CN102788985A - Method for correcting positioning errors by means of wide area weighting of pseudorange differentials - Google Patents

Method for correcting positioning errors by means of wide area weighting of pseudorange differentials Download PDF

Info

Publication number
CN102788985A
CN102788985A CN 201210318689 CN201210318689A CN102788985A CN 102788985 A CN102788985 A CN 102788985A CN 201210318689 CN201210318689 CN 201210318689 CN 201210318689 A CN201210318689 A CN 201210318689A CN 102788985 A CN102788985 A CN 102788985A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
pseudorange
differentials
positioning
errors
means
Prior art date
Application number
CN 201210318689
Other languages
Chinese (zh)
Inventor
任烨
李孝辉
薛艳荣
许龙霞
Original Assignee
中国科学院国家授时中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a method for correcting positioning errors by means of wide area weighting of pseudorange differentials. Pseudorange correction is subjected to simulation verification by means of weighted average of pseudorange differentials of M reference stations closest to users by the users, the pseudorange differentials and the virtual reference station technique are combined to control influences of ephemeris errors and ionized layer errors on positioning within a certain range by means of the technique of wide area weighting of the pseudorange differentials at the virtual reference stations, and pseudorange differentials with precision superior to 0.5m can be finally realized. Further, high-precision positioning can be realized, accuracy in positioning is guaranteed, and the application range of conventional pseudorange differentials is widened.

Description

广域加权伪距差分对定位误差的改正方法 WAN weighting pseudorange differential correction method of positioning error

技术领域 FIELD

[0001] 本发明属于卫星导航差分技术领域,特别是伪距差分适用范围的改善以及伪距差分的定位精度提高的方法,具体是一种广域加权伪距差分对定位误差的改正方法。 [0001] The present invention belongs to the technical field differential satellite navigation, in particular to improve the scope of pseudorange differential positioning accuracy and a method of improving the pseudorange difference, in particular a wide area differential weighting pseudorange correction method of positioning error.

背景技术 Background technique

[0002] 差分技术是提高卫星导航定位系统定位精度的一项重要技术。 [0002] Differential technology is an important technology to improve the positioning precision satellite navigation system. 在卫星导航定位过程中,观测所受到的误差影响,如卫星星历、电离层和对流层等是空间相关的,卫星钟差是空间强相关的,因此,间隔在一定距离内的两个站,同步观测同一颗卫星,则两个站上的观测值可认为包含相同的误差。 Satellite navigation positioning, the error observed effect is subjected, such as satellite ephemeris, ionospheric and tropospheric like are spatially correlated, satellite clock error is a strong spatial correlation, and therefore, the interval within a certain distance of the two stations, with a simultaneous observation satellites, the observations can be considered on the two stations contain the same errors. 如果将一个站设为基准站,其坐标已知,该站的实时观测数据通过通信链路传输到另一个站,即用户站,则用户站同时差分处理来自两个站的观测数据,可消除共同误差的影响。 If a station as a reference station which coordinates are known, the real-time observation data transmitted via a communication link station to another station, i.e. a subscriber station, the subscriber station simultaneously observed difference processing data from two stations may be eliminated the impact of common errors. 差分主要分为位置差分、伪距差分、载波相位差分和广域差分。 The main difference divided position difference, differential pseudorange, and a wide area differential carrier phase. 位置差分因为精度较低,已近较少采用。 Position difference because of low accuracy, almost less used. 目前,最常用的是伪距差分、载波相位差分和广域差分。 Currently, the most commonly used is the pseudorange difference, and a wide area differential carrier phase. 伪距差分定位精度约为5m,载波相位差分定位比伪距差分的精度可以提高几倍,但其设备技术较为复杂。 Pseudorange differential positioning accuracy of about 5m, the positioning accuracy of carrier phase pseudorange difference ratio can be increased several times, but the technology is more complicated equipment. 广域差分是对观测量的误差源加以区分,并对每一个误差源分别加以模型化,然后将计算出来的每个误差源的误差修正值通过数据通讯链路发送给用户,对用户的观测值加以修正,以达到削弱误差源影响的目的。 Wide area differential is to distinguish between error sources observables, and each source of error to be modeled separately, and then the error correction value is calculated for each error source is transmitted via a data communication link to a user, the user's observation of value to be corrected, for the purpose of weakening the influence of the error sources. 伪距差分方法的优点是:⑴提供伪距改正数和伪距改正数变化率。 Pseudo advantage from the difference method is: ⑴ provide pseudorange and pseudorange corrections rate of change of the number of corrections. 当某些原因导致差分信号短暂丢失时,能够利用伪距改正数变化率继续进行差分定位。 When for some reason a brief differential signal is lost, it can take advantage of a number pseudorange change rate differential positioning correction continues. (2)基准站能够提供全部观测到的卫星的伪距改正数给用户。 (2) base station capable of providing all of the observed satellite pseudo range corrections to the user. 这样,就能够允许用户选用任意四颗卫星进行定位,不必考虑两站观测卫星是否完全相同。 Thus, it is possible to allow the user to choose any of four satellite positioning, without regard to whether the two stations are identical observation satellites. 但是伪距差分也有自己的局限性,它的作用范围只能在40km左右内,若超出40km的区域外就会产生定位误差大、定位不准的问题。 However, pseudorange differential has its own limitations, and its scope will be within about 40km, 40km if beyond the outer region will produce a large positioning error, the positioning allowed to question.

发明内容 SUMMARY

[0003] 为了解决现有技术的不足,本发明提供了一种能够提高伪距差分精度的广域加权伪距差分对定位误差的改正方法。 [0003] In order to solve the deficiencies of the prior art, the present invention provides a wide precision pseudorange differential weighting pseudorange differential correction method capable of improving positioning error.

[0004] 解决上述技术问题的技术方案包括以下步骤: [0004] The technical problem to solve the above technical solution includes the following steps:

[0005] (I)N个差分基准站监测该基准站的伪距误差Api, N为6〜9; [0005] (I) N pseudo-differential reference station monitors the base station from an error Api, N is 6~9;

[0006] (2) N个差分基准站将各自的伪距误差Λ P i通过通信卫星发送到导航主控站; [0006] (2) N base stations respective differential pseudorange error Λ P i to the navigation control station through a communication satellite;

[0007] (3)导航主控站将接收到的各站伪距误差输入通信卫星,通信卫星将各站伪距误差发送到用户; [0007] (3) the navigation master station to each station the received pseudorange error input communication satellite, a communication satellite stations pseudorange error to the user;

[0008] (4)用户接收由通信卫星广播的各差分基准站所监测到的伪距误差Api; [0008] (4) the user receives a broadcast communication satellite by each base station monitored differential pseudorange error of Api;

[0009] (5)根据用户的位置,对距离用户最近的M个差分基准站的伪距误差进行加权平均,权值取用户与M个差分基准站距离的倒数,计算出用户所在位置的虚拟基准站的广域加权伪距改正量Apu: [0009] (5) The position of the user, the pseudo closest to the user M differential reference stations pitch error weighted average weights reciprocal of the user and the M differential reference station distance calculated location of the user's virtual WAN base station pseudo distance weighting correction amount Apu:

Figure CN102788985AD00041

[0011] 式中:N彡M彡3,i表示所取的距离用户最近的差分基准站,^表示用户位置与所取差分基准站之间的距离,△ P i表示所取差分基准站的伪距误差; [0011] Where: N M San San 3, i represents taken closest to the user differential reference station, ^ represents the distance between the user position with the differential reference station taken, △ P i represents a differential reference station, taken pseudo-range error;

[0012] (6)用户利用其所在位置的虚拟基准站的广域加权伪距改正量Λ P u来修正用户的伪距P u,得到用户到卫星的真实距离Ru: [0012] (6) the user using its location WAN weighted virtual reference station pseudo range correction amount Λ P u corrected pseudorange user P u, users get the true distance to the satellite Ru:

[0013] Ru = P u+ Δ P u (2)。 [0013] Ru = P u + Δ P u (2).

[0014] 本发明通过用户对距离其最近的M个基准站伪距误差进行加权平均对用户的伪距改正进行了仿真验证,将伪距差分与虚拟基准站技术相结合,利用虚拟基准站处广域加权伪距差分技术可以将星历误差与电离层误差对定位的影响控制在一定的范围内,最终可实现精度优于O. 5米的伪距差分,进而实现较高精度的定位,保证定位准确,改善了传统伪距差分的适用范围。 [0014] The present invention of distance from its nearest M reference stations pseudo error by the user weighted average pseudo the user from the corrected simulation verification, pseudorange differential and the virtual reference station technology, using the virtual base station WAN weighting pseudorange differential technique may affect ephemeris errors and ionospheric error of positioning is controlled within a certain range, ultimately to achieve an accuracy better than O. 5 meters pseudorange difference, thus achieving high positioning accuracy, ensure accurate positioning, improve the scope of the traditional pseudo range difference.

具体实施方式 detailed description

[0015] 现结合实施例对本发明的技术方案进行进一步说明,但是本发明不仅限于下述的实施方式。 [0015] Example embodiments are combined with the technical solutions of the present invention will be further illustrated, but the present invention is not limited to the following embodiments.

[0016] 实施例I [0016] Example I

[0017] 本实施例的广域加权伪距差分方法的实现涉及中国区域内的六个差分基准站、一个用户、伪距差分精度仿真三部分。 Implementation [0017] The present embodiment is a wide area weighted pseudo-range differential process involves six differential reference stations within the area of ​​China, a user, accuracy of pseudorange differential simulation of three parts.

[0018] 伪距差分精度仿真主要是在用户处仿真星历误差和电离层误差引起的伪距误差与用户所在位置的虚拟基准站的广域加权伪距改正量作比较获得的伪距差分定位精度。 [0018] WAN weighting pseudorange differential pseudoephedrine simulation accuracy mainly in the simulation ephemeris errors and ionospheric errors from an error caused by a user at the user's location from a virtual reference station corrections obtained by comparing the amount of pseudorange differential positioning accuracy.

[0019] 在国内设置6个伪距差分基准站,即N为6,分别位于西安、长春、喀什、三亚、上海、拉萨。 [0019] 6 provided in the country pseudorange differential reference station, i.e., N is 6, which are located in Xi'an, Changchun, Kashi, trimethylene, Shanghai, la. 每个站的时间都与国家授时中心的协调世界时同步,每个站放置共视接收机。 Synchronization time for each station are the National Time Service Center of Coordinated Universal Time, each station were placed, as the receiver. 选取成都用户进行仿真。 Select the user to simulate Chengdu. 卫星选为亚太IA卫星,采用2009年8月2日一天内卫星的位置作为卫星实际位置,实际位置加上一定误差作为广播星历。 Asia-Pacific Satellite elected IA satellite, using location within one day in August 2009 2 satellites as the actual position of the satellite, the actual position with a certain error as the broadcast ephemeris. 在一天中,星历X方 In the day, the X ephemeris

向误差设为,星历y方向误差设为+ f),星历z方向误差设为+ t为地方时,以星历误差A = 10米为例,广域加权伪距差分对定位误差 Is set to the error, ephemeris error in the y direction is set + F), ephemeris + z direction error when t is set place to ephemeris errors A = 10 yards, for example, a wide area for weighting pseudorange differential positioning error

86400 86400

的改正方法包括以下步骤: Correction method comprising the steps of:

[0020] (I)六个伪距差分基准站即西安、长春、喀什、三亚、上海、拉萨基准站监测由于星历误差而导致的伪距误差Λ P Ei (i = 1,2,L,6)分别为13. 70m、13. 22m、13. 96m、14. 19m、13. 60m、14. Ilm ;由于电离层误差而导致的伪距误差Δ p Ti (i = 1,2,L,6)分别为-6.42m、-4. 62m、-6. 24m、-8. 99m、-6. 02m、-7. 56m,故各站的伪距误差Δ Pi=AP Εί+Δ ρ Ti (i =I, 2, L, 6)分别为7. 28m、8. 60m、7. 72m、5. 20m、7. 58m、6. 55m ;[0021] (2)6个差分基准站将各自的伪距误差Λ ρ i通过通信卫星发送到导航主控站; [0020] (I) six pseudorange differential reference stations i.e. Xi'an, Changchun, Kashi, trimethylene, Shanghai, la base station monitoring since the dummy ephemeris error caused by pitch errors Λ P Ei (i = 1,2, L, 6) respectively, is 13. 70m, 13 22m, 13 96m, 14 19m, 13 60m, 14 Ilm;..... Since the dummy ionospheric error caused by pitch errors Δ p Ti (i = 1,2, L, 6) respectively, -6.42m, -4. 62m, -6. 24m, -8. 99m, -6. 02m, -7. 56m, so that each station pseudo distance error Δ Pi = AP Εί + Δ ρ Ti ( i = I, 2, L, 6) is respectively 7. 28m, 8 60m, 7 72m, 5 20m, 7 58m, 6 55m;..... [0021] (2) 6 th differential of the respective base stations Λ ρ i pseudorange error is transmitted to the navigation central control station through a communication satellite;

[0022] (3)导航主控站将接收到的各个基准站的伪距误差输入通信卫星,由通信卫星将各个基准站的伪距误差发送到成都用户; [0022] (3) the navigation master station will receive the base station pseudo distance error respective input communication satellite, a communication satellite pseudo distance error of each base station transmits to the user Chengdu;

[0023] (4)成都用户接收由通信卫星广播的各差分基准站所监测到的伪距误差Api; [0023] (4) Chengdu each user receives differential reference station broadcasts from the monitored communication satellite pseudorange error of Api;

[0024] (5)根据成都的位置,对距离成都最近的3个伪距差分基准站即西安、三亚、拉萨的伪距误差进行加权平均,即M为3,权值取成都与这3个差分基准站距离的倒数,根据式 [0024] (5) The position of Chengdu, of from differential reference stations i.e. Xi'an, trimethylene, Lasa pseudorange error weighted average from Chengdu latest three false, i.e. M is 3, the weight takes Chengdu with three reciprocal distance differential reference station, according to the formula

(I)计算出成都所在位置的虚拟基准站的广域加权伪距改正量APu: (I) calculate the position where the wide-area weighted Chengdu virtual reference station pseudo range correction amount APu:

Figure CN102788985AD00051

[0026] 其中ri、r2、r3分别表示成都与所取3个差分基准站西安、三亚、拉萨的距离,Ap1,Δ P2, Δ P3分别表示所取3个差分基准站西安、三亚、拉萨的伪距误差; [0026] wherein ri, r2, r3 respectively Chengdu and taken three differential reference stations Xi'an, trimethylene, la distance, Ap1, Δ P2, Δ P3, respectively, taken three differential reference stations Xi'an, trimethylene, Lhasa pseudo-range error;

[0027] (6)成都用户利用其所在位置的虚拟基准站的广域加权伪距改正量Λ ρ u来修正成都用户到卫星的伪距P u,根据式(2)获得成都到卫星的真实距离: [0027] (6) User Chengdu wide use of their weighting in the dummy virtual reference station location correction amount of pitch Λ ρ u Chengdu corrected pseudorange to the satellite user P u, (2) to the satellite obtained Chengdu true according to formula distance:

[0028] Ru = ρ U+A ρ u=37398429. 32m+6. 62m=37398435. 94m [0028] Ru = ρ U + A ρ u = 37398429. 32m + 6. 62m = 37398435. 94m

[0029] 根据以上实施例,仿真成都用户由于星历误差而导致的伪距误差为13. 90m,由于电离层误差而导致的伪距误差-7. 08m,故成都用户的伪距误差为6. 82m,伪距差分精度为 [0029] According to the above embodiment, since the user simulation Chengdu ephemeris error caused pseudorange error 13. 90m, since the dummy ionospheric error caused by pitch errors -7. 08m, so the user Chengdu pseudorange error 6 . 82m, accuracy of pseudorange differential

6. 82m-6. 62m=0. 2m < O. 5m,故伪距差分精度优于O. 5m,对传统的伪距差分的适用范围有了一定的改善。 6. 82m-6. 62m = 0. 2m <O. 5m, so the accuracy is better than pseudorange differential O. 5m, a difference from the scope of some improvement has been the traditional dummy.

[0030] 实施例2 [0030] Example 2

[0031] 在上述实施例I中,将国内设置9个伪距差分基准站,即N为9,分别位于西安、长春、喀什、三亚、上海、拉萨、呼和浩特、北京、厦门,选取成都用户进行仿真。 [0031] In the above Example I, a domestic setting 9 pseudorange differential reference station, i.e., N is 9, are located in Xi'an, Changchun, Kashi, trimethylene, Shanghai, Lasa, Hohhot, Beijing, Xiamen, select Chengdu user simulation. 卫星选为亚太IA卫星,采用2009年8月2日一天内卫星的位置作为卫星实际位置,实际位置加上一定 Asia-Pacific Satellite elected IA satellite, using location within one day in August 2009 2 satellites as the actual position of the satellite, the actual position with a certain

误差作为广播星历。 Error as the broadcast ephemeris. 在一天中,星历X方向误差设为:』<:05(^^/),星历7方向误差设为 In the day ephemeris error X direction is set to: "<: 05 (^^ /), 7 ephemeris error direction set

86400 86400

rJ w V 5 7Γ 2^7" X ^ rJ w V 5 7Γ 2 ^ 7 "X ^

,星历Z方向误差设为Jc0S(^^ + ;r),t为地方时,以星历误差A = 10 8640U 2 86400 , Ephemeris error to a Z direction Jc0S (^^ +; r), where t is time, ephemeris error to A = 10 8640U 2 86400

米为例,广域加权伪距差分对定位误差的改正方法包括以下步骤: M, for example, a wide area weighting pseudorange differential pair of positioning error correction method comprising the steps of:

[0032] (I) 9个伪距差分基准站即西安、长春、喀什、三亚、上海、拉萨、呼和浩特、北京、厦门基准站监测由于星历误差而导致的伪距误差Λ pEi (i = 1,2,L,9)分别为13.70m、 [0032] (I) 9 pseudo-range differential reference station i.e. Xi'an, Changchun, Kashi, trimethylene, Shanghai, Lasa, Hohhot, Beijing, pseudo Xiamen base station monitoring since ephemeris error caused by pitch errors Λ pEi (i = 1 , 2, L, 9) are 13.70m,

13. 22m、13. 96m、14. 19m、13. 60m、14. llm、13. 50m、13. 45m、13. 85m ;由于电离层误差而导致的伪距误差Λ P Ti (i = 1,2,L, 9)分别为-6. 42m、-4. 62m、-6. 24m、-8. 99m、-6. 02m、-7. 56m、-5. 67m、-5. 47m、-7. 20m,故各站的伪距误差Δ pi= Δ p Ei+Δ p Ti (i = 1,2,L,9)分别为 . 13. 22m, 13 96m, 14 19m, 13 60m, 14 llm, 13 50m, 13 45m, 13 85m;...... Since the dummy ionospheric error caused by pitch errors Λ P Ti (i = 1, 2, L, 9) respectively -6. 42m, -4. 62m, -6. 24m, -8. 99m, -6. 02m, -7. 56m, -5. 67m, -5. 47m, -7 . 20m, so that each station pseudo distance error Δ pi = Δ p Ei + Δ p Ti (i = 1,2, L, 9) respectively,

7. 28m、8. 60m、7. 72m、5. 20m、7. 58m、6. 55m、7. 83m、7. 98m、6. 65m ; 7. 28m, 8 60m, 7 72m, 5 20m, 7 58m, 6 55m, 7 83m, 7 98m, 6 65m........;

[0033] (2)同实施例I相同; [0033] (2) The same as in Example I;

[0034] (3)同实施例I相同; [0034] (3) The same as in Example I;

[0035] (4)同实施例I相同; [0035] (4) same as in Example I;

[0036] (5)根据成都的位置,对距离成都最近的3个伪距差分基准站即西安、拉萨、呼和浩特的伪距误差进行加权平均,权值取成都与这3个差分基准站距离的倒数,根据式(I)计算出成都所在位置的虚拟基准站的广域加权伪距改正量APu: [0036] (5) The position of Chengdu, of from differential reference stations i.e. Xi'an, Lasa, Hohhot pseudorange error weighted average weight from Chengdu latest three dummy values ​​taken Chengdu with three differential reference stations distance reciprocal, Chengdu calculates the position where according to formula (I) wide weighted virtual reference station pseudo range correction amount APu:

/ I Λ f ί \ f I Λ / I Λ f ί \ f I Λ

[0037] Apu = 1~^~ρ -Apl+ 1~I~ρ -Ap2+ 1~^~f -Api = 7.22m [0037] Apu = 1 ~ ^ ~ ρ -Apl + 1 ~ I ~ ρ -Ap2 + 1 ~ ^ ~ f -Api = 7.22m

--i---i-- --!---j-- --1---1-- --i --- i-- -! --- j-- --1 --- 1--

VVV Tt f* f* VVV Tt f * f *

V I 2 J \ rI r2 f3 J \ M tI ,3 J V I 2 J \ rI r2 f3 J \ M tI, 3 J

Figure CN102788985AD00061
Figure CN102788985AD00062

[0038] 其中!^、!^、!^表示成都与所取3个差分基准站西安、拉萨、呼和浩特的距离,Ap1,Δ P2, Δ P3表示所取3个差分基准站西安、拉萨、呼和浩特的伪距误差; [0038] wherein! ^! ^! ^ Represents Chengdu and taken three differential reference stations Xi'an, Lasa, Hohhot distance, Ap1, Δ P2, Δ P3 represents taken three differential reference stations Xi'an, Lasa, Hohhot pseudorange error;

[0039] (6)成都用户利用其所在位置的虚拟基准站的广域加权伪距改正量Λ pu,通过式 [0039] (6) using its location Chengdu user virtual reference station WAN weighting pseudorange correction amount Λ pu, by the formula

(2)计算,修正成都用户到卫星的伪距P u,获得成都到卫星的真实距离为Ru= Pu+A pu=37398429. 32m+7. 22m=37398436. 54m。 (2) calculation, Chengdu corrected pseudorange to the satellite user P u, to obtain the real distance to the satellite is Chengdu Ru = Pu + A pu = 37398429. 32m + 7. 22m = 37398436. 54m.

[0040] 成都用户的伪距差分精度为6. 82m-7. 22m=-0. 4m < O. 5m。 [0040] Chengdu pseudorange differential user precision 6. 82m-7. 22m = -0. 4m <O. 5m.

[0041] 实施例3 [0041] Example 3

[0042] 在上述实施例I中,将国内设置8个伪距差分基准站,即N为8,分别位于长春、喀什、三亚、上海、拉萨、呼和浩特、北京、厦门,选取成都用户进行仿真。 [0042] In the above Example I, domestic set eight pseudorange differential reference station, i.e., N is 8, located in Changchun, Kashi, trimethylene, Shanghai, Lasa, Hohhot, Beijing, Xiamen, select Chengdu user simulation. 卫星选为亚太IA卫星,采用2009年8月2日一天内卫星的位置作为卫星实际位置,实际位置加上一定误 Asia-Pacific Satellite elected IA satellite, using location within one day in August 2009 on the 2nd satellite as the actual position of the satellite, the actual position with a certain error

差作为广播星历。 As the difference between the broadcast ephemeris. 在一天中,星历X方向误差设为:^cos(^f^O,星历y方向误差设为 In one day, ephemeris X direction error to: ^ cos (^ f ^ O, ephemeris error in the y direction is set

86400 86400

^cos(SI/ + i),星历Z方向误差设为dcos(^^ + ;T),t为地方时,以星历误差A = 10 86400 2 86400 ^ Cos (SI / + i), ephemeris error to a Z direction dcos (^^ +; T), where t is time, ephemeris error to A = 10 86400 2 86400

米为例,广域加权伪距差分对定位误差的改正方法包括以下步骤: M, for example, a wide area weighting pseudorange differential pair of positioning error correction method comprising the steps of:

[0043] (I) 8个伪距差分基准站即长春、喀什、三亚、上海、拉萨、呼和浩特、北京、厦门基准站监测由于星历误差而导致的伪距误差Λ pEi (i = 1,2,L,8)分别为13. 22m、13. 96m、 [0043] (I) 8 from the pseudo-differential reference station Changchun i.e., Kashi, trimethylene, Shanghai, Lasa, Hohhot, Beijing, Xiamen pseudo base stations monitored since ephemeris error caused by pitch errors Λ pEi (i = 1,2 , L, 8) is respectively 13. 22m, 13. 96m,

14. 19m、13. 60m、14. 11m、13. 50m、13. 45m、13. 85m ;由于电离层误差而导致的伪距误差Δ ρ Ti (i = I, 2, L, 8)分别为-4. 62m、-6. 24m、-8. 99m、_6· 02m、_7· 56m、_5· 67m、_5· 47m、-7• 20m,故各站的伪距误差Δ ρ ί=Δ ρΕί+Δ pTi (i = 1,2,L,8)分别为8. 60m、7. 72m、5. 20m、 . 14. 19m, 13 60m, 14 11m, 13 50m, 13 45m, 13 85m;.... Since the dummy ionospheric error caused by pitch errors Δ ρ Ti (i = I, 2, L, 8) respectively -4. 62m, -6. 24m, -8. 99m, _6 · 02m, _7 · 56m, _5 · 67m, _5 · 47m, -7 • 20m, so that each station pseudo distance error Δ ρ ί = Δ ρΕί + Δ pTi (i = 1,2, L, 8) is respectively 8. 60m, 7. 72m, 5. 20m,

7. 58m、6. 55m、7. 83m、7. 98m、6. 65m ; ... 7. 58m, 6 55m, 7 83m, 7 98m, 6 65m.;

[0044] (2)同实施例I相同; [0044] (2) The same as in Example I;

[0045] (3)同实施例I相同; [0045] (3) The same as in Example I;

[0046] (4)同实施例I相同; [0046] (4) same as in Example I;

[0047] (5)根据成都的位置,对距离成都最近的3个伪距差分基准站即三亚、拉萨、呼和浩特的伪距误差进行加权平均,权值取成都与这3个差分基准站距离的倒数,根据式(I)计算出成都所在位置的虚拟基准站的广域加权伪距改正量APu: [0047] (5) The position of Chengdu, of from differential reference stations i.e. trimethylene, Lasa, Hohhot pseudorange error weighted average weight from Chengdu latest three dummy values ​​taken Chengdu with three differential reference stations distance reciprocal, Chengdu calculates the position where according to formula (I) wide weighted virtual reference station pseudo range correction amount APu:

f I λ Γι、 f I λ Γι,

[0048] Apu = -~I~j- ·Δα + -~I~- -Ap2 + -~rj~- ·δα = 6.58m [0048] Apu = - ~ I ~ j- · Δα + - ~ I ~ - -Ap2 + - ~ rj ~ - · δα = 6.58m

--1---1-- --1---1-- --1---1— --1 --- 1-- 1-- --1 --1 --- --- 1-

YYY YYY YV Y YYY YYY YV Y

V ,1 r2 r3 J \ ,1 r2 r3 J V fI r2 r3 J V, 1 r2 r3 J \, 1 r2 r3 J V fI r2 r3 J

[0049] 其中ri、r2、r3表示成都与所取3个差分基准站三亚、拉萨、呼和浩特的距离,Ap1,Δ P2, Δ P3表示所取3个差分基准站三亚、拉萨、呼和浩特的伪距误差; [0049] wherein ri, r2, r3 represents Chengdu and taken three differential reference stations trimethylene, Lasa, Hohhot distance, Ap1, Δ P2, Δ P3 represents taken three differential reference stations trimethylene, Lasa, Hohhot pseudorange error;

[0050] (6)成都用户利用其所在位置的虚拟基准站的广域加权伪距改正量Λ pu,通过式 [0050] (6) using its location Chengdu user virtual reference station WAN weighting pseudorange correction amount Λ pu, by the formula

(2)计算,修正成都用户到卫星的伪距P u,获得成都到卫星的真实距离为Ru= Pu+A pu=37398429. 32m+6. 58m=37398435. 90m。 (2) calculation, Chengdu corrected pseudorange to the satellite user P u, to obtain the real distance to the satellite is Chengdu Ru = Pu + A pu = 37398429. 32m + 6. 58m = 37398435. 90m.

[0051] 成都用户的伪距差分精度为6. 82m-6. 58m=0. 24m < 0. 5m。 [0051] Chengdu pseudorange differential user precision 6. 82m-6. 58m = 0. 24m <0. 5m.

[0052] 实施例4 [0052] Example 4

[0053] 上述实施例I〜3的广域加权伪距差分对定位误差的改正方法中,在步骤5中,根据成都的位置,对距离成都最近的6个伪距差分基准站即西安、拉萨、呼和浩特、三亚、北京、厦门加权平均,即M为6,权值取成都与这6个差分基准站距离的倒数,根据式(I)计算出成都所在位置的虚拟基准站的广域加权伪距改正量△ P u,其它的操作与相应的实施例相同。 [0053] The embodiments of the wide area I~3 weighting pseudorange differential corrections for errors in positioning method, in step 5, according to the position of Chengdu, the difference from the reference station for the last 6 from Chengdu pseudo i.e. Xi'an, Lasa , Hohhot, trimethylene, Beijing, Xiamen, weighted average, i.e., M is 6, the weight takes six Chengdu reciprocal distance differential reference station, calculates the position of the pseudo wide weighted Chengdu where according to formula (I) of the virtual reference station range correction amount △ P u, the operation of the respective other embodiment.

[0054] 其它的步骤与相应的实施例相同,得出成都到卫星的真实距离。 [0054] Other steps are same as the corresponding Example, to obtain the real distance to the satellite Chengdu.

[0055] 实施例5 [0056] 上述实施例I〜3的广域加权伪距差分对定位误差的改正方法中,在步骤5中,根据成都的位置,对距离成都最近的4个伪距差分基准站即西安、拉萨、呼和浩特、三亚加权平均,即M为4,权值取成都与这4个差分基准站距离的倒数,根据式(I)计算出成都所在位置的虚拟基准站的广域加权伪距改正量△ P u,其它的操作与相应的实施例相同。 [0055] Example 5 [0056] The embodiments of the wide area I~3 weighting pseudorange differential corrections embodiment of a method of positioning error, in step 5, according to the position of Chengdu, to the nearest four pseudo-range differential Chengdu WAN base station i.e. Xi'an, Lasa, Hohhot, trimethylene weighted average, i.e., M is 4, and the weights taken Chengdu reciprocal four differential reference stations distance, calculates the position where Chengdu according to formula (I) are virtual reference stations weighting pseudorange correction amount △ P u, the operation of the respective other embodiment.

[0057] 其它的步骤与相应的实施例相同,得出成都到卫星的真实距离。 [0057] Other steps are same as the corresponding Example, to obtain the real distance to the satellite Chengdu.

Claims (1)

  1. 1. 一种广域加权伪距差分对定位误差的改正方法,其特征在于包括以下步骤: (1) N个差分基准站监测该基准站的伪距误差A Pi, N为6〜9; (2) N个差分基准站将各自的伪距误差A p ,通过通信卫星发送到导航主控站; (3)导航主控站将接收到的各站伪距误差输入通信卫星,通信卫星将各站伪距误差发送到用户; (4)用户接收由通信卫星广播的各差分基准站所监测到的伪距误差APi; (5)根据用户的位置,对距离用户最近的M个差分基准站的伪距误差进行加权平均,权值取用户与M个差分基准站距离的倒数,计算出用户所在位置的虚拟基准站的广域加权伪距改正量Apu: 式中:N > M > 3,i表示所取的距离用户最近的差分基准站,^表示用户位置与所取差分基准站之间的距离,A p ,表示所取差分基准站的伪距误差; (6)用户利用其所在位置的虚拟基准站的广域加权伪距改正量A pu A wide weighting pseudorange differential pair of positioning error correction method, comprising the steps of: (1) N pseudo-differential reference stations monitor the pitch error of the reference stations A Pi, N is 6~9; ( 2) N reference stations respective differential pseudorange error a p, transmitted to the navigation central control station through a communication satellite; (3) the navigation master station to each station the received pseudorange error input communication satellites, communication satellites each station pseudorange error to the user; (4) the user receives a respective differential reference station communications satellite broadcasting the monitored pseudorange error APi; (5) according to the user's location, for the closest to the user M differential reference stations pseudorange error weighted average, the user takes the reciprocal weight differential reference stations and the M distance calculated weighted pseudo wide virtual reference station location of the user from the correction amount Apu: where: N> M> 3, i represents taken closest to the user differential reference station, ^ represents the distance between the user position with the differential reference station taken, a p, represents a differential reference station taken pseudorange error; (6) of the user using its location WAN virtual reference stations weighted pseudo range correction amount a pu 修正用户的伪距P u,得到用户到卫星的真实距离Ru: Ru = Pu+aPu (2)。 Fixed user pseudoranges P u, to obtain the real distance to the satellite user Ru: Ru = Pu + aPu (2).
CN 201210318689 2012-08-31 2012-08-31 Method for correcting positioning errors by means of wide area weighting of pseudorange differentials CN102788985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210318689 CN102788985A (en) 2012-08-31 2012-08-31 Method for correcting positioning errors by means of wide area weighting of pseudorange differentials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210318689 CN102788985A (en) 2012-08-31 2012-08-31 Method for correcting positioning errors by means of wide area weighting of pseudorange differentials

Publications (1)

Publication Number Publication Date
CN102788985A true true CN102788985A (en) 2012-11-21

Family

ID=47154436

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210318689 CN102788985A (en) 2012-08-31 2012-08-31 Method for correcting positioning errors by means of wide area weighting of pseudorange differentials

Country Status (1)

Country Link
CN (1) CN102788985A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730549A (en) * 2013-12-24 2015-06-24 深圳艾科创新微电子有限公司 Positioning method, device and system for Beidou navigation system
CN105044741A (en) * 2015-06-29 2015-11-11 中国科学院上海天文台 Solution method of pseudo range phase comprehensive wide-area differential correction value

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324473B1 (en) * 1997-08-04 2001-11-27 Trimble Navigation Limited Method and apparatus for collecting, processing and distributing differential global positioning system information using the internet
US20050064878A1 (en) * 2003-09-19 2005-03-24 O'meagher Brent Method and system for delivering virtual reference station data
US20060064244A1 (en) * 1994-01-03 2006-03-23 Robbins James E Differential GPS corrections using virtual stations
CN101545967A (en) * 2009-04-16 2009-09-30 北京航空航天大学 Solving method for integrity parameter of satellite navigation and the monitor system
CN101743453A (en) * 2007-05-16 2010-06-16 天宝导航有限公司 Post-mission high accuracy position and orientation system
CN102298151A (en) * 2011-07-20 2011-12-28 东南大学 A method of error correction network gnss differential positioning system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060064244A1 (en) * 1994-01-03 2006-03-23 Robbins James E Differential GPS corrections using virtual stations
US6324473B1 (en) * 1997-08-04 2001-11-27 Trimble Navigation Limited Method and apparatus for collecting, processing and distributing differential global positioning system information using the internet
US20050064878A1 (en) * 2003-09-19 2005-03-24 O'meagher Brent Method and system for delivering virtual reference station data
CN101743453A (en) * 2007-05-16 2010-06-16 天宝导航有限公司 Post-mission high accuracy position and orientation system
CN101545967A (en) * 2009-04-16 2009-09-30 北京航空航天大学 Solving method for integrity parameter of satellite navigation and the monitor system
CN102298151A (en) * 2011-07-20 2011-12-28 东南大学 A method of error correction network gnss differential positioning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104730549A (en) * 2013-12-24 2015-06-24 深圳艾科创新微电子有限公司 Positioning method, device and system for Beidou navigation system
CN105044741A (en) * 2015-06-29 2015-11-11 中国科学院上海天文台 Solution method of pseudo range phase comprehensive wide-area differential correction value

Similar Documents

Publication Publication Date Title
Parkinson GPS error analysis
Dow et al. The international GNSS service in a changing landscape of global navigation satellite systems
Li et al. Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo
Pradel et al. Astrometric accuracy of phase-referenced observations with the VLBA and EVN
Yang et al. Contribution of the compass satellite navigation system to global PNT users
CN101571581A (en) Rapid satellite selection method for global navigation satellite system
CN101221233A (en) Fake satellite positioning system and its measuring method based on Beidou satellite
CN101609140A (en) Compatible navigation receiver positioning system and positioning method thereof
CN101089650A (en) Error separation method based on foundation strength system and foundation strength system
Cai Precise point positioning using dual-frequency GPS and GLONASS measurements
CN101770033A (en) Fixing method of ambiguity network between CORS and system station
CN102353969A (en) Method for estimating phase deviation in precise single-point positioning technology
Yang Chinese geodetic coordinate system 2000
CN101419275A (en) Local airport monitoring method and system based on multi-receiver
CN101581774A (en) High-precision point positioning method and system for global navigation satellite system (GNSS)
CN102004258A (en) Time frequency transfer method and receiver based on multiple global navigation satellite system (GNSS) integration
CN101629997A (en) Detection device and detection method of navigation integrity of inertia subsatellite
CN101866010A (en) Star choosing method for satellite navigation system
CN101943749A (en) Method for positioning network RTK based on star-shaped virtual reference station
CN101964689A (en) Method for improving time accuracy of electric energy information acquisition system
CN1726406A (en) Method and system for real time navigation using satellite transmitted three-carrier radio signals and ionospheric corrections
CN102650692A (en) Method for detecting and repairing cycle slip by utilizing BeiDou three-frequency observed quantity
CN103675861A (en) Satellite autonomous orbit determination method based on satellite-borne GNSS multiple antennas
CN101206258A (en) High sensitivity auxiliary positioning system and data processing method thereof
CN103323888A (en) Method for eliminating delay errors of troposphere of GNSS atmospheric probing data

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C12 Rejection of a patent application after its publication