 图50是本实施方式5的液晶显示装置100的截面图,是表示TFT元件115的截面图。

[0387] 如该图50所示,液晶显示装置100包括:玻璃基板140 ;在该玻璃基板140的主表面上形成的基底层131 ;和在基底层131的上表面上形成的TFT元件115。[0388] TFT元件115包括:在基底层131上形成的半导体层132 ;以覆盖半导体层132的方式在基底层131上形成的栅极绝缘层133 ;在该栅极绝缘层133上形成的栅极电极134 ;与半导体层132连接的漏极电极137和源极电极138。

[0389] 在栅极绝缘层133上以覆盖栅极电极134的方式形成有层间绝缘层135。在该层间绝缘层135的上表面上形成有漏极垫210和源极配线111。漏极电极137与漏极垫210连接,源极电极138与源极配线111连接。

[0390] 进一步,在层间绝缘层135的上表面上形成有树脂层149。树脂层149由丙烯酸树脂等可塑性树脂形成。树脂层149的膜 厚例如为I μ m以上10 μ m以下。树脂层149的膜厚优选为I. 5 μ m以上5 μ m以下。在树脂层149的上表面上形成有像素电极114,像素电极114与漏极垫210连接。

[0391] 图51是液晶显示装置100的截面图,是表示选择用TFT元件116的截面图。

[0392] 如该图51所示,液晶显示装置100具有在基底层131上形成的选择用TFT元件116。

[0393] 选择用TFT元件116包括:在基底层131上形成的半导体层180 ;以覆盖半导体层180的方式在基底层131上形成的栅极绝缘层133 ;在该栅极绝缘层133上形成的栅极电极181 ;和与半导体层180连接的漏极电极182和源极电极183。

[0394] 在层间绝缘层135的上表面形成有垫部219、源极配线111、下部电极218。漏极电极182的上端部与垫部219连接,源极配线183的上端部与源极配线111连接。

[0395] 因此,通过控制施加于栅极电极181的电压,能够切换选择用TFT元件116的导通/断开。

[0396] 下部电极218与垫部219连接。下部电极218包括:以从层间绝缘层135的上表面向上方突出的方式形成的突起部216 ;和在该突起部216的表面形成的导电层217。突起部216包括与树脂层149相同的材料,例如突起部216包括丙烯酸树脂等能够弹性变形的树脂材料。突起部216的外表面为弯曲面状。导电层217与垫部219连接。

[0397] 在对置基板150的下表面中的位于下部电极218的上方的部分形成有上部电极

171。

[0398] 上部电极171包括在彩色滤光片基板151的下表面形成的间隔物161 ;和以覆盖该间隔物161的方式在彩色滤光片基板151的下表面形成的对置电极152。间隔物161例如包括丙烯酸树脂,以从彩色滤光片基板151的下表面向下部电极218突出的方式形成。

[0399] 在控制部105进行传感时,规定电压被施加于栅极电极181,选择用TFT元件116为导通状态。

[0400] 而且,当对置基板150被按压时,上部电极171向下部电极218变位,上部电极171按压下部电极218。通过按压导电层217,导电层217变形,下部电极218以沿上部电极171的表面形状的方式变形。由此,上部电极171的对置电极152与下部电极218的导电层217的接触面积急剧扩大。结果在对置电极152与导电层217之间流通的电流量增大。

[0401] 图38所示的控制部105通过对对置电极152与选择用TFT元件116所连接的源极配线111之间的电流量进行传感,计算出施加于对置基板150的压力。

[0402] 这样,在本实施方式5的液晶显示装置100中,通过按压对置基板150,在上部电极171与下部电极218之间流通的电流量大幅变化,因此能够正确地计算出施加于对置基板150的压力。

[0403] 使用图52〜图57说明本实施方式5的液晶显示装置100的制造方法。另外,在本实施方式5的液晶显示装置100中,也分别单独形成TFT阵列基板130和对置基板150,之后通过相互贴合而形成液晶显示装置100。

[0404] 图52是表示TFT阵列基板130的制造工序中的形成有TFT元件115和选择用TFT元件116时的工序的截面图。

[0405] 在该图52中,在从非晶质半导体层形成连续晶界结晶硅层之后,将该连 续晶界结晶硅层通过光刻法等进行图案化,形成半导体层132和半导体层180。

[0406] 栅极绝缘层133在形成半导体层132和半导体层180之后形成在基底层131上。栅极电极134和栅极电极181通过将在栅极绝缘层133上形成的同一金属层图案化而形成。

[0407] 在形成栅极电极134和栅极电极181之后,形成层间绝缘层135。漏极垫210、漏极电极137、源极电极138、垫部219、漏极电极182、源极电极183和源极配线111通过将形成在层间绝缘层135上的同一金属层图案化而形成。

[0408] 图53是表示图52所示的制造工序后的TFT阵列基板130的制造工序的截面图。如该图53所示,将丙烯酸树脂形成在层间绝缘层135上。之后,将该丙烯酸树脂图案化,形成突起部221和树脂层149。突起部221位于层间绝缘层135上,并且突起部221位于在树脂层149形成的凹部220内。

[0409] 图54是表示图53所示的制造工序后的制造工序的截面图。如该图54所示,将形成有突起部221的玻璃基板140在炉内进行退火处理。另外,作为退火温度,例如为100°C以上300°C以下,优选为100°C以上200°C以下。

[0410] 由此,突起部221的表面的树脂流通,形成表面为弯曲面状的突起部216。

[0411] 在这样形成突起部216后,以覆盖树脂层149和突起部216的方式形成ITO等透明导电层。将该透明导电层图案化,形成图50和图51所示的像素电极114、导电层217。由此能够形成下部电极218并且形成TFT阵列基板130。

[0412] 图55是表示对置基板150的制造工序中的形成彩色滤光片基板151后的截面图。如该图55所示,在玻璃基板156形成有彩色滤光片基板151。

[0413] 图56是表示上述图55所示的制造工序后的工序的截面图。如该图56所示,在彩色滤光片基板151的上表面上形成丙烯酸树脂等树脂层。然后,将该树脂层图案化,形成多个间隔物161。

[0414] 图57是表示上述图56所示的制造工序后的工序的截面图。如该图57所示,形成ITO等透明导电层。由此,形成具有上部电极171和对置电极152的对置基板150。

[0415] 然后,将对置基板150与TFT阵列基板130相互贴合,形成液晶显示装置100。

[0416](实施方式6)

[0417] 使用图58〜图74说明本发明的实施方式6。另外,对于图58到图74所示的结构中的与上述图I到图57所示的结构相同或相当的结构,存在标注相同的附图标记并省略其说明的情况。

[0418] 图58是表示本实施方式6的液晶显示装置100的电路的电路图。如该图58所示,压力传感器190与选择用TFT元件116的漏极电极和源极配线111连接。[0419] 图59是本实施方式6的液晶显示装置100的截面图,是表示TFT元件115的截面图。

[0420] 图60是本实施方式6的液晶显示装置100的截面图,是表示压力传感器190的截面图。

[0421] 在该图59和图60中,压力检测元件120包括:在玻璃基板140的主表面上形成的基底层131 ;在基底层131上形成的TFT元件115和压力传感器190。

[0422] TFT元件115包括半导体层132、栅极电极134、漏极电极137、源极电极138。

[0423] 压力传感器190包括:在基底层131上形成的半导体层180 ;和与该半导体层180隔开间隔地配置,并与半导体层180相对地形成的上部电极171。半导体层180作为压力传感器190的下部电极起作用。 [0424] 半导体层132和半导体层180在基底层131的上表面上形成。

[0425] 在基底层131上以覆盖半导体层132和半导体层180的方式形成有栅极绝缘层133。

[0426] 在栅极绝缘层133的上表面中位于半导体层132的上方的部分形成有栅极电极134,在栅极绝缘层133的上表面中的位于半导体层180的上方的部分形成有上部电极171。

[0427] 在栅极绝缘层133的上表面以覆盖栅极电极134和上部电极171的方式形成有层间绝缘层135。

[0428] 漏极电极137、源极电极138、接触件146和连接配线124以到达层间绝缘层135的上表面的方式形成。连接配线124与图58所示的选择用TFT元件116连接,另一端与上部电极171连接。接触件146的上端部与源极配线111连接,接触件146的下端部与半导体层180连接。

[0429] 漏极电极137和源极电极138与半导体层132连接,在漏极电极137的上端部与漏极垫210连接。源极电极138的上端部与有源极配线111连接。漏极垫210和源极配线111形成在层间绝缘层135上。

[0430] 而且,以覆盖漏极垫210、源极配线111和连接配线124的方式形成有上层绝缘层

136。

[0431] 像素电极114形成在上层绝缘层136上,与漏极垫210连接。

[0432] 在对置基板150的下表面中的位于上部电极171的上方的部分形成有按压部件145。按压部件145以从对置基板150的下表面向TFT阵列基板130突出的方式形成。

[0433] 在上部电极171的正下方形成有凹部147。该凹部147由在栅极绝缘层133形成的孔部和半导体层180的上表面形成。

[0434] 在该图60所示的例子中,在对置基板150没有被按压的状态下,按压部件145的下端部与上层绝缘层136的上表面抵接。

[0435] 图61是表示对置基板150没有被按压的状态(初始状态)下的上部电极171和半导体层180的截面图。

[0436] 如该图61所示,在初始状态下,上部电极171和半导体层180相互隔开间隔地配置,上部电极171与半导体层180不接触。图62是上部电极171的平面图,在上部电极171形成有多个孔部173。

[0437] 图63是表示对置基板150被按压的状态下的上部电极171和半导体层180的截面图。如该图63所示,通过按压对置基板150,上部电极171与半导体层180接触。此处,在按压对置基板150的按压力小时,上部电极171与半导体层180的接触面积小,在半导体层180与上部电极171之间流通的电流量较小。

[0438] 然后,按压对置基板150的按压力变大,上部电极171大幅挠曲,上部电极171以沿着半导体层180的方式变形,上部电极171与半导体层180的接触面积变大。

[0439] 图62的被虚线包围的区域表示上部电极171和半导体层180相互接触的面积。

[0440] 如该图62和图63所示,当上部电极171与半导体层180的接触面积变大时,在上部电极171与半导体层180之间流通的电流量增大。即,当按压对置基板150的按压力变大时,在上部电极171与半导体层180之间流通的电流量也急剧变大。

[0441] 因此,图58所示的控制部105容易对选择用TFT元件116所连接的源极配线111与压力传感器190所连接的源极配线111之间的电流量的变化进行传感,能够正确地计算 出施加于对置基板150的压力。

[0442] 使用图64〜图74说明本实施方式6的液晶显示装置100的制造方法。

[0443] 另外,本实施方式6的液晶显示装置100中,TFT阵列基板130和对置基板150也各自单独形成,将形成的TFT阵列基板130和对置基板150以相互相对的方式配置,形成液晶显示装置100。

[0444] 图64是表示TFT阵列基板130的制造工序的第一工序的截面图。在该图64中,准备具有主表面的玻璃基板140。然后,通过等离子体化学气相生长法(Plasma EnhancedCVD (PECVD))形成例如50nm左右的SiNO层。然后,在SiNO层上例如形成IlOnm左右的SiO2层。由此,基底层131在玻璃基板140的主表面上形成。

[0445] 图65是表示TFT阵列基板130的制造工序的第二工序的截面图。如该图65所示,在基底层131的上表面上通过等离子体化学气相生长法形成例如50nm左右的Si (硅)层。

[0446] 之后,照射XeCl受激准分子激光,形成连续晶界结晶硅层,之后将该连续晶界结晶硅层通过光刻法等图案化,形成半导体层132和半导体层180。

[0447] 图66是表示TFT阵列基板130的制造工序的第三工序的截面图。在该图66中,以覆盖半导体层132和半导体层180的方式通过等离子体化学气相生长法形成例如SOnm左右的SiO2层。

[0448] 图67是表示TFT阵列基板130的制造工序的第四工序的截面图。在该图67中,将P + (磷离子)在45KV、5E15cm_2的条件下注入半导体层132和半导体层180。

[0449] 图68是表示TFT阵列基板130的制造工序的第五工序的截面图。在该图68中,通过溅射等在栅极绝缘层133的上表面上形成叠层金属层222。具体地说,通过溅射形成例如370nm左右的钨(W)层。在形成钨层之后,形成例如50nm左右的氮化钽(TaN)层。

[0450] 图69是表示TFT阵列基板130的制造工序的第六工序的截面图。如该图69所示,将图68所示的叠层金属层222图案化,形成栅极电极134和上部电极171。另外,在上部电极171形成至少一个以上的孔部173。

[0451] 具体地说,如上述图62所示,形成多个孔部173。另外,上部电极171形成为正方形形状,一边的长度为30 μ m。孔部173也为正方形形状,一边的长度为2 μ m。孔部173彼此的间隔为2 μ m。

[0452] 图70是表示TFT阵列基板130的制造工序的第七工序的截面图。在该图70中,首先形成抗蚀剂,对该抗蚀剂实施图案化。由此形成抗蚀剂图案223。在该抗蚀剂图案223形成有孔部,孔部173露出于外部。

[0453] 然后,将形成有抗蚀剂图案223的基板浸溃于缓冲氢氟酸(BHF)中。另外,作为缓冲氢氟酸(BHF)采用将氢氟酸(HF)和氟化铵(NH4F)以I :10的比例混合而得的液体,例如浸溃13分钟左右。

[0454] 由此,从孔部173进入的缓冲氢氟酸蚀刻栅极绝缘层133的一部分。结果,在上部电极171下形成凹部147。

[0455] 图71是表示TFT阵列基板130的制造工序的第八工序的截面图。在该图71中,在除去抗蚀剂图案223之后,将层间绝缘层135形成在栅极绝缘层133上。

[0456] 具体地说,通过等离子体化学气相生长法形成700nm左右的氧化硅层(SiO2层),在

该氧化娃层上例如形成250nm左右的風化娃层(SiN层)。由此形成层间绝缘层135。

[0457] 图72是表示TFT阵列基板130的制造工序的第九工序的截面图。如该图72所示,对层间绝缘层135施以图案化,形成多个接触孔。

[0458] 图73是表示TFT阵列基板130的制造工序的第十工序的截面图。在该图73中,首先形成例如IOOnm左右的钛(Ti)层。在该钛层上形成例如600nm左右的Al-Si层。在该Al-Si层上例如形成200nm左右的(Ti)层。

[0459] 这样,在形成叠层金属层之后,将该叠层金属层图案化,形成漏极垫210、漏极电极

137、源极配线111、源极电极138、接触件146和连接配线124。

[0460] 图74是表示TFT阵列基板130的制造工序的第i^一工序的截面图。如该图74所示,以覆盖漏极垫210、漏极电极137、源极配线111、源极电极138、接触件146和连接配线124等的方式形成上层绝缘层136。具体地说,通过等离子体化学气相生长法形成例如200nm左右的氮化硅层(SiN层)。

[0461] 之后,将上层绝缘层136图案化,在图案化后的上层绝缘层136的上表面上形成ITO层。将该ITO层图案化,形成图59所示的像素电极114。这样形成TFT阵列基板130。

[0462] 在形成对置基板150时,首先准备玻璃基板156。在该玻璃基板156的主表面形成彩色滤光片基板151。在该彩色滤光片基板151的上表面形成ITO层,形成对置电极152。

[0463] 之后在该对置电极152的上表面上形成丙烯酸树脂层,通过将该丙烯酸树脂层图案化,形成按压部件145。这样形成图59所示的对置基板150。

[0464] 在这样形成TFT阵列基板130和对置基板150之后,在TFT阵列基板130的主表面上涂敷液晶层。

[0465] 之后在TFT阵列基板130的上方配置对置基板150,贴合TFT阵列基板130和对置基板150。这样形成图59和图60所示的液晶显示装置100。

[0466] 在这样构成的液晶显示装置100中,例如从TFT阵列基板130 —侧施加按压力。

[0467] 结果,在O. 2N时,控制部105能够检测在选择用TFT元件116所连接的源极配线111与压力传感器190所连接的源极配线111之间的电流的流通。而且,当对TFT阵列基板130施加IN左右的按压力时,电阻值变为1/8。

[0468](实施方式7)

[0469] 使用图75〜图81和图58说明本发明的实施方式7的压力传感器、液晶显示装置100和液晶显示装置100的制造方法。另外,对于图75到图81所示的结构中与上述图I到图74所示的结构相同或相当的结构,存在标注相同的附图标记并省略其说明的情况。

[0470] 另外,本实施方式7的液晶显示装置100的电路是图58所示的电路。

[0471] 图75是本实施方式7的液晶显示装置100的截面图,是表示TFT元件115的截面图。图76是本实施方式7的液晶显示装置100的截面图,是表示压力传感器190的截面图。

[0472] 如这些图75和图76所示,TFT阵列基板130包括:玻璃基板140 ;在该玻璃基板140的主表面上形成的基底层141 ;和在该基底层141上形成的TFT元件115和压力传感器190。

[0473] TFT元件115在形成在基底层141上的基底层131的上表面上形成。TFT元件115包括:在基底层131上形成的半导体层132 ;以覆盖半导体层132的方式在基底层131的上表面形成的栅极电极134 ;和与半导体层132连接的漏极电极137和源极电极138。

·[0474] 在栅极绝缘层133上以覆盖栅极电极134的方式形成有层间绝缘层135。在该层间绝缘层135的上表面形成有漏极垫210和源极配线111。漏极电极137与漏极垫210连接,源极电极138与源极配线111连接。

[0475] 在图76中,压力传感器190包括:在基底层141上形成的下部电极172 ;相对于该下部电极172位于对置基板150 —侧,并与下部电极172相对地配置的下部电极172。

[0476] 在下部电极172的上表面上形成有基底层131和栅极绝缘层133。在下部电极172与上部电极171之间形成有凹部147。凹部147由在基底层131形成的孔部和在栅极绝缘层133形成的孔部规定,下部电极172的上表面位于该凹部147的底部。

[0477] 因此,在本实施方式7的液晶显示装置100中,上部电极171也能够以进入凹部147内的方式挠曲而变形。

[0478] 因此,在本实施方式7的液晶显示装置100中,通过按压对置基板150,上部电极171与下部电极172接触,在上部电极171与下部电极172之间流通电流。

[0479] 而且,当按压对置基板150的按压力变大时,上部电极171与下部电极172的接触面积变大,在上部电极171与下部电极172之间流通的电流变多。由此,图58所示的控制部105能够检测施加于对置基板150的按压力。

[0480] 使用图77〜图80说明本实施方式7的液晶显示装置100的制造方法。

[0481] 另外,在本实施方式7的液晶显示装置100中,也分别形成TFT阵列基板130和对置基板150,通过贴合形成的对置基板150与TFT阵列基板130而形成。

[0482] 图77是表示TFT阵列基板130的制造工序的第一工序的截面图。如该图77所示,准备具有主表面的玻璃基板140。在该玻璃基板140的主表面形成基底层141。基底层141例如包括Si02、SiN和SiNO等。基底层141的膜厚例如为500nm以下,优选为400nm以下。

[0483] 在该基底层141的上表面上通过溅射形成钥(Mo)、钨(W)等金属层。然后,将该金属层图案化,形成下部电极172。下部电极172的膜厚例如形成为50nm以上600nm以下。另外,优选下部电极172的膜厚形成为50nm以上300nm以下。

[0484] 以復盖下部电极172的方式形成SiO2层、SiN层、SiNO层等绝缘层,形成基底层

131。

[0485] 图78是表示TFT阵列基板130的制造工序的第二工序的截面图。如该图78所示,在基底层131上堆积非晶质半导体层。非晶质半导体层的膜厚例如为20nm以上200nm以下。另外,非晶质半导体层的膜厚优选为30nm以上70nm左右。之后,使该非晶质半导体层结晶化,形成连续晶界结晶硅层(CG硅层)。将连续晶界结晶硅层图案化,形成半导体层

132。

[0486] 形成Si02、SiN、SiN0等的绝缘层,形成栅极绝缘层133。另外,栅极绝缘层133的膜厚例如为20nm以上200nm以下,优选为50nm以上120nm以下。

[0487] 然后,在栅极绝缘层133的上表面上形成金属层。该金属层例如为:钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等金属膜;包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)等的合金膜;或包含钨(W)、钽(Ta)、钛(Ti)、钥(Mo)元素的化合物。

[0488] 该金属层的膜厚例如为50nm以上600nm以下,优选为IOOnm以上500nm以下。

[0489] 之后,将该金属层图案化,形成栅极电极134和上部电极171。此时,在上部电极171同时形成孔部173。这样,在本实施方式7中也能够以同一工序形成上部电极171和栅极电极134。

[0490] 图79是表示TFT阵列基板130的制造工序的第三工序的截面图。如该图79所示,首先,形成抗蚀剂,对该抗蚀剂实施图案化。由此形成抗蚀剂图案223。在该抗蚀剂图案223形成有孔部,孔部173露出于外部。

[0491] 然后,将基板浸溃于HF (氟化氢)水溶液等酸性溶液中。溶液从孔部173进入,蚀刻栅极绝缘层133和基底层131。由此形成凹部147。

[0492] 图80是表示TFT阵列基板130的制造工序的第四工序的截面图。如该图80所示,除去图79所示的抗蚀剂图案223。形成层间绝缘层135。将该层间绝缘层135图案化,形成多个接触孔。之后将金属层形成在层间绝缘层135的上表面上,将该金属层图案化,形成漏极垫210、漏极电极137、源极电极138、源极配线111、接触件146和连接配线124。

[0493] 之后,形成上层绝缘层136,对该上层绝缘层136实施图案化,形成接触孔。

[0494] 在形成有该接触孔的上层绝缘层136的上表面形成ITO层,将该ITO层图案化,形成像素电极114。这样形成TFT阵列基板130。

[0495] 另外,对置基板150与上述实施方式3的液晶显不装置100的对置基板150同样地形成。

[0496] 贴合这样形成的对置基板150和TFT阵列基板130,形成本实施方式7的液晶显示装置100。

[0497] 另外,图81是表示本实施方式7的液晶显示装置100的变形例的截面图。如该图81所示,可以在位于半导体层132的下方的基底层141上形成遮光层148。

[0498] 另外,遮光层148包括与下部电极172同材质的金属材料,实际上为相同膜厚。

[0499] 另外,遮光层148和下部电极172通过将一个金属层图案化而形成,能够由同一图案化工序形成。

[0500] 另外,在上述实施方式I到实施方式7中说明了将本发明应用于液晶显示装置的例子,但是也能够应用于有机电致发光(EL electroluminescence)显示器、等离子体显示器中。此外,各基板也可以是柔性基板。在假设应用于有机电致发光显示器中的情况下,显示介质层是有机EL层。

[0501] 该有机电致发光显不器包括:在第一主表面形成的第一基板;与第一基板隔开间隔地配置,且在与第一主表面相对的主表面形成有第二电极的第二基板;和在第一电极与第二电极之间形成的有机EL层。[0502] 而且,有机电致发光显示器包括:形成在第一基板的下部电极;与该下部电极相比配置在第二基板一侧的上部电极;和能够检测下部电极与上部电极间的电容或在下部电极与上部电极之间流通的电流量的检测部。而且,上部电极和下部电极中的至少一方能够

沿另一方变形。 [0503] 在假设将本发明应用于等离子体显示器的情况下,显示介质层是荧光体层。在该等离子体显示器中包括前面板和背面板。前面板包括:前面玻璃基板;在该前面玻璃基板的下表面形成的显示电极;遮光层;和以覆盖该显示电极和遮光层的方式在前面玻璃基板的下表面形成的电介质层。在该电介质层的下表面形成有保护层。

[0504] 背面板包括:背面玻璃基板;在该背面玻璃基板的上表面形成的寻址电极;以覆盖该寻址电极的方式在背面玻璃基板的上表面上形成的基底介电层;在该基底介电层上形成、划分放电空间的多个分隔壁;和在分隔壁间的槽形成的荧光体层。前面板和背面板相对配置,外周被密封剂气密密封,放电气体被封入放电空间内。

[0505] 进一步,该等离子体显示器包括:配置在背面板一侧的下部电极;配置在背面板一侧的上部电极;和能够检测由上部电极和下部电极规定的电容、电流量的检测部。而且,上部电极和下部电极中的至少一个能够沿另一方变形。

[0506] 以上说明了本发明的实施方式,但此次公开的实施方式的所有内容都是例示而不是限制。本发明的范围由权利要求的范围表示,也包括与权利要求的范围均等的意味和范围内的全部变更。而且,上述数值等是例子,并不限于上述数值和范围。

[0507] 工业上的可利用性

[0508] 本发明能够应用于显示装置、压力检测装置和显示装置的制造方法。特别是优选包括对由下部电极和上部电极规定的电信号进行检测的检测部的显示装置、压力检测装置和显示装置的制造方法。

[0509] 附图标记说明

[0510] 100液晶显示装置;101源极驱动器;102栅极驱动器;103传感器驱动器;105控制部;110像素;111源极配线;112栅极配线;113传感器用栅极配线;114像素电极;115TFT元件;116选择用TFT元件;117输出用元件;118、190压力传感器;120压力检测元件;121、138、183、203源极电极;122栅极电极;123半导体层;124连接配线;125、137、182、202漏极电极;130TFT阵列基板;131基底层;132、180、200半导体层;133栅极绝缘层;134、181、201栅极电极;135、139层间绝缘层;136上层绝缘层;140玻璃基板;141基底层;145按压部件;146接触件;147凹部;148遮光层;149树脂层;150对置基板;151彩色滤光片基板;152对置电极;153着色层;155黑矩阵;156玻璃基板;157可塑性树脂层;158树脂图案;160液晶层;161间隔物;170突起部;171上部电极;172、189、191、218下部电极;173、174孔部;184接触件;185垫部;186连接部;187反射电极;210漏极垫;211配线;212透明导电层;213电极部;214配线;215透明导电层;216突起部;217导电层;219垫部;220凹部;221突起部;222叠层金属层;223抗蚀剂图案。

Claims (30)

1. 一种显示装置,其特征在于,包括: 具有第一主表面的第一基板(140); 与所述第一基板(140)隔开间隔地配置,且具有与所述第一主表面相对的第二主表面的第二基板(156); 位于所述第一基板(140)与所述第二基板(156)之间的显示介质层; 配置于所述第一主表面与所述第二主表面之间的下部电极(172); 上部电极(171),其与所述下部电极(172)隔开间隔地配置于比所述下部电极(172)更靠所述第二主表面一侧的位置,并且与所述下部电极(172)相对地配置;和 能够检测由所述上部电极(171)和所述下部电极(172)规定的电特性的检测部(105),通过按压所述第二基板(156 ),所述上部电极(171)和所述下部电极(172 )中的至少一个能够沿另一个变形。
2.如权利要求I所述的显示装置,其特征在于: 所述显示装置还包括在所述上部电极(171)与所述下部电极(172)之间形成的电极间绝缘层(136), 所述检测部(105)能够检测所述上部电极(171)与所述下部电极(172)之间的电容。
3.如权利要求I所述的显示装置,其特征在于: 通过按压所述第二基板(156),所述上部电极(171)与所述下部电极能够相互接触, 所述检测部(105)能够检测在所述上部电极(171)与所述下部电极之间流通的电流量。
4.如权利要求I〜3中任一项所述的显示装置,其特征在于: 所述显示装置还包括通过所述第二基板(156)被按压而按压所述上部电极(171)的按压部件(145), 所述上部电极(171)能够通过来自所述按压部件(145)的按压力而以挠曲的方式变形。
5.如权利要求4所述的显示装置,其特征在于: 在所述上部电极(171)下,形成有接受以挠曲的方式变形后的所述上部电极(171)的凹部(147)。
6.如权利要求4或5所述的显示装置,其特征在于: 所述显示装置还包括: 像素电极(I 14);和 与所述像素电极(114)连接,且在所述第一主表面上形成的像素电极用开关元件(115), 所述像素电极用开关元件(I 15)包括: 第一半导体层(132); 以覆盖所述第一半导体层(132)的方式形成的第一栅极绝缘层(133); 在所述第一栅极绝缘层(133)上、且在所述第一半导体层(132)的上方形成的第一栅极电极(134); 与所述第一半导体层(132)连接的第一电极(137);和 位于所述第一栅极电极(134)的与所述第一电极(137)相反的一侧,且与所述第一半导体层(132)连接的第二电极(138), 所述上部电极(171)位于所述第一栅极绝缘层(133)上,且位于从所述第一栅极电极(134)离开的位置,所述上部电极(171)包括与所述第一栅极电极(134)相同材质的材料。
7.如权利要求6所述的显示装置,其特征在于: 所述上部电极(171)的宽度大于所述第一栅极电极(134)的宽度。
8.如权利要求6或7所述的显示装置,其特征在于: 所述显示装置还包括在所述第一主表面上形成的基底层(131、141), 所述第一半导体层(132)形成于所述基底层(131、141)上, 所述下部电极(172)设置于所述基底层(131、141)上,并且包括与所述第一半导体层(132)相同材质的材料。
9.如权利要求6或7所述的显示装置,其特征在于: 所述显示装置还包括位于所述第一半导体层(132)的下方,能够反射光的导电性的遮光层(148), 所述下部电极(172)包括与所述遮光层(148)相同材质的材料。
10.如权利要求I〜9中任一项所述的显示装置,其特征在于,还包括: 包含所述第一基板(140)的矩阵基板(130);和 包含所述第二基板(156)的对置基板(150), 所述上部电极(171)和所述下部电极(172)形成于所述矩阵基板(130)。
11.如权利要求I〜3中任一项所述的显示装置,其特征在于,还包括: 包含所述第一基板(140)的矩阵基板(130);和 包含所述第二基板(156)的对置基板(150), 所述上部电极(171)形成于所述对置基板(150), 所述下部电极(172)形成于所述矩阵基板(130)。
12.如权利要求11所述的显示装置,其特征在于: 所述矩阵基板(130)还包括: 像素电极(I 14); 与所述像素电极(114)连接,且在所述第一主表面上形成的像素电极用开关元件(115);和 覆盖所述像素电极用开关元件(115)的层间绝缘层(135), 所述下部电极(172)和所述像素电极(114)形成于所述层间绝缘层(135)上。
13.如权利要求2所述的显示装置,其特征在于: 在所述第二基板(156)没有被按压的状态下,使所述下部电极(172)和所述上部电极(171)与所述电极间绝缘层(136)接触。
14.如权利要求3所述的显示装置,其特征在于: 在所述第二基板(156)没有被按压的状态下,使所述下部电极(172)与所述上部电极(171)接触。
15.如权利要求I〜3中任一项所述的显示装置,其特征在于: 所述上部电极(171)和所述下部电极(172)中的至少一个包括:能够弹性变形的突出部(170);和在所述突出部(170)的表面形成的导电层。
16.如权利要求15所述的显示装置,其特征在于: 所述显示装置还包括: 在所述上部电极(171)与所述下部电极(172)之间形成的电极间绝缘层(136);和 在所述第一基板(140 )形成的检测用开关元件(117), 所述检测用开关元件(117)包括: 第二半导体层(180); 以覆盖所述第二半导体层(180)的方式形成的第二栅极绝缘层(133); 在所述第二栅极绝缘层上形成的第二栅极电极(181); 与所述第二半导体层连接的第三电极(182);和 位于所述第二栅极电极的与所述第三电极相反的一侧,且与所述第二半导体层(180)连接的第四电极(183), 所述下部电极(172)与所述第二栅极电极(181)连接。
17.如权利要求15所述的显示装置,其特征在于: 所述显示装置还包括在所述第一基板(140 )形成的检测用开关元件(116), 所述检测用开关元件(I 16)包括: 第二半导体层(200); 以覆盖所述第二半导体层的方式形成的第二栅极绝缘层(133); 在所述第二栅极绝缘层上形成的第二栅极电极(201); 与所述第二半导体层连接的第三电极(202);和 位于所述第二栅极电极(201)的与所述第三电极(202)相反的一侧,且与所述第二半导体层连接的第四电极(203), 所述下部电极与所述第三电极(202)连接,并且能够与所述上部电极(171)接触。
18.如权利要求15〜17中任一项所述的显示装置,其特征在于: 所述显示装置还包括位于所述第一主表面的上方,能够反射来自外部的光的导电性的反射板(187), 所述下部电极(172 )与所述反射板(187 )连接。
19. 一种压力检测装置,其特征在于,包括: 基板; 配置于所述基板上的下部电极(172); 从所述下部电极(172)离开,并且以与所述下部电极(172)相对的方式配置的上部电极(171);和 检测部(105),当通过按压所述上部电极(171),所述下部电极(172)与所述上部电极(171)接触时,所述检测部(105)检测在所述下部电极(172)与所述上部电极(171)之间流通的电流量。
20.如权利要求19所述的压力检测装置,其特征在于: 所述压力检测装置还包括按压所述上部电极(171)的按压部件(145), 所述上部电极(171)能够通过被所述按压部件(145)按压而以挠曲的方式变形。
21. 一种压力检测装置,其特征在于,包括: 基板;配置于所述基板上的下部电极(172); 与所述下部电极(172)隔开间隔地配置,并且与所述下部电极(172)相对地配置的上部电极(171);和 检测由所述上部电极(171)和所述下部电极(172)规定的电特性的检测部(105),所述下部电极(172)和所述上部电极(171)中的至少一个包括:能够弹性变形的突出部;和在所述突出部的表面形成的导电层。
22.如权利要求21所述的压力检测装置,其特征在于: 所述压力检测装置还包括在所述上部电极(171)与所述下部电极(172)之间形成的电极间绝缘层(136), 所述检测部(105)能够检测所述上部电极(171)与所述下部电极(172)之间的电容。
23.如权利要求21所述的压力检测装置,其特征在于: 通过按压所述上部电极(171 ),所述上部电极(171)与所述下部电极(172)能够相互接触, 所述检测部(105)检测在所述上部电极(171)与所述下部电极(172)之间流通的电流量。
24. —种显示装置的制造方法,其特征在于,包括: 准备具有第一主表面的第一基板(140)的工序; 形成下部电极(172)的工序; 形成与所述下部电极(172)隔开间隔地配置的半导体层的工序; 在所述下部电极(172)和所述半导体层上形成栅极绝缘层的工序; 在所述栅极绝缘层上形成第一导电层的工序;和 将所述第一导电层图案化,在所述栅极绝缘层的上表面中的位于所述半导体层的上方的部分形成栅极电极,并且在所述栅极绝缘层的上表面中的位于所述下部电极(172)的上方的部分形成上部电极(171)的工序。
25.如权利要求24所述的显示装置的制造方法,其特征在于: 所述显示装置的制造方法还包括形成半导体覆膜的工序, 将所述半导体覆膜图案化,形成所述半导体层(180 )和所述下部电极(172 )。
26.如权利要求24所述的显示装置的制造方法,其特征在于: 所述显示装置的制造方法还包括: 形成第二导电层的工序;和 将所述第二导电层图案化,形成遮光层(148)的工序, 所述半导体层位于所述遮光层(148)上, 所述下部电极(172)通过将所述第二导电层图案化而形成。
27.如权利要求24〜26中任一项所述的显示装置的制造方法,其特征在于: 所述显示装置的制造方法还包括在所述下部电极(172)与所述上部电极(171)之间形成空隙部的工序。
28. —种显示装置的制造方法,其特征在于,包括: 准备具有第一主表面的第一基板(140)的工序; 准备具有第二主表面的第二基板(156)的工序;在所述第二主表面形成能够弹性变形的突起部的工序; 在所述突起部的表面形成上部电极(171)的工序; 在所述第一基板(140)形成下部电极(172)的工序;和 以所述下部电极(172)与所述上部电极(171)相对的方式将所述第一基板(140)和所述第二基板(156)相对配置的工序。
29.如权利要求28所述的显示装置的制造方法,其特征在于,还包括: 在所述第一主表面上形成第一半导体层(132)和与所述第一半导体层(132)隔开间隔地配置的第二半导体层的工序; 以覆盖所述第一半导体层(132)和所述第二半导体层的方式形成栅极绝缘层的工序; 在所述栅极绝缘层上形成第一导电层的工序;和 将所述第一导电层图案化,形成位于所述第一半导体层(132)的上方的第一栅极电极(134)和位于所述第二半导体层的上方的第二栅极电极的工序, 所述下部电极(172)位于所述第二栅极电极的上方,与所述第二栅极电极连接。
30.如权利要求29所述的显示装置的制造方法,其特征在于: 所述显示装置的制造方法还包括以覆盖所述下部电极(172)的方式形成上层绝缘层的工序。
CN 201180016744 2010-03-29 2011-03-16 显示装置、压力检测装置和显示装置的制造方法 CN102822777A (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010-075819 2010-03-29
JP2010075819 2010-03-29
PCT/JP2011/056283 WO2011122352A1 (ja) 2010-03-29 2011-03-16 表示装置、圧力検出装置および表示装置の製造方法

Publications (1)

Publication Number Publication Date
CN102822777A true true CN102822777A (zh) 2012-12-12

Family

ID=44712070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201180016744 CN102822777A (zh) 2010-03-29 2011-03-16 显示装置、压力检测装置和显示装置的制造方法

Country Status (5)

Country Link
US (1) US20130021544A1 (zh)
EP (1) EP2555090A1 (zh)
JP (1) JPWO2011122352A1 (zh)
CN (1) CN102822777A (zh)
WO (1) WO2011122352A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713792A (zh) * 2013-12-23 2014-04-09 京东方科技集团股份有限公司 阵列基板及其制造方法和触摸显示装置
CN105093582A (zh) * 2015-08-12 2015-11-25 小米科技有限责任公司 移动终端中检测压力的方法及装置
CN105810717A (zh) * 2016-04-05 2016-07-27 上海天马微电子有限公司 柔性oled显示面板和柔性oled显示装置
CN106371656A (zh) * 2015-07-24 2017-02-01 株式会社日本显示器 显示装置
WO2017121161A1 (zh) * 2016-01-15 2017-07-20 京东方科技集团股份有限公司 显示面板及其驱动方法和制作方法、显示装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5821322B2 (ja) 2010-07-26 2015-11-24 セイコーエプソン株式会社 検出装置、電子機器及びロボット
JP2012088263A (ja) * 2010-10-22 2012-05-10 Seiko Epson Corp 検出装置、電子機器及びロボット
KR20130057700A (ko) * 2011-11-24 2013-06-03 삼성디스플레이 주식회사 유기 발광 표시 장치
JP5482807B2 (ja) * 2012-01-26 2014-05-07 Smk株式会社 キースイッチ付き静電容量式タッチパッド
JP6085518B2 (ja) * 2013-05-09 2017-02-22 株式会社ジャパンディスプレイ 表示装置
KR20140141333A (ko) 2013-05-31 2014-12-10 삼성디스플레이 주식회사 박막 트랜지스터 및 이를 포함하는 유기 발광 표시 장치
JP5679366B2 (ja) * 2013-06-04 2015-03-04 日本写真印刷株式会社 圧力検出表示装置および電子機器
KR20140143646A (ko) * 2013-06-07 2014-12-17 삼성디스플레이 주식회사 터치 센서를 포함하는 표시 장치 및 그 제조 방법
US20170351354A1 (en) * 2014-12-05 2017-12-07 Hideep Inc. Display panel, touch input apparatus, sensing apparatus for sensing touch position and touch pressure from display panel, and sensing method
KR101723804B1 (ko) * 2015-09-11 2017-04-18 한국과학기술연구원 힘센서 및 이의 제조방법
CN105717685A (zh) * 2016-04-13 2016-06-29 京东方科技集团股份有限公司 一种对盒基板及其制备方法、触控显示面板
JP6395889B2 (ja) * 2017-03-27 2018-09-26 株式会社ジャパンディスプレイ タッチパネル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246638A (zh) * 1998-08-18 2000-03-08 国际商业机器公司 接触位置测量层与公用电极层间采用防护面的液晶显示器
US6501529B1 (en) * 1999-08-18 2002-12-31 International Business Machines Corporation Liquid crystal display element integrated with a touch sensor
CN1959481A (zh) * 2005-11-04 2007-05-09 三星电子株式会社 具有改进触摸屏的液晶显示设备
CN101078659A (zh) * 2006-05-25 2007-11-28 汉王科技股份有限公司 利用电容变化进行矢量压力测量的方法及装置
CN101446869A (zh) * 2007-11-29 2009-06-03 索尼株式会社;索尼爱立信移动通信日本株式会社 压力检测传感器、输入装置和电子设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3466081B2 (ja) 1998-03-20 2003-11-10 株式会社東芝 液晶表示装置および位置検出装置
JP2001109404A (ja) * 1999-10-01 2001-04-20 Sanyo Electric Co Ltd El表示装置
JP2002287660A (ja) 2001-03-28 2002-10-04 Seiko Epson Corp 入力機能付き表示装置および電子機器
JP4321858B2 (ja) 2004-02-20 2009-08-26 株式会社コルグ 位置圧力検出装置
JP4542492B2 (ja) * 2005-10-07 2010-09-15 セイコーエプソン株式会社 電気光学装置及びその製造方法、電子機器、並びに半導体装置
JP5051690B2 (ja) * 2007-01-30 2012-10-17 株式会社ジャパンディスプレイウェスト 入力機能付表示装置
JP2008281616A (ja) * 2007-05-08 2008-11-20 Seiko Epson Corp 液晶装置及び電子機器
JP2009146100A (ja) * 2007-12-13 2009-07-02 Sony Corp 表示装置および光センサ素子
US8134652B2 (en) * 2008-01-16 2012-03-13 Samsung Electronics Co., Ltd. Liquid crystal display having sensor and spacer arrangement and and method of manufacturing the same
JP4816668B2 (ja) * 2008-03-28 2011-11-16 ソニー株式会社 タッチセンサ付き表示装置
JP5571298B2 (ja) * 2008-08-07 2014-08-13 株式会社ジャパンディスプレイ 液晶表示装置
US8188982B2 (en) * 2008-12-01 2012-05-29 Samsung Electronics Co., Ltd. Touch screen display apparatus and method of manufacturing the same
KR101571683B1 (ko) * 2008-12-24 2015-12-07 삼성디스플레이 주식회사 표시 패널 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1246638A (zh) * 1998-08-18 2000-03-08 国际商业机器公司 接触位置测量层与公用电极层间采用防护面的液晶显示器
US6501529B1 (en) * 1999-08-18 2002-12-31 International Business Machines Corporation Liquid crystal display element integrated with a touch sensor
CN1959481A (zh) * 2005-11-04 2007-05-09 三星电子株式会社 具有改进触摸屏的液晶显示设备
CN101078659A (zh) * 2006-05-25 2007-11-28 汉王科技股份有限公司 利用电容变化进行矢量压力测量的方法及装置
CN101446869A (zh) * 2007-11-29 2009-06-03 索尼株式会社;索尼爱立信移动通信日本株式会社 压力检测传感器、输入装置和电子设备

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713792A (zh) * 2013-12-23 2014-04-09 京东方科技集团股份有限公司 阵列基板及其制造方法和触摸显示装置
CN103713792B (zh) * 2013-12-23 2016-06-01 京东方科技集团股份有限公司 阵列基板及其制造方法和触摸显示装置
US9619063B2 (en) 2013-12-23 2017-04-11 Boe Technology Group Co., Ltd. Array substrate and manufacturing method thereof, and touch display device
CN106371656A (zh) * 2015-07-24 2017-02-01 株式会社日本显示器 显示装置
CN105093582A (zh) * 2015-08-12 2015-11-25 小米科技有限责任公司 移动终端中检测压力的方法及装置
WO2017024730A1 (zh) * 2015-08-12 2017-02-16 小米科技有限责任公司 移动终端中检测压力的方法及装置
WO2017121161A1 (zh) * 2016-01-15 2017-07-20 京东方科技集团股份有限公司 显示面板及其驱动方法和制作方法、显示装置
CN105810717A (zh) * 2016-04-05 2016-07-27 上海天马微电子有限公司 柔性oled显示面板和柔性oled显示装置

Also Published As

Publication number Publication date Type
US20130021544A1 (en) 2013-01-24 application
WO2011122352A1 (ja) 2011-10-06 application
JPWO2011122352A1 (ja) 2013-07-08 application
EP2555090A1 (en) 2013-02-06 application

Similar Documents

Publication Publication Date Title
JP4191642B2 (ja) 半透過型液晶表示装置およびその製造方法
US20100295812A1 (en) Flexible touch screen display
US20090096759A1 (en) Touch panel, display device and touch panel manufacturing method
US20080136980A1 (en) Liquid crystal display device and method of fabricating the same
US20080048989A1 (en) Touch screen display device and method of manufacturing the same
US20120262385A1 (en) Touch panel and method for fabricating the same
US20110227850A1 (en) Touch sensing type liquid crystal display device and method of fabricating the same
US20090180043A1 (en) Liquid crystal display and method of manufacturing the same
US20110157086A1 (en) Electrostatic capacity type touch panel, display device and process for producing electrostatic capacity type touch panel
US20090167703A1 (en) Display panel and method for manufacturing the same
US20090303195A1 (en) Display device provided with touch panel
US20110228189A1 (en) Touch sensing type liquid crystal display device and method of fabricating the same
US20140375910A1 (en) Touch-panel substrate
JP2008233976A (ja) タッチパネル、表示装置、及びタッチパネルの製造方法
CN101776967A (zh) 触摸面板的制造方法、触摸面板、显示装置及电子设备
JP2009099887A (ja) 表示装置
US20100053114A1 (en) Touch panel apparatus and method for manufacturing the same
US20130050126A1 (en) Display device
US20100053115A1 (en) Touch screen display
US20090237365A1 (en) Display panel and method for manufacturing the same
CN102023770A (zh) 电容式触控面板模块及其制造方法
US20140118642A1 (en) Touch liquid crystal display device
CN102473049A (zh) 电极基板、电极基板的制造方法和图像显示装置
CN103034377A (zh) 内嵌式触控面板
CN102213852A (zh) 触摸显示装置及其制造方法

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)