CN102736084B - 使用两个调制光源的用于对象检测系统的方法和设备 - Google Patents

使用两个调制光源的用于对象检测系统的方法和设备 Download PDF

Info

Publication number
CN102736084B
CN102736084B CN201210096959.0A CN201210096959A CN102736084B CN 102736084 B CN102736084 B CN 102736084B CN 201210096959 A CN201210096959 A CN 201210096959A CN 102736084 B CN102736084 B CN 102736084B
Authority
CN
China
Prior art keywords
light signal
modulated light
light source
pixel
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210096959.0A
Other languages
English (en)
Other versions
CN102736084A (zh
Inventor
S.曾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GM Global Technology Operations LLC
Original Assignee
GM Global Technology Operations LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GM Global Technology Operations LLC filed Critical GM Global Technology Operations LLC
Publication of CN102736084A publication Critical patent/CN102736084A/zh
Application granted granted Critical
Publication of CN102736084B publication Critical patent/CN102736084B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Abstract

本发明涉及用于车辆的对象检测跟踪系统,包括用于以第一传播模式传输第一光信号到目标区域中的第一调制光源和用于以第二传播模式传输第二光信号到目标区域中的第二调制光源。传感器测量在目标区域中的对象反射的光。控制器解调测量到的光以检测何时接收到第一或第二光信号。控制器确定相应的范围以产生用于第一光信号的第一组范围数据和用于第二光信号的第二组范围数据。控制器保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于车辆的位置。各对象的位置使用第一和第二组范围数据的三边测量来确定。

Description

使用两个调制光源的用于对象检测系统的方法和设备
技术领域
本发明的实施例总体涉及对象检测和跟踪。
背景技术
对象检测系统包括信号发射源和信号接收单元。信号发射源在车辆外部相应的方向上传输信号。信号典型地是传输信号的路径中的对象反射的脉冲波形。在与传输信号相同方向上聚焦的信号接收单元接收对象反射的至少部分传输信号。从信号被传输的时刻到信号在车辆被接收的时刻所经过的持续时间确定了车辆和对象之间的距离。
基于光的对象检测系统中的信号发射源典型地传输调制光信号。用于基于光的对象检测系统的信号接收单元典型地包括像素阵列,各像素具有视场以检测进光。阵列使用的像素数量越多,确定对象的范围和位置的精度越高。然而,由于像素的成本,可使用减少数量的像素。使用减少数量的像素可导致检测对象位置的模糊。例如,给定的具有60度视场光镜的16像素传感器,在100米距离的感测目标的横向模糊度是5.5米。减少像素的数量增加了对象位置的模糊度。需要的是当使用具有减少数量的像素的传感器时可提供检测对象的可靠位置的系统。
发明内容
实施例的优点在于在传感器中使用少于最优数量的像素来确定对象相对于车辆的范围和位置而在车辆的目标区域中检测和跟踪对象。三边测量技术用于使用从两个独立的调制光源获得的测量的距离计算车辆和对象之间的所得到的范围和方位的测量值。本文所述系统克服了方位测量精度的传统缺陷。
实施例构思了跟踪车辆外部的对象的方法。具有第一传播模式的第一光信号从第一调制光源传输到目标区域中,第一调制光源设置在车辆的第一区域。具有第二传播模式的第二光信号从第二调制光源传输到目标区域中。第二调制光源设置在车辆的第二区域。目标区域中的对象反射的光由传感器测量。传感器包括至少一个像素。当接收到第一或第二光信号时,测量到的光由控制器解调。控制器响应于与至少一个像素相关的从第一或第二光信号被传输的时刻直至相应的光信号被检测到的时刻的时间延迟而确定相应的范围以产生用于第一光信号的第一组范围数据和用于第二光信号的第二组范围数据。保持对象跟踪列表,其包括检测到的对象相对于车辆的位置。各对象的位置使用第一和第二组范围数据的三边测量来确定。
实施例构思了用于车辆的对象检测跟踪系统。第一调制光源设置在车辆的第一区域,用于以第一传播模式传输第一光信号到目标区域中。第二调制光源设置在车辆的第二区域,用于以第二传播模式传输第二光信号到目标区域中。包括至少一个像素的传感器设置在车辆上用于测量目标区域中的对象反射的光。控制器解调测量到的光以检测第一或第二光信号何时被接收。控制器响应于与至少一个像素相关的从第一或第二光信号被传输的时刻直至相应的光信号被检测到的时刻的时间延迟而确定相应的范围以产生用于第一光信号的第一组范围数据和用于第二光信号的第二组范围数据。控制器保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于车辆的位置。各对象的位置使用第一和第二组范围数据的三边测量来确定。
此外,本发明还涉及以下技术方案。
1. 一种用于车辆的对象检测跟踪系统,包括:
设置在所述车辆的第一区域的第一调制光源,用于以第一传播模式传输第一光信号到目标区域中;
设置在所述车辆的第二区域的第二调制光源,用于以第二传播模式传输第二光信号到所述目标区域中;
设置在所述车辆上的包括至少一个像素的传感器,用于测量所述目标区域中的对象反射的光;以及
控制器,所述控制器解调测量到的光以检测何时接收到所述第一或第二光信号,所述控制器响应于与所述至少一个像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,从而产生用于所述第一光信号的第一组范围数据和用于所述第二光信号的第二组范围数据;
其中,所述控制器保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于所述车辆的位置,并且其中,使用所述第一和第二组范围数据的三边测量来确定各对象的位置。
2. 根据技术方案1所述的对象检测跟踪系统,其特征在于,所述车辆的位置由所述车辆和所述对象之间的方位角和所得到的范围来识别,其中,所述方位角和所述所得到的范围使用三边测量计算。
3. 根据技术方案2所述的对象检测跟踪系统,其特征在于,所述控制器应用分时多工技术来处理在不同的时间片所接收的光信号。
4. 根据技术方案2所述的对象检测跟踪系统,其特征在于,所述对象跟踪列表保持所述车辆检测到的多个对象,并且其中,通过所述对象相对于所述车辆的位置而持续跟踪所述对象。
5. 根据技术方案2所述的对象检测跟踪系统,其特征在于,所述控制器确定的所述方位角由如下公式表示:
其中θ是所述方位角,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2从所述第二调制光源到所述对象的距离。
6. 根据技术方案2所述的对象检测跟踪系统,其特征在于,所述控制器确定的所述所得到的范围由如下公式表示:
其中R是从所述对象到所述传感器的所得到的范围,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
7. 根据技术方案2所述的对象检测跟踪系统,其特征在于,所述传感器包括光检测器。
8. 根据技术方案7所述的对象检测跟踪系统,其特征在于,所述光检测器包括单个像素。
9. 根据技术方案7所述的对象检测跟踪系统,其特征在于,所述光检测器包括像素阵列。
10. 根据技术方案7所述的对象检测跟踪系统,其特征在于,所述传感器包括多个像素,并且其中,所述控制器响应于与各像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,从而产生用于所述第一光信号的第一组像素-像素范围数据和用于所述第二光信号的第二组像素-像素范围数据。
11. 根据技术方案1所述的对象检测跟踪系统,其特征在于,所述第一和第二调制光源是LED。
12. 根据技术方案1所述的对象检测跟踪系统,其特征在于,所述第一和第二调制光源是激光二极管。
13. 一种用于跟踪车辆外部的对象的方法,所述方法包括以下步骤:
从第一调制光源传输具有第一传播模式的第一光信号到目标区域中,所述第一调制光源设置在所述车辆的第一区域;
从第二调制光源传输具有第二传播模式的第二光信号到所述目标区域中,所述第二调制光源设置在所述车辆的第二区域;
由传感器测量在目标区域中的对象反射的光,所述传感器包括至少一个像素,
当接收到所述第一或第二光信号时,由控制器解调测量到的光,其中,所述控制器响应于与所述至少一个像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,以便产生用于所述第一光信号的第一组范围数据和用于所述第二光信号的第二组范围数据;
保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于所述车辆的位置,并且其中,使用所述第一和第二组范围数据的三边测量来确定各对象的位置。
14. 根据技术方案13所述的方法,其特征在于,所述车辆的位置由所述车辆和所述对象之间的方位角和所得到的范围识别,其特征在于,所述方位角和所述所得到的范围使用三边测量来确定。
15. 根据技术方案14所述的方法,其特征在于,分时多工技术用于处理由所述传感器在不同的时间片接收的光信号。
16. 根据技术方案14所述的方法,其特征在于,所述传感器包括用于接收来自所述第一和第二调制光源的反射光信号的光检测器。
17. 根据技术方案16所述的方法,其特征在于,单个像素光检测器接收所述反射光信号。
18. 根据技术方案16所述的方法,其特征在于,像素阵列光检测器接收所述反射光信号。
19. 根据技术方案18所述的方法,其特征在于,响应于由所述像素阵列接收的反射光信号而产生用于所述第一光信号的第一组像素-像素范围数据和用于所述第二光信号的第二组像素-像素范围数据,其中,所述控制器响应于与各像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围。
20. 根据技术方案14所述的方法,其特征在于,所述方位角的确定由如下公式表示:
其中θ是所述方位角,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
21. 根据技术方案14所述的方法,其特征在于,通过三边测量技术计算所得到的范围由如下公式表示:
其中b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
22. 根据技术方案14所述的方法,其特征在于,在多个跟踪框架内跟踪所述对象,其中,在各框架内跟踪的对象由一组粒子表示,并且其中,各粒子由相应的范围和相应的方位角表示,并且其中,所述一组粒子的权重因子由如下公式表示:
其中b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离,θi是相应粒子所确定的方位角,Ri是相应粒子所确定的范围,σ是传感器误差常数。
23. 根据技术方案22所述的方法,其特征在于,基于一组粒子的权重方位由如下公式表示:
其中wi是相应粒子的权重因子,θi是相应粒子的方位角。
24. 根据技术方案22所述的方法,其特征在于,基于一组粒子的权重范围由如下公式表示:
wi是相应粒子的权重因子,Ri是相应粒子的所得到的范围。
25. 根据技术方案13所述的方法,其特征在于,应用数据相关匹配技术将来自所述第一调制光源的所述第一组范围数据和来自所述第二调制光源的所述第二组范围数据匹配到相同的对象,所述数据相关匹配技术包括以下步骤:
确定从所述第一调制光源到所述对象的所述第一组范围数据和从所述第二调制光源到所述对象的所述第二组范围数据彼此是否在预先确定的阈值之内;以及
响应于所述第一和第二组范围数据在所述预先确定的阈值之内而将所述对象和所述第一和第二组范围数据相关联。
附图说明
图1说明了根据实施例的配备有对象检测系统的车辆。
图2是根据实施例的对象检测系统的框图。
图3是根据实施例的在车辆传输器和检测的对象之间的三边测量构造的几何布局。
图4说明了根据实施例的用于距离相关匹配的传播信号。
图5是用于检测和跟踪对象的方法的流程图。
具体实施方式
图1和图2显示了用于在行驶车辆10的行驶路径中检测和跟踪对象的对象检测跟踪系统。图1说明了行驶车辆10检测和跟踪行驶车辆前方的对象12。应当理解,跟踪系统不限于车辆10前方的对象,而是可包括在车辆10任何周围方向上检测对象。
参考图1和图2,对象检测跟踪系统包括第一调制光源14、第二调制光源16、控制器18和传感器20。
第一调制光源14设置在车辆10的第一区域,例如车辆的前左保险杠,用于传输第一光信号到目标区域中。第一调制光源14包括用于调制第一光信号的电路。第一调制光源可包括,但不限于,用于产生光信号的激光二极管或发光二极管(LED)。可提供用于扩散光信号的光学透镜22。扩散的光信号以第一传播模式传输到目标区域以检测在目标区域中的对象。
第二调制光源16设置在车辆10的第二区域,例如车辆的前右保险杠,用于传输第二光信号到目标区域中。第二调制光源16包括用于调制第二光信号的电路。第二调制光源16与第一调制光源14是独立的。本文所述的术语独立定义为在分开的模块或封装单元中。相应的调制光源优选地在车辆的相对侧隔离开以扩宽相应光源产生的联合视场。第二调制光源16可包括,但不限于,用于产生光信号的激光二极管或LED。可提供用于扩散第二光信号的光学透镜24。扩散的光信号以第二传播模式传输到目标区域以检测在目标区域中的对象。
传感器20设置在车辆上以测量目标区域中的对象反射的光。传感器包括用于接收第一和第二光信号的至少一个像素(pixel)。像素可包括光检测器。可提供用于将接收的光信号重聚焦在传感器20上的光学透镜26。基于第一光信号测量从第一调制光源到对象的距离。基于第二光信号测量从第二调制光源到对象的距离。如果使用多个像素,由于增加了各像素的分辨率,使得测量的精度提高。例如,如果需要40度视场并且在传感器中使用单个像素,那么传感器的精确度可为40度。如果使用多个像素(例如,10个像素)感测相同的40度视场,像素的数量增加了分辨率。结果,各像素可感测4度,提供了4度的精度。在使用多个像素中,第一或第二光信号被传输直至相应的光信号被检测用于产生第一光信号的第一组像素-像素范围数据和第二光信号的第二组像素-像素范围数据。各像素接收的光信号被联合使用以确定从车辆到对象的距离和对象相对于车辆的位置。
提供测量数据给控制器18用于确定对象相对于车辆的范围和位置。应用时分多工技术,例如时分多址接入(TDMA)技术,使得在相应通道上可传递多于一个信号。时分多工技术是允许多于一个信号共享相同通信通道的通道接入方法。信号被分配到相同通道中的不同的时间片,其允许信号被高速连续地传输和接收以便处理。控制器18使用三边测量技术确定对象相对于车辆的位置。
图3说明了使用在第一和第二调制光源和对象之间的测量的距离的三边测量技术。第一调制光源、第二调制光源和对象形成了假想三角形的点。三边测量技术使用各点之间的距离来确定车辆和对象之间的所得到范围R和对象相对于车辆的位置。假想三角形的各种长度(即,相应点之间的距离)可由D1、D2和b表示。根据从第一调制光源14到对象12的测量的光信号确定距离D1。根据从第二调制光源16到对象12的测量的光信号确定距离D2。距离b是第一和第二调制光源之间的固定距离,不随对象12相对于车辆10的位置而变化。三边测量技术使用距离D1、D2和b确定假想三角形内的中心点P。表示得到的范围R的线段当其从对象12延伸至车辆10时与中心点P相交。所得到的范围R可根据以下公式来确定:
其中R是从对象到传感器的所得到的范围,b是第一和第二调制光源之间的预先确定的距离,D1是从第一调制光源到对象的测量的距离,D2是从第二调制光源到对象的测量的距离。
三边测量技术用于确定方位测量值,方位测量值是在代表所得到的范围R的段和正交投影到车辆(例如,车辆的仪表板)的段之间的角度测量值θ。方位角可根据以下公式计算:
其中θ是方位角,b是第一和第二调制光源之间的预先确定的距离,D1是从第一调制光源到对象的测量的距离,D2是从第二调制光源到对象的测量的距离。
给定所得到的范围的距离和计算的方位角,对象相对于车辆的位置被确定。控制器18或类似的模块保持检测对象相对于车辆的对象跟踪列表。当对象在目标范围内被检测到时,列表就以车辆位置更新。不再被对象检测跟踪系统检测的对象从列表中去除,而被系统新检测的对象加入到对象跟踪列表中。
图4说明了当在目标区域检测到多个对象时使用的距离相关匹配技术。由32表示的区域是第一调制光源14产生的第一光信号传播模式。由34表示的区域是第二调制光源16产生的第二光信号传播模式。元件36和38代表在传播模式中的检测对象。如果在目标区域中多于一个对象被检测,或者更具体地,如果使用更低分辨率的传感器,例如单个像素,可能存在将来自两个调制光源的测量数据关联起来的问题。为确定来自各相应光源的相应测量数据是否与彼此相关,来自第一和第二调制光信号的各对测量数据与差值阈值比较。也就是说,第一调制光信号的测量数据与第二调制光信号的测量数据比较以确定测量值对是否彼此接近。例如,如图4中显示的,测量值a和c是来自第一调制光源,测量值d和f是来自第二调制光源。因为在各对中的测量数据是在彼此预先确定的阈值中,可以使用距离匹配技术使测量值a和d配对以及测量值d和f配对。
图5说明了用于跟踪由对象检测跟踪系统检测到的对象的方法。在步骤40中,对象检测跟踪技术被初始化。在步骤41中,使用第一调制光源和第二调制光源电子扫描车辆外部的目标区域。
在步骤42中,测量来自第一和第二调制光源的范围。如果需要,可以应用数据相关匹配。
在步骤43中,对在目标区域中检测到的各对象使用三边测量技术来确定所得到的范围和方位角。三边测量技术基于第一和第二光信号的测量数据以及第一和第二调制光源之间的预先确定的距离。
在步骤44中,基于确定的所得到的范围和方位测量值来确定各对象的位置。
在步骤45中,对象跟踪列表被更新。更新对象跟踪列表可包括加入新的对象到列表,修正对象的现有位置和从列表中删除淘汰的对象。
在步骤46中,实施粒子过滤算法,给出两个新的测量值(由左和右测量值匹配)。假设各轨迹由粒子列表建模,各粒子xi代表目标位置和速度的可能配置。各粒子xi带有权重wi,权重wi表示该配置的可能性,因此,
使用图3中说明的坐标系统。令D1和D2分别表示左和右测量值。假设粒子xi由其范围和方位角表示为:。下面的测量等式用于更新第i粒子的权重:
其中σ是传感器误差常数。
然后将得到的权重归一化如下:
范围和方位的更新轨迹可以使用如下公式计算:
在步骤47中,对象跟踪列表由车辆应用使用或提供给车辆的驾驶员。例如,对象跟踪列表中的对象的位置和范围可提供给其他车辆应用用于执行其相应的算法(例如,前方碰撞警告系统)。或者,对象列表由车辆应用使用或通过HMI设备提供给车辆的驾驶员用于警告驾驶员在车辆目标区域内的各种对象。
虽然已经详细描述了本发明的一些实施例,但本发明所属领域的技术人员将意识到用于实施本发明的各种替代性设计和实施例,而本发明由所附权利要求限定。

Claims (25)

1.一种用于车辆的对象检测跟踪系统,包括:
设置在所述车辆的第一区域的第一调制光源,用于以第一传播模式传输第一光信号到目标区域中;
设置在所述车辆的第二区域的第二调制光源,用于以第二传播模式传输第二光信号到所述目标区域中;
设置在所述车辆上的包括至少一个像素的传感器,用于测量所述目标区域中的对象反射的光;以及
控制器,所述控制器解调测量到的光以检测何时接收到所述第一或第二光信号,所述控制器响应于与所述至少一个像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,从而产生用于所述第一光信号的第一组范围数据和用于所述第二光信号的第二组范围数据;
其中,所述控制器保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于所述车辆的位置,并且其中,使用所述第一和第二组范围数据的三边测量来确定各对象的位置。
2.根据权利要求1所述的对象检测跟踪系统,其特征在于,所述车辆的位置由所述车辆和所述对象之间的方位角和所得到的范围来识别,其中,所述方位角和所述所得到的范围使用三边测量计算。
3.根据权利要求2所述的对象检测跟踪系统,其特征在于,所述控制器应用分时多工技术来处理在不同的时间片所接收的光信号。
4.根据权利要求2所述的对象检测跟踪系统,其特征在于,所述对象跟踪列表保持所述车辆检测到的多个对象,并且其中,通过所述对象相对于所述车辆的位置而持续跟踪所述对象。
5.根据权利要求2所述的对象检测跟踪系统,其特征在于,所述控制器确定的所述方位角由如下公式表示:
其中θ是所述方位角,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2从所述第二调制光源到所述对象的距离。
6.根据权利要求2所述的对象检测跟踪系统,其特征在于,所述控制器确定的所述所得到的范围由如下公式表示:
其中R是从所述对象到所述传感器的所得到的范围,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
7.根据权利要求2所述的对象检测跟踪系统,其特征在于,所述传感器包括光检测器。
8.根据权利要求7所述的对象检测跟踪系统,其特征在于,所述光检测器包括单个像素。
9.根据权利要求7所述的对象检测跟踪系统,其特征在于,所述光检测器包括像素阵列。
10.根据权利要求7所述的对象检测跟踪系统,其特征在于,所述传感器包括多个像素,并且其中,所述控制器响应于与各像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,从而产生用于所述第一光信号的第一组像素-像素范围数据和用于所述第二光信号的第二组像素-像素范围数据。
11.根据权利要求1所述的对象检测跟踪系统,其特征在于,所述第一和第二调制光源是LED。
12.根据权利要求1所述的对象检测跟踪系统,其特征在于,所述第一和第二调制光源是激光二极管。
13.一种用于跟踪车辆外部的对象的方法,所述方法包括以下步骤:
从第一调制光源传输具有第一传播模式的第一光信号到目标区域中,所述第一调制光源设置在所述车辆的第一区域;
从第二调制光源传输具有第二传播模式的第二光信号到所述目标区域中,所述第二调制光源设置在所述车辆的第二区域;
由传感器测量在目标区域中的对象反射的光,所述传感器包括至少一个像素,
当接收到所述第一或第二光信号时,由控制器解调测量到的光,其中,所述控制器响应于与所述至少一个像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围,以便产生用于所述第一光信号的第一组范围数据和用于所述第二光信号的第二组范围数据;
保持对象跟踪列表,所述对象跟踪列表包括检测到的对象相对于所述车辆的位置,并且其中,使用所述第一和第二组范围数据的三边测量来确定各对象的位置。
14.根据权利要求13所述的方法,其特征在于,所述车辆的位置由所述车辆和所述对象之间的方位角和所得到的范围识别,其特征在于,所述方位角和所述所得到的范围使用三边测量来确定。
15.根据权利要求14所述的方法,其特征在于,分时多工技术用于处理由所述传感器在不同的时间片接收的光信号。
16.根据权利要求14所述的方法,其特征在于,所述传感器包括用于接收来自所述第一和第二调制光源的反射光信号的光检测器。
17.根据权利要求16所述的方法,其特征在于,单个像素光检测器接收所述反射光信号。
18.根据权利要求16所述的方法,其特征在于,像素阵列光检测器接收所述反射光信号。
19.根据权利要求18所述的方法,其特征在于,响应于由所述像素阵列接收的反射光信号而产生用于所述第一光信号的第一组像素-像素范围数据和用于所述第二光信号的第二组像素-像素范围数据,其中,所述控制器响应于与各像素相关的从所述第一或第二光信号被传输的时刻直至所述相应的光信号被检测到的时刻的时间延迟而确定相应的范围。
20.根据权利要求14所述的方法,其特征在于,所述方位角的确定由如下公式表示:
其中θ是所述方位角,b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
21.根据权利要求14所述的方法,其特征在于,通过三边测量技术计算所得到的范围由如下公式表示:
其中b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离。
22.根据权利要求14所述的方法,其特征在于,在多个跟踪框架内跟踪所述对象,其中,在各框架内跟踪的对象由一组粒子表示,并且其中,各粒子由相应的范围和相应的方位角表示,并且其中,所述一组粒子的权重因子由如下公式表示:
其中b是所述第一和第二调制光源之间的预先确定的距离,D1是从所述第一调制光源到所述对象的距离,D2是从所述第二调制光源到所述对象的距离,θi是相应粒子所确定的方位角,Ri是相应粒子所确定的范围,σ是传感器误差常数。
23.根据权利要求22所述的方法,其特征在于,基于一组粒子的权重方位由如下公式表示:
其中wi是相应粒子的权重因子,θi是相应粒子的方位角。
24.根据权利要求22所述的方法,其特征在于,基于一组粒子的权重范围由如下公式表示:
wi是相应粒子的权重因子,Ri是相应粒子的所得到的范围。
25.根据权利要求13所述的方法,其特征在于,应用数据相关匹配技术将来自所述第一调制光源的所述第一组范围数据和来自所述第二调制光源的所述第二组范围数据匹配到相同的对象,所述数据相关匹配技术包括以下步骤:
确定从所述第一调制光源到所述对象的所述第一组范围数据和从所述第二调制光源到所述对象的所述第二组范围数据彼此是否在预先确定的阈值之内;以及
响应于所述第一和第二组范围数据在所述预先确定的阈值之内而将所述对象和所述第一和第二组范围数据相关联。
CN201210096959.0A 2011-04-06 2012-04-05 使用两个调制光源的用于对象检测系统的方法和设备 Active CN102736084B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/080,722 2011-04-06
US13/080,722 US8599363B2 (en) 2011-04-06 2011-04-06 Method and apparatus for an object detection system using two modulated light sources
US13/080722 2011-04-06

Publications (2)

Publication Number Publication Date
CN102736084A CN102736084A (zh) 2012-10-17
CN102736084B true CN102736084B (zh) 2015-02-25

Family

ID=46875341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210096959.0A Active CN102736084B (zh) 2011-04-06 2012-04-05 使用两个调制光源的用于对象检测系统的方法和设备

Country Status (3)

Country Link
US (1) US8599363B2 (zh)
CN (1) CN102736084B (zh)
DE (1) DE102012205448B4 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9123251B2 (en) * 2013-08-20 2015-09-01 Ford Global Technologies, Llc. Image system for automotive safety applications
US10203399B2 (en) 2013-11-12 2019-02-12 Big Sky Financial Corporation Methods and apparatus for array based LiDAR systems with reduced interference
US9360554B2 (en) 2014-04-11 2016-06-07 Facet Technology Corp. Methods and apparatus for object detection and identification in a multiple detector lidar array
DE102014115310A1 (de) * 2014-10-21 2016-04-21 Infineon Technologies Ag Bilderzeugungsvorrichtungen und ein Laufzeit-Bilderzeugungsverfahren
US10036801B2 (en) 2015-03-05 2018-07-31 Big Sky Financial Corporation Methods and apparatus for increased precision and improved range in a multiple detector LiDAR array
US9791554B2 (en) * 2015-03-17 2017-10-17 Raytheon Company Multiple-beam triangulation-based range finder and method
TWI557393B (zh) * 2015-10-08 2016-11-11 微星科技股份有限公司 雷射測距校正方法與應用此方法的裝置
JP7073262B2 (ja) * 2016-01-31 2022-05-23 ベロダイン ライダー ユーエスエー,インコーポレイテッド 遠視野において重なり合う照射を有するlidarに基づく三次元撮像
US9866816B2 (en) * 2016-03-03 2018-01-09 4D Intellectual Properties, Llc Methods and apparatus for an active pulsed 4D camera for image acquisition and analysis
EP3217191B1 (en) * 2016-03-08 2021-05-12 Continental Automotive GmbH Distance measuring apparatus and method for measuring a distance
FR3069105B1 (fr) * 2017-07-17 2022-08-12 Valeo Vision Detection d'objets pour vehicule automobile
CN111619374B (zh) * 2020-05-31 2022-04-01 华中科技大学 一种电动汽车无线充电装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104232A (zh) * 1987-06-12 1988-12-28 霍尔奥戴思有限公司 高分辨率成像多普勒干涉仪
CN1981209A (zh) * 2004-06-25 2007-06-13 英斯特罗精密有限公司 交通安全系统
CN101363729A (zh) * 2007-08-06 2009-02-11 日产自动车株式会社 距离计测方法和装置、以及配备距离计测装置的车辆
CN101419069A (zh) * 2008-12-09 2009-04-29 华东理工大学 基于可见光通信的车距测量方法
FI20096076A0 (fi) * 2009-10-20 2009-10-20 Valtion Teknillinen Menetelmä ja järjestelmä kohteen paikallistamiseksi

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888490A (en) 1988-05-24 1989-12-19 University Of Southern California Optical proximity apparatus and method using light sources being modulated at different frequencies
DE4137068A1 (de) 1991-11-12 1993-06-17 Mel Mikroelektronik Gmbh Integrierter optischer vielfach abstandssensor
US5374985A (en) 1992-01-02 1994-12-20 Ocutech, Inc. Method and apparatus for measuring range by use of multiple range baselines
DE10163534A1 (de) 2001-12-21 2003-07-10 Siemens Ag Vorrichtung zur Überwachung von Raumbereichen
EP1528411B1 (en) 2003-10-27 2010-01-27 Bea S.A. Distance measurement sensor
DE102004026638B4 (de) * 2004-04-08 2007-03-29 Daimlerchrysler Ag Verfahren zum Steuern von Insassenrückhaltemitteln in einem Fahrzeug
US7161664B2 (en) 2004-04-13 2007-01-09 Electronic Scripting Products, Inc. Apparatus and method for optical determination of intermediate distances
US8355117B2 (en) 2005-12-21 2013-01-15 Ecole Polytechnique Federale De Lausanne Method and arrangement for measuring the distance to an object
DE102006004019B3 (de) * 2006-01-27 2007-03-08 Audi Ag PMD-System und Verfahren zur Abstandsmessung von einem Objekt
US7570349B2 (en) * 2007-05-15 2009-08-04 The Boeing Company Cars/absorption dual mode electro-optic sensor
US7920247B2 (en) 2007-11-30 2011-04-05 Nissan Motor Co., Ltd. Distance measurement system and distance measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87104232A (zh) * 1987-06-12 1988-12-28 霍尔奥戴思有限公司 高分辨率成像多普勒干涉仪
CN1981209A (zh) * 2004-06-25 2007-06-13 英斯特罗精密有限公司 交通安全系统
CN101363729A (zh) * 2007-08-06 2009-02-11 日产自动车株式会社 距离计测方法和装置、以及配备距离计测装置的车辆
CN101419069A (zh) * 2008-12-09 2009-04-29 华东理工大学 基于可见光通信的车距测量方法
FI20096076A0 (fi) * 2009-10-20 2009-10-20 Valtion Teknillinen Menetelmä ja järjestelmä kohteen paikallistamiseksi

Also Published As

Publication number Publication date
CN102736084A (zh) 2012-10-17
US20120256764A1 (en) 2012-10-11
DE102012205448A1 (de) 2012-10-11
DE102012205448B4 (de) 2017-06-14
US8599363B2 (en) 2013-12-03

Similar Documents

Publication Publication Date Title
CN102736084B (zh) 使用两个调制光源的用于对象检测系统的方法和设备
US10983523B2 (en) Autonomous driving support apparatus and method
US20210156698A1 (en) Information processing device, measurement device and control method
US9610961B2 (en) Method and device for measuring speed in a vehicle independently of the wheels
CN104678403A (zh) 激光雷达传感器系统
US20090254260A1 (en) Full speed range adaptive cruise control system
CN101498889B (zh) 一种多目立体摄像方法及装置
US20140297063A1 (en) Vehicle specifying apparatus
CN103499337B (zh) 一种基于立式标靶的车载单目摄像头测距测高装置
KR20170100777A (ko) 차량 및 차량의 제어방법
KR101915363B1 (ko) Gps 음영 지역에서 차량을 측위하는 장치 및 그 방법
CN104808216A (zh) 一种基于激光雷达测距的车辆防碰撞预警系统
CN105810012A (zh) 一种基于车载终端的车辆碰撞预警的方法及装置
KR20140112171A (ko) 위치기반 실시간 차량정보 표시시스템
US11292481B2 (en) Method and apparatus for multi vehicle sensor suite diagnosis
CN103514746A (zh) 基于dsrc的车速测量方法、装置及dsrc应用系统
CN104890655A (zh) 利用传感器的先行车辆识别系统及其方法
CN110290997A (zh) 车辆控制装置
US11417204B2 (en) Vehicle identification method and system
KR101692009B1 (ko) 검출정확도를 높인 차량데이터 검출 시스템
KR101641890B1 (ko) 정확도 및 신뢰도를 높인 다차선 이동식 속도검지기
US6947841B2 (en) Method for identifying obstacles for a motor vehicle, using at least three distance sensors for identifying the lateral extension of an object
JP2007212418A (ja) 車載レーダ装置
KR102058179B1 (ko) 레이저신호를 이용한 무인 교통단속 시스템
KR102385907B1 (ko) 자율주행 차량 항법 장치 및 항법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant