CN102815812B - Optimization process method for recovering sodium sulfate form ethylene waste alkali - Google Patents
Optimization process method for recovering sodium sulfate form ethylene waste alkali Download PDFInfo
- Publication number
- CN102815812B CN102815812B CN 201110155499 CN201110155499A CN102815812B CN 102815812 B CN102815812 B CN 102815812B CN 201110155499 CN201110155499 CN 201110155499 CN 201110155499 A CN201110155499 A CN 201110155499A CN 102815812 B CN102815812 B CN 102815812B
- Authority
- CN
- China
- Prior art keywords
- oxidation
- ethylene waste
- waste lye
- neutralizer
- neutralization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Removal Of Specific Substances (AREA)
Abstract
Disclosed is an optimization process method for recovering sodium sulfate form ethylene waste alkali. The method comprises that the ethylene waste alkali is subjected to wet oxidation and oxidation liquid is obtained; the oxidation liquid is subjected to first-step neutralization operation and an intermediate neutralization solution is obtained; the intermediate neutralization solution is subjected to separation and a clear solution or a filtrate is obtained; the clear solution or the filtrate is subjected to second-step neutralization operation and a neutralization solution is obtained; and the neutralization solution is dried and anhydrous sodium sulfate is obtained. By the aid of the method, the technical problems that the high salinity of the ethylene waste alkali which is subjected to the wet oxidation treatment, dilution and biochemical treatment can impact a biochemical treatment process is solved, the process is shortened, the investment for sodium sulfate recovery devices is reduced, and the method can be used in fields such as petrochemical industry, chemical industry, environment protection, comprehensive resource utilization and light industry.
Description
Technical field
The present invention relates to the wastewater from chemical industry recovery and utilization technology, be specifically related to a kind of method of comprehensive utilization of ethylene waste lye, particularly the optimized treatment method of separating anhydrous sodium sulfate the ethylene waste lye after wet oxidation is processed, neutralized.
Background technology
Sour gas in ethene cracking gas mainly comprises hydrogen sulfide, carbonic acid gas, organosulfur etc., for removing sour gas, takes the washing of alkaline solution and splitting gas counter current contact, and the waste liquid of generation is called ethylene waste lye.Remove in waste lye and contain Na
2S, Na
2CO
3, NaOH and a small amount of Na
2SO
3, Na
2S
2O
3Also contain the organic sulfides such as mercaptan, thereby have unpleasant stink outward.
After the method for improvement ethylene waste lye comprises direct facture, pre-treatment, the methods such as biochemical treatment, comprehensive use are carried out in dilution.Directly facture, comprise deep-well injection, landfill, dilution discharge and burning, due to the requirement of the environmental protection use that has been under an embargo.The pre-treatment that ethylene waste lye is carried out comprises oxidation style or neutralisation, but pretreated ethylene waste lye contains a large amount of inorganic salt, directly enters composite wastewater treatment plant, will impact biochemical treatment system, and cause the waste of inorganic salt.
The method forefathers of comprehensive utilization ethylene waste lye also have research.CN1789162 has proposed a kind of technique for reclaiming ethylene alkali-washing waste liquid, uses the transition metal oxide desulfurization after employing alkaline earth metal oxide causticization waste lye, and the sulfide that obtains is expected to become high value-added product, but does not have product to detect; CN1305954 has proposed to prepare the method for S-WAT as raw material take liquid hydrocarbon or waste alkali solution of gasoline, and the S-WAT of this method preparation still exists in solution, and contains more sodium sulfate impurity; CN101143293 has proposed a kind of method of deodorant waste lye absorbing treating smoke, and this method has produced the waste liquid that more contains high salt, and the method is worth not as reclaim(ed) sulfuric acid sodium for the comprehensive utilization of the ethylene waste lye after wet oxidation.
If in ethylene waste lye, the recovery of anhydrous sodium sulphate adopts oxidation-neutralization-crystallization-drying process to carry out, this process is used for ethylene waste lye and reclaims so on a small scale upper investment high cost.
Summary of the invention
After the invention provides a kind of wet oxidation, neutralizing treatment ethylene waste lye, and the optimized treatment method of reclaim(ed) sulfuric acid sodium therefrom are the optimization to " short flow and method ".By the neutralization of two steps, can take out step by step metal ion and carbonate, thereby can further reduce under product condition up to standard, oxidation operation material, part are neutralized with the requirement of the quality of soda acid, reduce cost of investment; Can reduce the salt amount to Waste Water Treatment and environmental emission after optimization process, reduce or avoid wet oxidation to process the impact of water outlet and the follow-up biochemical treatment of contained high salt pair thereof, also be conducive to ethylene production enterprise and carry out waste water recycling work, can be met the anhydrous sodium sulphate of the specification of quality of " GB/T6009-2003 industrial anhydrous sodium sulfate " without crystallization.
In ethylene waste lye of the present invention, the method for reclaim(ed) sulfuric acid sodium specifically comprises following process:
In a kind of ethylene waste lye, the method for reclaim(ed) sulfuric acid sodium, comprise the steps:
(1) ethylene waste lye is carried out wet oxidation and process, wherein sulfide mainly is oxidized to vitriol, obtain oxidation solution;
(2) oxidation solution is carried out first step neutralization operation, neutralizer in the middle of obtaining;
(3) middle neutralizer is separated obtain clear liquid or filtrate
(4) clear liquid or filtrate are carried out second stage neutralization operation, obtain neutralizer;
(5) the neutralizer drying is obtained anhydrous sodium sulphate.
Described ethylene waste lye is through the ethylene waste lye of water or water vapour dilution, without any one in the ethylene waste lye of water or water vapour dilution; For selecting without the ethylene waste lye oxidation of water or water vapour dilution, neutralizer after neutralization through water or water vapour dilution or without water or water vapour dilution.
In step (1), sulfide mainly is oxidized to the judgement of vitriol mainly according to following method: S
2-, S
2O
3 2-, SO
3 2-, SO
4 2-Can be by chemical analysis and ion-chromatographic determination, its measuring method is all with reference to GB; Can judge whether that by concentration ratio primary product is vitriol.
Described ethylene waste lye is if the molar content ratio of Sodium sulfhydrate and sodium carbonate less than 1, directly carries out wet oxidation.
Described molar content ratio for Sodium sulfhydrate and sodium carbonate is greater than 1 ethylene waste lye, complete oxidation can make its pH value be reduced to acidity, be subjected to the restriction of wet oxidation reaction equipment matter, rooting is first regulated pH value or minute two-stage oxidizing of waste lye according to Sodium sulfhydrate content and is controlled the pH value of intermediate oxidation liquid according to Sodium sulfhydrate content possibly.
Described pH value of first regulating waste lye according to Sodium sulfhydrate content, be first that 30~45% sodium hydroxide solution is regulated molar content ratio that ethylene waste lye makes Sodium sulfhydrate and sodium carbonate in 0.95 to 1 scope with massfraction in step (1), then carry out wet oxidation;
Described minute two-stage oxidizing also controlled the pH value of intermediate oxidation liquid according to Sodium sulfhydrate content, in step (1), oxidation divides two sections, is the pH value of 30~45% sodium hydroxide solution adjusting intermediate oxidation liquid with massfraction between the two-stage oxidizing reaction member; The pH that first paragraph is oxidizing to ethylene waste lye stopped wet oxidation at 4.3~7.5 o'clock, was that the pH value that 30~45% sodium hydroxide solution is regulated intermediate oxidation liquid is 8.8~10.5 with massfraction; And then carry out the second segment wet oxidation.
Described wet oxidation is treated to any one in wet type air oxide treatment or the processing of wet type dioxygen oxidation.
The temperature that described wet oxidation is processed is 160 ℃~250 ℃; Pressure is higher than the saturated vapor pressure 20% of waste lye at each temperature; The residence time of wet oxidation reaction is different and change according to treatment temp, when being specially 160 ℃ for the treatment of temps, and the residence time 〉=5h; When treatment temp was 180 ℃, the residence time was 〉=3h; When treatment temp is 210 ℃, the residence time 〉=2h; When treatment temp is 250 ℃, the residence time 〉=1h; The residence time can infinitely extend, but the sulphate content of oxidation solution only can increase slightly, only limits from economic considerations the minimum time that stops.
Described is that 30~45% sodium hydroxide solution carries out neutralization reaction for the ethylene waste lye after oxidation with the sulphuric acid soln of mass percent concentration 70~98% or massfraction.
The neutralization reactor of the optional airtight normal pressure mechanical stirring of described neutralization reactor (if any the mechanical stirring neutralization reactor of venting port) or blast any one in the neutralization reactor of pneumatic blending.
In step (2), first step neutralization operation, the neutralizer pH value that goes out reactor is controlled at 6.36~7.36, and metal ion is removed with sedimentary form, and carbonate is converted into supercarbonate, or part has become vitriol.
In step (3), neutralizer is separated to adopt sedimentation, filtration or air supporting to process removal impurity; Sedimentation can be adopted gravity settling or centrifugal settling; Sedimentation, filtration or air supporting are processed and can not added flocculation agent or add flocculation agent.
Described neutralizer is during without the dilution of water or water vapour, adopts when not adding the gravity settling of flocculation agent, and the required settling time is 16h to 48h.
Described neutralizer is when the dilution of water or water vapour, adopts the centrifugal settling that does not add flocculation agent, and the required settling time can adopt the gravity settling time that does not add flocculation agent for without water or water vapour dilution the time lower than neutralizer.
Described neutralizer is after water or water vapour dilution, employing adds gravity settling or the centrifugal settling of flocculation agent, the required settling time can adopt the gravity settling time that does not add flocculation agent for without the dilution of water or water vapour the time lower than neutralizer, dimly releases degree, the flocculation agent kind is determined by experiment again.
Described neutralizer comprises that through water or water vapour dilution ethylene waste lye is first through water or water vapour dilution, and then the neutralizer that obtains after oxidation, neutralization, perhaps without the neutralizer that obtains after the ethylene waste lye oxidation of water or water vapour dilution, neutralization any one in water or water vapour dilution again.
Any one in the optional polyacrylamide of described flocculation agent, cationic-type polyacrylamide or multiple.
Described neutralizer does not add flocculation agent, process to obtain meeting the product that quality product requires (specific targets " GB/T 6009-2003 industrial anhydrous sodium sulfate ") through air supporting, suitably use flocculation agent can make product quality grade improve (such as bringing up to the II class from the III class).
In step (4), second stage neutralization operation, for the churned mechanically neutralization reactor of airtight normal pressure (if any the mechanical stirring neutralization reactor of venting port), the neutralizer pH value that goes out reactor is controlled at 4.36~5.36; For the neutralization reactor that blasts pneumatic blending, the neutralizer pH value that goes out reactor is controlled at 5.36~6.36, and supercarbonate is converted into vitriol and removes.
In step (5), drying means can select that atmospheric evaporation is dry, vacuum-evaporation is dry, any one in spraying drying; Or adopt the submerged combustion evaporation that allows flame contact saltcake liquid, obtain the anhydrous sodium sulphate product.
The invention has the beneficial effects as follows:
By the neutralization of two steps, can remove step by step metal ion and carbonate, thereby can further reduce under product condition up to standard, oxidation operation material, part are neutralized with the requirement of the quality of soda acid, reduce cost of investment; Ethylene waste lye after deodorization is further processed, reclaim(ed) sulfuric acid sodium, can reduce the salt amount to Sewage treatment systems and environmental emission, reduce or avoid wet oxidation to process the impact of the follow-up biochemical treatment of high salt pair in water outlet, also being conducive to ethylene production enterprise and carrying out other waste water recycling work.By implementing optimal conditions of the present invention, reduce approximately more than 90% to the salt amount of wastewater biochemical treatment facility and environmental emission, wastewater discharge reduces approximately more than 90%; The method such as need not burn can reach the specification of quality of " GB/T 6009-2003 industrial anhydrous sodium sulfate ".
Description of drawings
Fig. 1 is through the schematic flow sheet of the ethene alkali lye after 160 ℃~250 ℃ wet oxidations processing through neutralization, dried recovered anhydrous sodium sulphate.
Embodiment
Use the ethylene waste lye after certain enterprise's oil removing removes the gred to consist of (mass percent): NaOH 17.9%, Na in embodiment 1-4
2S 3.8%, Na
2CO
31.7%, COD 25000mg/L, TOC 1300mg/L; Impurity metallic elements content is extremely low, Fe 0.6mg/L, Cr1.2mg/L, Ni 1.8mg/L, Cu 0.8mg/L, Ca, Mg (in Mg) 0.6mg/L, Cl 73.8mg/L.
Below in conjunction with accompanying drawing, be specifically described by embodiment.
Embodiment 1
This ethylene waste lye is not in the situation that dilute and pH regulator, through 160 ℃ of (6MPa) wet type air oxidation 5h; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 7.09 with mass concentration in the one-level neutralization reactor of drum pneumatic blending; Neutralizer adds polyacrylamide (PAM) flocculation agent and removes impurity by filtering to 1ppm in the middle of gained; It is that 98% the vitriol oil pH value that neutralizes is 4.53 that filtrate is continued in mechanical stirring, during the secondary neutralization reactor of venting port is arranged with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 98.93%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " II class standard.
Embodiment 2
This ethylene waste lye is not in the situation that dilute and pH regulator, through 180 ℃ of (6MPa) wet type air oxidation 3h; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 7.31 with mass concentration in the one-level neutralization reactor of drum pneumatic blending; In the middle of gained, neutralizer gravity settling 36h removes impurity; It is that 98% the vitriol oil pH value that neutralizes is 5.43 that clear liquid continues in the secondary neutralization reactor of drum pneumatic blending with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 98.26%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " II class standard.
Embodiment 3
This ethylene waste lye is not in the situation that dilute and pH regulator, through 210 ℃ of (6MPa) wet type dioxygen oxidation 2h; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 6.39 in mechanical stirring, during the one-level neutralization reactor of venting port is arranged with mass concentration; In the middle of gained neutralizer add cationic polyacrylamide (CPAM) to the 0.3ppm gas through the floating impurity of removing; It is that 98% the vitriol oil pH value that neutralizes is 6.27 that clear liquid continues in the secondary neutralization reactor of drum pneumatic blending with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 99.02%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " I class standard.
Embodiment 4
This ethylene waste lye is not in the situation that dilute and pH regulator, through 240 ℃ of (6MPa) wet type dioxygen oxidation 1h; The gained oxidation solution is that 70% the vitriol oil pH value that neutralizes is 6.83 in mechanical stirring, during the one-level neutralization reactor of venting port is arranged with mass concentration; Neutralizer adds cationic polyacrylamide (CPAM) and removes impurity through gravity settling 3h to 0.1ppm in the middle of gained; Clear liquid is that 70% the vitriol oil pH value that neutralizes is 5.29 in mechanical stirring, during the secondary neutralization reactor of venting port is arranged with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 97.79%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " II class standard.
Use the ethylene waste lye after certain enterprise's oil removing removes the gred to consist of (mass percent): NaOH 0% in embodiment 5-8, NaHS 8.8%, Na
2CO
38.3%, COD 75000mg/L, TOC 2300mg/L; Impurity metallic elements content is extremely low, Fe 0.8mg/L, Cr 1.3mg/L, Ni 1.8mg/L, Cu 0.8mg/L, Ca, Mg (in Mg) 0.7mg/L, Cl 75.8mg/L.
Below in conjunction with accompanying drawing, be specifically described by embodiment.
Embodiment 5
This ethylene waste lye is not in the situation that dilute and pH regulator, through 160 ℃ of (6MPa) wet type air oxidation 2.5h, gained intermediate oxidation liquid pH is 7.3, is that the pH value that 30% sodium hydroxide is regulated intermediate oxidation liquid is 9.5 with mass concentration, and continuation oxidation 2.5h gets oxidation solution; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 7.08 with mass concentration in the one-level neutralization reactor of drum pneumatic blending; Neutralizer adds polyacrylamide (PAM) flocculation agent and removes impurity by filtering to 1ppm in the middle of gained; It is that 98% the vitriol oil pH value that neutralizes is 4.53 that filtrate is continued in mechanical stirring, during the secondary neutralization reactor of venting port is arranged with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 98.95%, meets " GB-T6009-2003 industrial anhydrous sodium sulfate " II class standard.
Embodiment 6
This ethylene waste lye is not in the situation that dilute and pH regulator, through 180 ℃ of (6MPa) wet type air oxidation 1.5h, gained intermediate oxidation liquid pH is 6.3, is that the pH value that 30% sodium hydroxide is regulated intermediate oxidation liquid is 10.5 with mass concentration, and continuation oxidation 1.5h gets oxidation solution; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 7.31 with mass concentration in the one-level neutralization reactor of drum pneumatic blending; In the middle of gained, neutralizer gravity settling 36h removes impurity; It is that 98% the vitriol oil pH value that neutralizes is 5.43 that clear liquid continues in the secondary neutralization reactor of drum pneumatic blending with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 98.24%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " II class standard.
Embodiment 7
This ethylene waste lye is 0.95: 1 with the molar content ratio that sodium hydroxide solution (massfraction is 30%) is adjusted to Sodium sulfhydrate and sodium carbonate, the mass concentration of using is that 30% sodium hydroxide solution quality is for 11.0% of this ethylene waste lye quality, then through 210 ℃ of (6MPa) wet type dioxygen oxidation 2h; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 6.40 in mechanical stirring, during the one-level neutralization reactor of venting port is arranged with mass concentration; In the middle of gained neutralizer add cationic polyacrylamide (CPAM) to the 0.3ppm gas through the floating impurity of removing; It is that 98% the vitriol oil pH value that neutralizes is 6.27 that clear liquid continues in the secondary neutralization reactor of drum pneumatic blending with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 99.01%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " I class standard.
Embodiment 8
This ethylene waste lye is 0.98: 1 with the molar content ratio that sodium hydroxide solution (massfraction is 30%) is adjusted to Sodium sulfhydrate and sodium carbonate, the mass concentration of using is that 30% sodium hydroxide solution quality is for 10.8% of this ethylene waste lye quality, then through 240 ℃ of (6MPa) wet type dioxygen oxidation 1h; The gained oxidation solution is that 98% the vitriol oil pH value that neutralizes is 6.82 in mechanical stirring, during the one-level neutralization reactor of venting port is arranged with mass concentration; Neutralizer adds cationic polyacrylamide (CPAM) and removes impurity through gravity settling 3h to 0.1ppm in the middle of gained; Clear liquid is that 98% the vitriol oil pH value that neutralizes is 5.28 in mechanical stirring, during the secondary neutralization reactor of venting port is arranged with mass concentration; The dry products therefrom sodium sulphate content of neutralizer is 97.73%, meets " GB-T 6009-2003 industrial anhydrous sodium sulfate " II class standard.
Claims (13)
1. the optimized treatment method of a reclaim(ed) sulfuric acid sodium from ethylene waste lye, is characterized in that comprising the steps:
(1) ethylene waste lye is carried out wet oxidation and process, wherein sulfide mainly is oxidized to vitriol, obtain oxidation solution;
(2) oxidation solution is carried out first step neutralization operation, neutralizer in the middle of obtaining;
(3) middle neutralizer is separated obtain clear liquid or filtrate;
(4) clear liquid or filtrate are carried out second stage neutralization operation, obtain neutralizer;
(5) the neutralizer drying is obtained anhydrous sodium sulphate;
Wherein, be that 30~45% sodium hydroxide solutions carry out neutralization reaction for the ethylene waste lye after oxidation with sulphuric acid soln or the mass percent concentration of mass percent concentration 70~98%.
2. method according to claim 1 is characterized in that step (1) ethylene waste lye is for through the ethylene waste lye of water or water vapour dilution, without any one in the ethylene waste lye of water or water vapour dilution.
3. method according to claim 2, is characterized in that for the ethylene waste lye without water or water vapour dilution, and the neutralizer after oxidation, neutralization can be selected through water or water vapour dilution or dilute without water or water vapour.
4. method according to claim 1 is characterized in that for the molar content ratio of Sodium sulfhydrate and sodium carbonate directly carrying out wet oxidation less than 1 ethylene waste lye.
5. method according to claim 1, it is characterized in that for the molar content ratio of Sodium sulfhydrate and sodium carbonate greater than 1 ethylene waste lye, be first that 30~45% sodium hydroxide solutions are regulated molar content ratio that ethylene waste lyes make Sodium sulfhydrate and sodium carbonate in 0.95 to 1 scope with massfraction in step (1), then carry out wet oxidation.
6. method according to claim 1, it is characterized in that for the molar content ratio of Sodium sulfhydrate and sodium carbonate greater than 1 ethylene waste lye, in step (1), oxidation divides two sections, be the pH value that 30~45% sodium hydroxide solutions are regulated intermediate oxidation liquid with massfraction between the two-stage oxidizing reaction member, the pH that first paragraph is oxidizing to ethylene waste lye stopped wet oxidation at 4.3~7.5 o'clock, was that the pH value that 30~45% sodium hydroxide solutions are regulated the intermediate oxidation liquid is 8.8~10.5 with massfraction; And then carry out the second segment wet oxidation.
7. according to claim 1,4,5,6 described either method, it is characterized in that wet oxidation is treated to any one in processing of wet type air oxide treatment or wet type dioxygen oxidation.
8. according to claim 1,4,5,6 described either method, it is characterized in that the temperature that wet oxidation is processed is 160 ℃~250 ℃; Pressure is higher than the saturated vapor pressure 20% of waste lye at each temperature; The residence time of wet oxidation reaction is different and change according to treatment temp, when being specially 160 ℃ for the treatment of temps, and the residence time 〉=5h; When treatment temp was 180 ℃, the residence time was 〉=3h; When treatment temp is 210 ℃, the residence time 〉=2h; When treatment temp is 250 ℃, the residence time 〉=1h; The residence time can infinitely extend, but the sulphate content of oxidation solution only can increase slightly, only limits from economic considerations the minimum time that stops.
9. method according to claim 1, it is characterized in that neutralization reactor is optional has the mechanical stirring neutralization reactor of venting port or blasts any one in the neutralization reactor of pneumatic blending.
10. method according to claim 1, is characterized in that step (2) first step neutralization operation, and the neutralizer pH value that goes out reactor is controlled at 6.36~7.36.
11. method according to claim 1 is characterized in that step (3) is separated neutralizer can to adopt sedimentation, filtration or air supporting to process to remove impurity; Sedimentation can be adopted gravity settling or centrifugal settling; Sedimentation, filtration or air supporting are processed and can not added flocculation agent or add flocculation agent.
12. method according to claim 1 is characterized in that step (4) second stage neutralization operation, for the mechanical stirring neutralization reactor that venting port is arranged, the neutralizer pH value that goes out reactor is controlled at 4.36~5.36; For the neutralization reactor that blasts pneumatic blending, the neutralizer pH value that goes out reactor is controlled at 5.36~6.36.
13. method according to claim 1 is characterized in that step (5) drying means can select that atmospheric evaporation is dry, vacuum-evaporation is dry, any one in spraying drying; Or adopt the submerged combustion evaporation that allows flame contact saltcake liquid, obtain the anhydrous sodium sulphate product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110155499 CN102815812B (en) | 2011-06-10 | 2011-06-10 | Optimization process method for recovering sodium sulfate form ethylene waste alkali |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201110155499 CN102815812B (en) | 2011-06-10 | 2011-06-10 | Optimization process method for recovering sodium sulfate form ethylene waste alkali |
Publications (2)
Publication Number | Publication Date |
---|---|
CN102815812A CN102815812A (en) | 2012-12-12 |
CN102815812B true CN102815812B (en) | 2013-11-06 |
Family
ID=47300321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 201110155499 Active CN102815812B (en) | 2011-06-10 | 2011-06-10 | Optimization process method for recovering sodium sulfate form ethylene waste alkali |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN102815812B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106587477A (en) * | 2016-12-21 | 2017-04-26 | 北京燕山翔宇环保工程技术有限公司 | System and method for treating industrial waste lye |
CN112358079B (en) * | 2020-10-23 | 2022-12-06 | 锦州泰丰精细化工有限公司 | Regeneration process of sulfur-containing waste alkali liquor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1533384A (en) * | 1974-11-28 | 1978-11-22 | British Gas Corp | Treatment of effluents |
CN1257102A (en) * | 1998-12-16 | 2000-06-21 | 中国石油化工集团公司 | Process for treating waste lye of refining oil products in petroleum refining industry |
CN1305954A (en) * | 2000-01-20 | 2001-08-01 | 吕长生 | Process for preparing sodium sulfite from liquid hydrocarbon or waste alkali solution of gasoline |
CN1789162A (en) * | 2005-12-06 | 2006-06-21 | 河北工业大学 | Technique for reclaiming ethylene alkali-washing waste liquid |
-
2011
- 2011-06-10 CN CN 201110155499 patent/CN102815812B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1533384A (en) * | 1974-11-28 | 1978-11-22 | British Gas Corp | Treatment of effluents |
CN1257102A (en) * | 1998-12-16 | 2000-06-21 | 中国石油化工集团公司 | Process for treating waste lye of refining oil products in petroleum refining industry |
CN1305954A (en) * | 2000-01-20 | 2001-08-01 | 吕长生 | Process for preparing sodium sulfite from liquid hydrocarbon or waste alkali solution of gasoline |
CN1789162A (en) * | 2005-12-06 | 2006-06-21 | 河北工业大学 | Technique for reclaiming ethylene alkali-washing waste liquid |
Non-Patent Citations (2)
Title |
---|
刘炳鹏,董明会.湿式空气氧化法处理乙烯废碱液装置的技术改造.《乙烯工业》.2007,第19卷(第2期),17-20. * |
马克存,李小军等.乙烯废碱液处理技术研究进展.《现代化工》.2007,第27卷(第9期),22-25. * |
Also Published As
Publication number | Publication date |
---|---|
CN102815812A (en) | 2012-12-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102452672B (en) | Method for recycling sodium sulfate from waste alkali liquor of ethylene unit | |
CN103045288B (en) | Comprehensive treatment method of high-sulphur high-COD (Chemical Oxygen Demand) caustic sludge waste liquid | |
CN103769407B (en) | A kind of renovation process of sulfur-bearing alkaline residue | |
CN111661972A (en) | Process for treating and recycling lead-zinc smelting flue gas washing waste acid | |
CN106381183A (en) | Biological desulfurization device and desulfurization process for biogas | |
CN102631832B (en) | Slight hydrogen sulfide removal device and method in acidic gas | |
CN103045289A (en) | Comprehensive treatment method of liquid hydrocarbon alkali residue waste liquid | |
CN102557300A (en) | Device and treatment method for desulfurizing and neutralizing liquefied gas alkaline mud | |
CN100999345A (en) | Treatment technology of industrial waste water oil remoring, salt removing desulfur, deammonia | |
CN102815812B (en) | Optimization process method for recovering sodium sulfate form ethylene waste alkali | |
CN102452674B (en) | Processing method for recycling sodium sulfate from waste alkali liquor in ethylene unit | |
CN104609622B (en) | The processing method of spent lye in a kind of ethylene production | |
CN103771608A (en) | Treatment method of alkaline residue waste liquid from oil refining | |
CN102815811B (en) | Short flow method for recycling sodium sulfate from ethylene waste alkali liquid | |
CN103771607B (en) | The treatment process of refinery alkaline residue | |
CN103771609B (en) | A kind for the treatment of process of naphthenic acid alkali residue waste liquid | |
CN104071913B (en) | Harmless treatment method of sulfur-containing waste alkali liquor | |
CN102452673B (en) | Recovery processing method of waste alkaline liquor in ethylene plant | |
CN107445329B (en) | Zero-emission treatment process for MTO alkaline washing waste alkali liquor | |
CN103771610B (en) | The integrated conduct method of naphthenic acid alkali residue waste liquid | |
CN103773426B (en) | The treatment process of liquid hydrocarbon alkali residue waste liquid | |
CN105000733B (en) | Treatment method of organic nitrogen-containing liquid-state hydrocarbon waste alkali liquid | |
CN103771612A (en) | Treatment method of spent lye in propylene production | |
CN107445373B (en) | Treatment process of MTO alkaline washing waste alkali liquor | |
CN102452769B (en) | Processing method for waste alkali liquor in ethylene unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |