CN102736063A - Near-field sound source positioning method - Google Patents

Near-field sound source positioning method Download PDF

Info

Publication number
CN102736063A
CN102736063A CN2012102319883A CN201210231988A CN102736063A CN 102736063 A CN102736063 A CN 102736063A CN 2012102319883 A CN2012102319883 A CN 2012102319883A CN 201210231988 A CN201210231988 A CN 201210231988A CN 102736063 A CN102736063 A CN 102736063A
Authority
CN
China
Prior art keywords
mrow
msub
mover
msup
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN2012102319883A
Other languages
Chinese (zh)
Inventor
刘兆霆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN2012102319883A priority Critical patent/CN102736063A/en
Publication of CN102736063A publication Critical patent/CN102736063A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

The invention relates to the technical field of array signal processing and discloses a near-field sound source positioning method for estimating a direction of arrival (DOA) of a near-field sound source signal and signal source distance by adopting a speed sensor array. The method has the advantages that a high-order accumulated value is not required to be calculated, so that relatively low operation amount is achieved; automatic paring in parameter estimation can be realized; a distance between two array elements does not need to be limited in the 1/4 wavelength range; the aperture of the array can be expanded by increasing the distance between two array elements; and therefore, the parameter estimation precision of an algorithm can be improved.

Description

Near-field sound source positioning method
Technical Field
The invention relates to the technical field of array signal processing, in particular to a near-field sound source positioning method for estimating DOA (direction of arrival) and signal source distance of a near-field sound source signal by using a speed sensor array.
Background
The underwater acoustic vector sensor is composed of 2-3 speed sensors and an optional pressure sensor. The speed sensor is orthogonally oriented and can respectively measure the vibration velocity components of sound waves in a Cartesian coordinate system. In the past decades, acoustic vector sensors have been widely regarded in both theoretical and engineering applications, and vector arrays formed by acoustic vector sensors have become important tools for underwater sound source localization, and many effective algorithms have been proposed. However, these algorithms are mainly directed to far-field signals, and when the signal source is located near the array in its near field, the near-field source needs to describe the wavefront with spherical waves (rather than parallel waves) and describe the phase difference between the array elements with Fresnel (Fresnel) approximation, which makes many far-field source localization algorithms no longer applicable.
The method aims at the near-field source positioning problem, namely the joint estimation problem of the near-field source distance and the incidence angle. The incident angle is also referred to as the angle of arrival (DOA). Scholars at home and abroad also provide a plurality of algorithms, such as a maximum likelihood algorithm, a multi-dimensional MUSIC algorithm, a high-order ESPRIT algorithm and the like, and the algorithms require multi-dimensional parameter search or high-order statistic calculation and have higher operation amount. For this purpose, some near-field source parameter estimation algorithms based on second-order statistics are proposed. However, these near-field source localization algorithms require that the array element spacing must be less than a quarter wavelength, which would otherwise lead to ambiguity in the estimates. It should be noted that for large aperture arrays, the signal source is often in the near field, so it is more practical to study the near field signal source localization of the aperture extended array.
Disclosure of Invention
Aiming at the defects that the existing near-field sound source positioning method requires multi-dimensional parameter search or high-order statistic calculation and requires array element interval delta to be smaller than 1/4 wavelengths, the invention provides a method which does not need multi-dimensional parameter search or high-order statistic calculation, only relates to second-order statistic, realizes automatic pairing of parameter estimation, does not need array element interval delta to be limited in the range of 1/4 wavelengths, and can improve parameter estimation precision by increasing array element interval delta to amplify array apertures.
In order to achieve the purpose, the invention can adopt the following technical scheme:
the near-field sound source positioning method is used for estimating DOA and signal source distance of a near-field sound source signal and comprises the following steps:
step A: a uniform linear array is set up and,
the uniform linear array is composed of array elements which are linearly arranged, have an interval of delta and are 2M in number, each array element comprises a pair of speed sensors which respectively point to a y axis and a z axis, the y axis is an axis where the linear array is located, the z axis is perpendicular to the y axis, the near-field sound source is located on a y-z axis plane, and the speed sensors can be used for receiving a near-field sound source signal and outputting azimuth information of the near-field sound source signal;
and B: establishing a signal model, which comprises the following specific steps:
measuring azimuth information through a speed sensor:
cm,k=[sinθm,k,cosθm,k]T (1),
wherein-pi/2<θm,kPi/2 or less represents DOA of the kth near-field source signal relative to the mth array element, the 0 th array element is set as a reference array element, and c is setk=c0,kAnd thetak0,k
② demodulating to intermediate frequency and sampling, the kth near-field sound source signal is
Figure BDA00001857453900021
Wherein s isk(t) represents the complex amplitude of the signal, ωk=2πfk/fsamp,fsampTo sample frequency, fk≠fl(k ≠ l) is the carrier frequency of the signal;
third, the received signal at the m-th array element can be expressed as a 2-dimensional vector:
<math> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>t</mi> </mrow> </msup> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein n ism(t) denotes a Gaussian noise vector, τm,k≈γkm+φkm2Between element m and reference element 0 for the ith sourcePropagation delay of gammak=-2πΔsinθkk,φk=πΔ2cos2θkklk,λkAnd lkThe wavelength of the kth signal and the distance from the kth signal to the reference array element respectively;
converting the form of the matrix of the formula (2) into:
z(t)=As(t)+w(t) (3),
wherein,
<math> <mrow> <mi>z</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>x</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo></mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>&Element;</mo> <msup> <mi>C</mi> <mrow> <mn>4</mn> <mi>M</mi> <mo>&times;</mo> <mn>1</mn> </mrow> </msup> </mrow> </math>
<math> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> <mi>t</mi> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>s</mi> <mi>K</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>K</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </math>
w ( t ) = [ n - ( M - 1 ) T ( t ) , . . . , n 0 T ( t ) , n 1 T ( t ) , . . . , n M T ( t ) ] T , E{w(t1)wH(t2)}=δ(t1-t2)I4M×4M
A=[a1,...,aK]∈C4M×K
a k = [ b - ( M - 1 ) , k T , . . . , b 0 , k T , b 1 , k T , . . . , b M , k T ] T , <math> <mrow> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
define lm,kRepresents the distance between the kth near-field source signal and the mth array element and hask=l0,kObtaining:
<math> <mrow> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>,</mo> </mrow> </math> m=-(M-1),...,-1,0,1,...,M(5);
and C: calculating a non-fuzzy estimation of DOA and signal source distance, comprising the following steps:
firstly, acquiring N snapshot vectors z (t), t =1, and N of an array, and estimating a covariance matrix <math> <mrow> <mover> <mi>R</mi> <mo>^</mo> </mover> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>t</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </msubsup> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>z</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>/</mo> <mi>N</mi> <mo>,</mo> </mrow> </math> Wherein, <math> <mrow> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>z</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> obtained by eigenvalue decompositionWherein psik(K =1, …, K) is
Figure BDA000018574539000310
K large feature values of (1), their corresponding feature vectors are UsA column vector of (a);
secondly, according to the subspace algorithm, a nonsingular matrix T exists and satisfies B = UsT, whereby A = Us,1T and a Φ = Us,2T, namely:
Figure BDA000018574539000311
wherein U iss,1=Us(1∶4M,K),Us,1=Us(1+4M∶8M,K),
Figure BDA000018574539000312
Represents the left pseudo-inverse;
(iii) frequency estimation of the signal obtained by equation (6) above
Figure BDA00001857453900041
Sum wavelength estimation <math> <mrow> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mn>2</mn> <mi>&pi;c</mi> <mo>/</mo> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>,</mo> </mrow> </math> And
Figure BDA00001857453900043
Figure BDA00001857453900044
and
Figure BDA00001857453900045
(ii) an estimate of (d);
obtaining the estimation of the steering matrix according to the step three:
<math> <mrow> <mover> <mi>A</mi> <mo>^</mo> </mover> <mo>=</mo> <mo>[</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>K</mi> </msub> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <msup> <mover> <mi>&Phi;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
fifthly, obtaining DOA non-fuzzy estimation of near-field sound source signals according to the relation of the combination formula (4) and the combination formula (1)
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein,
Figure BDA00001857453900048
(m=-(M-1),...,-1,0,1,...,M;k=1,...,K);
combination ofAnd equation (5) obtaining a blur-free estimate of the signal source distance of the near-field acoustic source signal
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </math> (k=1,...,K)(9);
Step D: calculating fuzzy estimation of DOA and signal source distance, which comprises the following steps:
firstly, firstlyCalculating qm,kIs estimated by
<math> <mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi>m</mi> <mo>&NotEqual;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein
Figure BDA000018574539000412
The result of the formula (8) is used to obtain the estimation of the formula (1), and the electron angle alpha is calculatedkAnd betak
② calculating by using symmetric relation of array structure
Figure BDA000018574539000413
And
Figure BDA000018574539000414
due to estimation of
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>[</mo> <mn>2</mn> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>]</mo> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mrow> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </msup> </math>
And is <math> <mrow> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <mi>c</mi> <msup> <mi>os</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> Thus can obtain
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>4</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <mi>co</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>M</mi> <mo>-</mo> <mn>4</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Thirdly, obtaining fuzzy estimation of DOA according to the calculation result
And fuzzy estimation of signal source distance
Figure BDA00001857453900053
Wherein
Figure BDA00001857453900054
And
Figure BDA00001857453900055
represent unambiguous estimates of DOA and distance obtained using equations (8) and (9), respectively;
and (3) obtaining a deblurring estimation of the DOA and the signal source distance by taking the unambiguous estimation of the DOA and the signal source distance as a reference estimation:
making <math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> l ^ k = l ^ k ( i 0 ) ;
② obtaining the deblurring estimate of DOA
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>&pi;&Delta;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mrow> <mn>2</mn> <mi>&Delta;</mi> </mrow> </mfrac> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi> </mi> <mi>min</mi> </mrow> <mi>n</mi> </munder> <mo>|</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
And deblurring estimation of signal source distance
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> </mrow> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msub> <mi>i</mi> <mn>0</mn> </msub> <mi>&pi;</mi> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> i 0 = arg min i | l ^ k ( i ) - l ^ k ref | - - - ( 18 ) ,
Preferably, the array element interval Δ is 1/4 greater than the wavelength λ of the near-field sound source.
Preferably, the method further comprises increasing the accuracy of the deblurred estimates of the DOA and the near-field source distance by increasing the array element spacing Δ.
The patent application of the invention is derived from the research result of fund projects of the education hall in Zhejiang province.
Due to the adoption of the technical scheme, the invention has the remarkable technical effects that:
the method only utilizes the second-order statistic, can avoid a large amount of calculation required when calculating the high-order statistic, and can also reduce the possibility of errors in the calculation process by reducing the calculation amount; meanwhile, the array element interval delta of the adopted array is not required to be limited within the range of 1/4 wavelengths, the configuration mode of the array elements is expanded, the array element interval delta can be randomly configured as required, and the 1/4 wavelength is not limited to the setting of the array interval delta any more; furthermore, the array aperture can be expanded by increasing the array element interval delta of the array, so that the estimation precision of the obtained parameters is improved; finally, the method of the invention can realize automatic pairing of the finally output parameter estimation.
Drawings
FIG. 1 is a schematic of the present invention employing a uniform linear array;
FIG. 2 is a schematic diagram of the process steps of the present invention;
FIG. 3 shows a near-field sound source k1A plot of root mean square error versus signal ratio for the DOA estimate of (a);
FIG. 4 shows a near-field sound source k2A plot of root mean square error versus signal ratio for the DOA estimate of (a);
FIG. 5 shows a near-field sound source k1A plot of root mean square error versus signal ratio for the signal source range estimate of (1);
FIG. 6 shows a near-field sound source k2Is plotted against the signal ratio of the root mean square error of the signal source distance estimate.
Detailed Description
The present invention will be described in further detail with reference to examples.
Example 1
The use of a uniform linear array of pairs of velocity sensors can improve the estimation performance of parameters through aperture expansion; furthermore, multi-dimensional parameter search or calculation of high order statistics is not required, and automatic pairing of parameter estimation can be achieved.
The near-field sound source positioning method, as shown in fig. 1, adopts the following steps:
the method comprises the following steps: setting a uniform linear array
A uniform linear array of 2M array elements is provided (K < 2M). The array elements are spaced apart by Δ, and each array element is an array of a pair of velocity sensors, pointing in the y-axis and z-axis respectively.
Step two: establishing a signal model
Considering K near-field, narrow-band, incoherent acoustic source signals incident on the uniform linear array, -pi/2<θm,kπ/2 denotes the kth near field sourceDOA of the signal relative to the m-th array element; lm,kThe distance between the kth near-field source signal and the mth array element is shown, and the measurable azimuth information of the two speed sensors in the mth array element is
cm,k=[sinθm,k,cosθm,k]T (1),
Wherein-pi/2<θm,kAnd the value of ≦ pi/2 represents the DOA of the kth near-field source signal relative to the mth array element. Using the 0 th array element as the reference array element, and order ck=c0,kAnd thetak=θ0,k. After demodulation to intermediate frequency and sampling, the kth near-field narrow-band sound source signal is
Figure BDA00001857453900071
Wherein s isk(t) represents the complex amplitude of the signal, ωk=2πfk/fsamp,fsampTo sample frequency, fk≠fl(k ≠ l) is the carrier frequency of the signal. Thus, the received signal at the m-th element can be represented as a 2-dimensional vector:
<math> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>t</mi> </mrow> </msup> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
in the formula nm(t) denotes a Gaussian noise vector, τm,k≈γkm+φkm2For propagation delay between the ith source m and the reference element 0, where gammak=-2πΔsinθkk,φk=πΔ2cos2θkklk,λkAnd lkRespectively the wavelength of the kth signal and its distance to the reference array element. Equation (2) is written in matrix form:
z(t)=As(t)+w(t) (3),
wherein
<math> <mrow> <mi>z</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>x</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msubsup> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo></mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>&Element;</mo> <msup> <mi>C</mi> <mrow> <mn>4</mn> <mi>M</mi> <mo>&times;</mo> <mn>1</mn> </mrow> </msup> </mrow> </math>
<math> <mrow> <mi>s</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> <mi>t</mi> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>s</mi> <mi>K</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>K</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> </mrow> </math>
E{w(t1)wH(t2)}=δ(t1-t2)I4M×4M
A=[a1,...,aK]∈C4M×K
<math> <mrow> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>b</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Definition of lm,kRepresents the distance between the kth near-field source signal and the mth array element and hask=l0,k. As shown in fig. 1, a plane triangle is formed between the kth target, the mth array element and the reference array element, so that by using the sine theorem, we can obtain:
<math> <mrow> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mo>-</mo> <mn>1,0,1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>M</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
equation (5) will find application in the proposed algorithm.
Step three: calculating a DOA and a unambiguous estimate of the distance of a signal source
Based on the assumption that the signal is narrowband, we have
Figure BDA00001857453900084
Wherein
Figure BDA00001857453900085
Therefore, from formula (3), z (t +1) ═ a Φ s (t) + w (t +1) can be obtained. Definition of <math> <mrow> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msup> <mi>z</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msup> <mi>z</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> Its correlation matrix can be expressed as <math> <mrow> <mi>R</mi> <mo>=</mo> <mi>E</mi> <mo>{</mo> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mover> <mi>z</mi> <mo>&OverBar;</mo> </mover> <mi>H</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>}</mo> <mo>=</mo> <mi>BP</mi> <msup> <mi>B</mi> <mi>H</mi> </msup> <mo>,</mo> </mrow> </math> Wherein P = E { s (t) sH(t) } denotes a correlation matrix of signals, and B = [ A =H,(AΦ)H]H∈C8M×K
The eigenvalue decomposition has R = Usdiag(ψ1,...,ψk)Us HWherein ψk(K1.. K.) is K large feature values of R, and their corresponding feature vectors are UsThe column vector of (2). According to the subspace algorithm, a nonsingular matrix T is existed to satisfy B = UsT, whereby A = Us,1T and a Φ = Us,2T, namely have
Figure BDA00001857453900088
Wherein U iss,1=Us(1∶4M,K),Us,1=Us(1+4M∶8M,K),
Figure BDA00001857453900089
The left pseudo-inverse is indicated. Thus, we can derive the frequency ω of the signal by equation (6)k=arg(ψk) And corresponding wavelength lambdak=2πc/ωkfs
In practice, the correlation matrix R is obtained by finite snapshot estimation (covariance matrix)
Figure BDA00001857453900091
Thus is paired with
Figure BDA00001857453900092
After the characteristic value is decomposed, an estimated value is obtained
Figure BDA00001857453900093
And
Figure BDA00001857453900094
and
Figure BDA00001857453900095
Figure BDA00001857453900096
and
Figure BDA00001857453900097
from this we can further obtain an estimate of the steering matrix
<math> <mrow> <mover> <mi>A</mi> <mo>^</mo> </mover> <mo>=</mo> <mo>[</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>K</mi> </msub> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <msup> <mover> <mi>&Phi;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
According to akBy definition of (1), we can be defined by
Figure BDA00001857453900099
Can obtain bm,kIs estimated by(M = - (M-1), …, -1, 0, 1, …, M; K =1, …, K). Then, DOA is obtained from the relationship of the formulae (4) and (1):
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
note that in the formula (8)
Figure BDA000018574539000912
By making use of
Figure BDA000018574539000913
And in combination with equation (5), we can obtain an estimate of the distance of the signal source
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
It is clear that the DOA and distance estimates obtained by equations (8) and (9) are unique and do not present the ambiguity problem.
Step four: calculating a deblurred estimate of DOA and signal source distance
In distinction from equations (8) and (9), we can also derive the spatial phase factor
Figure BDA000018574539000915
A DOA and range estimate of the signal is obtained. For this purpose we first calculate qm,kEstimation of (2):
<math> <mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mi>m</mi> <mo>&NotEqual;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein
Figure BDA000018574539000917
The estimation of equation (1) is obtained using the result of equation (8). Next, we compute using the symmetry of the array structure
Figure BDA000018574539000918
Andis estimated. Due to the fact that
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>[</mo> <mn>2</mn> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>]</mo> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mrow> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> </mrow> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </msup> </math>
And is <math> <mrow> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <mi>c</mi> <msup> <mi>os</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> Thus can obtain
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>4</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <mi>co</mi> <msup> <mi>s</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>M</mi> <mo>-</mo> <mn>4</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Thus, DOA and distance estimates can also be obtained using equations (13) and (14), respectively. However, since the array element spacing Δ is greater than 1/4 for the wavelength, the calculation of DOA and distance estimates using equations (13) and (14) is non-unique, i.e., it is not unique
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>&pi;&Delta;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mn>2</mn> <mi>&Delta;</mi> </mrow> </mfrac> <mi>n</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Figure BDA00001857453900107
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msup> <mrow> <mn>2</mn> <mi>&pi;&Delta;</mi> </mrow> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> </mrow> <mrow> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>i&pi;</mi> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math>
That is, the estimates of DOA and distance in equations (15) and (16) are ambiguous in thatAnd
Figure BDA000018574539001011
respectively represents the lower rounding and the upper rounding of x, and n is more than or equal to 1 and i is more than or equal to 1. In the formula (16)
Figure BDA000018574539001012
And
Figure BDA000018574539001013
the DOA and the distance estimates obtained by equations (8) and (9) are shown, respectively.
To solve this ambiguity we further exploit
Figure BDA000018574539001014
And
Figure BDA000018574539001015
for reference, the following deblurred estimates are obtained:
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>&pi;&Delta;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mrow> <mn>2</mn> <mi>&Delta;</mi> </mrow> </mfrac> <msup> <mi>n</mi> <mn>0</mn> </msup> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math> <math> <mrow> <msup> <mi>n</mi> <mn>0</mn> </msup> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi> </mi> <mi>min</mi> </mrow> <mi>n</mi> </munder> <mo>|</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> </mrow> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <msup> <mi>i</mi> <mn>0</mn> </msup> <mi>&pi;</mi> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>,</mo> </mrow> </math> i 0 = arg min i | l ^ k ( i ) - l ^ k ref | - - - ( 18 ) ,
the estimation methods of equations (17) and (18) both utilize aperture (by Δ metric) information of the array, and thus have higher estimation accuracy and resolution than the estimation methods of equations (8) and (9).
Example 2 (Experimental example)
Setting a uniform linear array to contain 16 velocity sensors (i.e., M = 4) with a signal sampling frequency fsamp=15MHz, and takes into account two near-field sound sources (k)1,k2) The parameters are respectively as follows: omega1=0.4 π rad/s and ω2=0.5 π rad/s (i.e., wavelengths λ respectively)1=100m and λ2=80m)、θ1=25°、θ2=40°、l1=2.5λ1、l2=3.0λ2. And (4) carrying out experimental result simulation of near-field source positioning by adopting 400 snapshot numbers (N). The simulation result is a statistical result of 500 monte carlo experiments, such as fig. 3, fig. 4, fig. 5, and fig. 6.
Wherein fig. 3 and 4 show the relation between the root mean square estimation error and the signal ratio of two signal sources DOA, wherein fig. 3 shows a signal k1FIG. 4 shows a signal k2. We consider three different cases of array element spacing Δ: Δ ═ λmin/4、Δ=λminAnd Δ ═ 2 λminWherein λ ismin=min{λ1,λ2}. In the figure, the position of the upper end of the main shaft,
Figure BDA00001857453900111
represents the unambiguous estimate calculated from equation (8), and thetakThe deblur estimation value calculated by equation (15) is shown. It can be seen that the deblurred estimates of DOA have a lower estimation error as the array element spacing Δ increases. Thus, the advantage of the algorithm herein is that the accuracy of the DOA estimation can be improved by using a larger array element spacing Δ.
FIGS. 5 and 6 show the RMS estimation error versus signal ratio for two signal source distances, where FIG. 5 is signal k1FIG. 6 shows a signal k2. Similarly, in the figures
Figure BDA00001857453900112
Represents a non-ambiguous estimate of the distance of the signal source calculated by equation (9), and rkThe deblur estimation value of the signal source distance calculated by equation (18) is shown. The figure also shows that the algorithm herein can improve the accuracy of the estimation of the near-field source distance by using a larger array element spacing. In addition, comparing FIGS. 3 and 5, FIGS. 4 and 6, we also found that increasing the array element spacing also improves the unambiguous distanceEstimating
Figure BDA00001857453900113
(see FIGS. 5, 6) but no blurred DOA
Figure BDA00001857453900114
Without significant variation in the estimated error (see fig. 3, 4). This is mainly due to the push-to-get by equation (8)Independent of the array element spacing a and therefore insensitive to variations in the array element spacing.
In summary, the above-mentioned embodiments are only preferred embodiments of the present invention, and all equivalent changes and modifications made in the claims of the present invention should be covered by the claims of the present invention.

Claims (3)

1. A near-field sound source localization method for estimating a DOA and a signal source distance of a near-field sound source signal, comprising:
step A: a uniform linear array is set up and,
the uniform linear array is composed of array elements which are linearly arranged, have an interval of delta and are 2M in number, each array element comprises a pair of speed sensors which respectively point to a y axis and a z axis, the y axis is an axis where the linear array is located, the z axis is perpendicular to the y axis, the near-field sound source is located on a y-z axis plane, and the speed sensors can be used for receiving a near-field sound source signal and outputting azimuth information of the near-field sound source signal;
and B: establishing a signal model, which comprises the following specific steps:
measuring azimuth information through a speed sensor:
cm,k=[sinθm,k,cosθm,k]T (1),
wherein-pi/2<θm,kPi/2 or less represents DOA of the kth near-field source signal relative to the mth array element, the 0 th array element is set as a reference array element, and c is setk=c0,kAnd thetak0,k
② demodulating to intermediate frequency and sampling, the kth near-field sound source signal is
Figure FDA00001857453800011
Wherein s isk(t) represents the complex amplitude of the signal, ωk=2πfk/fsamp,fsampTo sample frequency, fk≠fl(k ≠ l) is the carrier frequency of the signal;
third, the received signal at the m-th array element can be expressed as a 2-dimensional vector:
<math> <mrow> <msub> <mi>x</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>K</mi> </msubsup> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>k</mi> </msub> <mi>t</mi> </mrow> </msup> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>+</mo> <msub> <mi>n</mi> <mi>m</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
wherein n ism(t) denotes a Gaussian noise vector, τm,k≈γkm+φkm2For propagation delay between the ith source m and the reference element 0, where gammak=-2πΔsinθkk,φk=πΔ2cos2θkklk,λkAnd lkThe wavelength of the kth signal and the distance from the kth signal to the reference array element respectively;
converting the form of the matrix of the formula (2) into:
z(t)=As(t)+w(t) (3),
wherein,
<math> <mrow> <mi>z</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>x</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mn>0</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>x</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>x</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>&Element;</mo> <msup> <mi>C</mi> <mrow> <mn>4</mn> <mi>M</mi> <mo>&times;</mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mrow> </math>
<math> <mrow> <mi>s</mi> <mrow> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mn>1</mn> </msub> <mi>t</mi> </mrow> </msup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mi>s</mi> <mi>K</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&omega;</mi> <mi>K</mi> </msub> <mi>t</mi> </mrow> </msup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow> </mrow> </math>
<math> <mrow> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>[</mo> <msubsup> <mi>n</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>n</mi> <mn>0</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <msubsup> <mi>n</mi> <mn>1</mn> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>n</mi> <mi>M</mi> <mi>T</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mo>]</mo> <mi>T</mi> </msup> <mo>,</mo> <mi>E</mi> <mo>{</mo> <mi>w</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <msup> <mi>w</mi> <mi>H</mi> </msup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>}</mo> <mo>=</mo> <mi>&delta;</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>1</mn> </msub> <mo>-</mo> <msub> <mi>t</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>I</mi> <mrow> <mn>4</mn> <mi>M</mi> <mo>&times;</mo> <mn>4</mn> <mi>M</mi> </mrow> </msub> <mo>,</mo> </mrow> </math>
A=[a1,...,aK]∈C4M×K
<math> <mrow> <msub> <mi>a</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>[</mo> <msubsup> <mi>b</mi> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msubsup> <mi>b</mi> <mrow> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <mo>]</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>b</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>c</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msup> <mi>e</mi> <mrow> <mi>j</mi> <msub> <mi>&tau;</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> </mrow> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
define lm,kRepresents the distance between the kth near-field source signal and the mth array element and hask=l0,kObtaining:
<math> <mrow> <msub> <mi>l</mi> <mi>k</mi> </msub> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>sin</mi> <mrow> <mo>(</mo> <mi>&pi;</mi> <mo>/</mo> <mn>2</mn> <mo>-</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>=</mo> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mi>&theta;</mi> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&theta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>,</mo> </mrow> </math> m=-(M-1),...,-1,0,1,...,M(5);
and C: calculating a non-fuzzy estimation of DOA and signal source distance, comprising the following steps:
firstly, acquiring N snapshot vectors z (t) of an array, wherein t is 1
Figure FDA00001857453800026
Wherein,
Figure FDA00001857453800027
obtained by eigenvalue decompositionWherein psik(K is 1, …, K) isK large feature values of (1), their corresponding feature vectors are UsA column vector of (a);
② according to subspace algorithm, there is a nonsingular matrix T satisfying B ═ UsT, whereby A ═ Us,1T and A phi ═ Us,2T, namely:
wherein U iss,1=Us(1:4M,K),Us,1=Us(1+4M:8M,K),
Figure FDA000018574538000211
Represents the left pseudo-inverse;
(iii) frequency estimation of the signal obtained by equation (6) above
Figure FDA000018574538000212
Sum wavelength estimation
Figure FDA000018574538000213
And
Figure FDA000018574538000214
and
Figure FDA000018574538000215
(ii) an estimate of (d);
obtaining the estimation of the steering matrix according to the step three:
<math> <mrow> <mover> <mi>A</mi> <mo>^</mo> </mover> <mo>=</mo> <mo>[</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <msub> <mover> <mi>a</mi> <mo>^</mo> </mover> <mi>K</mi> </msub> <mo>]</mo> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>1</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mo>+</mo> <msub> <mover> <mi>U</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mo>,</mo> <mn>2</mn> </mrow> </msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <msup> <mover> <mi>&Phi;</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
fifthly, obtaining DOA non-fuzzy estimation of near-field sound source signals according to the relation of the combination formula (4) and the combination formula (1)
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msup> <mi>tan</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>/</mo> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein,
Figure FDA00001857453800032
(m=-(M-1),...,-1,0,1,...,M;k=1,...,K);
combination of
Figure FDA00001857453800033
And equation (5) obtaining a blur-free estimate of the signal source distance of the near-field acoustic source signal
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>+</mo> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>M</mi> </msubsup> <mo>|</mo> <mfrac> <mrow> <mi>m&Delta;</mi> <mi>cos</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> </mrow> <mrow> <mi>sin</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>.</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>|</mo> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mrow> <mo>(</mo> <mi>k</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>.</mo> <mo>.</mo> <mo>.</mo> <mo>,</mo> <mi>K</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Step D: calculating fuzzy estimation of DOA and signal source distance, which comprises the following steps:
firstly, calculate qm,kIs estimated by
<math> <mrow> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <mn>1</mn> <mo>,</mo> </mtd> <mtd> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>/</mo> <msubsup> <mover> <mi>c</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> <mi>T</mi> </msubsup> <msub> <mover> <mi>b</mi> <mo>^</mo> </mover> <mrow> <mn>0</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mi>m</mi> <mo>&NotEqual;</mo> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
Wherein
Figure FDA00001857453800036
The result of the formula (8) is used to obtain the estimation of the formula (1), and the electron angle alpha is calculatedkAnd betak
② calculating by using symmetric relation of array structure
Figure FDA00001857453800037
And
Figure FDA00001857453800038
due to estimation of
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mo>-</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mo>[</mo> <mn>2</mn> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>+</mo> <mn>2</mn> <mrow> <mo>(</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>]</mo> </mrow> </msup> <mo>=</mo> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>m</mi> <mo>-</mo> <mi>M</mi> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msubsup> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mo>-</mo> <mn>2</mn> <mo>,</mo> <mi>k</mi> </mrow> <mo>*</mo> </msubsup> <msub> <mover> <mi>q</mi> <mo>^</mo> </mover> <mrow> <mi>M</mi> <mo>-</mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
And is <math> <mrow> <msub> <mover> <mi>&gamma;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> <math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mi>&pi;&Delta;</mi> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>,</mo> </mrow> </math> Thus can obtain
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>4</mn> <mi>&pi;&Delta;</mi> <mi>sin</mi> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
<math> <mrow> <msup> <mi>e</mi> <mrow> <mi>j</mi> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>/</mo> <msub> <mover> <mi>&lambda;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mn>4</mn> <mi>M</mi> <mo>-</mo> <mn>4</mn> </mrow> </mfrac> <msubsup> <mi>&Sigma;</mi> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>-</mo> <mn>2</mn> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&eta;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>/</mo> <msub> <mi>&xi;</mi> <mrow> <mi>k</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>)</mo> </mrow> <mo>/</mo> <mn>2</mn> <mover> <mo>=</mo> <mi>&Delta;</mi> </mover> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
Thirdly, obtaining fuzzy estimation of DOA according to the calculation result
Figure FDA000018574538000315
And fuzzy estimation of signal source distance
Figure FDA000018574538000316
Wherein
Figure FDA00001857453800041
And
Figure FDA00001857453800042
represent unambiguous estimates of DOA and distance obtained using equations (8) and (9), respectively;
and (3) obtaining a deblurring estimation of the DOA and the signal source distance by taking the unambiguous estimation of the DOA and the signal source distance as a reference estimation:
making <math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>;</mo> </mrow> </math>
② obtaining the deblurring estimate of DOA
<math> <mrow> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <msup> <mi>sin</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mfrac> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&alpha;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>4</mn> <mi>&pi;&Delta;</mi> </mrow> </mfrac> <mo>+</mo> <mfrac> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mrow> <mn>2</mn> <mi>&Delta;</mi> </mrow> </mfrac> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>n</mi> <mn>0</mn> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mi>n</mi> </munder> <mo>|</mo> <msub> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>n</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow> </math>
And deblurring estimation of signal source distance
<math> <mrow> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mi>&pi;</mi> <msup> <mi>&Delta;</mi> <mn>2</mn> </msup> <msup> <mi>cos</mi> <mn>2</mn> </msup> <msubsup> <mover> <mi>&theta;</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> </mrow> <mrow> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> <mi>arg</mi> <mrow> <mo>(</mo> <msub> <mi>&beta;</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mrow> <mn>2</mn> <mi>i</mi> </mrow> <mn>0</mn> </msub> <mrow> <mi>&pi;</mi> <msub> <mi>&lambda;</mi> <mi>k</mi> </msub> </mrow> </mrow> </mfrac> <mo>,</mo> <msub> <mi>i</mi> <mn>0</mn> </msub> <mo>=</mo> <munder> <mrow> <mi>arg</mi> <mi>min</mi> </mrow> <mi>i</mi> </munder> <mo>|</mo> <msub> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mover> <mi>l</mi> <mo>^</mo> </mover> <mi>k</mi> <mi>ref</mi> </msubsup> <mo>|</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow> </math>
2. The near field acoustic source localization method of claim 1, wherein the array element spacing Δ is 1/4 greater than the near field acoustic source wavelength λ.
3. The near-field sound source localization method according to claim 1, further comprising improving the accuracy of the deblurring estimation of the DOA and the near-field sound source distance by increasing the array element spacing Δ.
CN2012102319883A 2012-07-06 2012-07-06 Near-field sound source positioning method Withdrawn CN102736063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012102319883A CN102736063A (en) 2012-07-06 2012-07-06 Near-field sound source positioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012102319883A CN102736063A (en) 2012-07-06 2012-07-06 Near-field sound source positioning method

Publications (1)

Publication Number Publication Date
CN102736063A true CN102736063A (en) 2012-10-17

Family

ID=46991897

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012102319883A Withdrawn CN102736063A (en) 2012-07-06 2012-07-06 Near-field sound source positioning method

Country Status (1)

Country Link
CN (1) CN102736063A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104181505A (en) * 2014-08-18 2014-12-03 吉林大学 Multi-target acoustic positioning method and system based on near-field source positioning algorithm
WO2015014007A1 (en) * 2013-07-30 2015-02-05 北京邮电大学 Near-field source localization method, apparatus and system based on minimum description length
CN104360310A (en) * 2014-12-03 2015-02-18 吉林大学 Multi-objective and near-field source locating method and multi-objective and near-field source locating device
CN104699965A (en) * 2015-03-08 2015-06-10 西安电子科技大学 Estimation method of parameters of near-field source based on rotating interferometer
CN104931928A (en) * 2015-07-01 2015-09-23 西北工业大学 Signal source positioning method and apparatus
CN104103277B (en) * 2013-04-15 2017-04-05 北京大学深圳研究生院 A kind of single acoustics vector sensor target voice Enhancement Method based on time-frequency mask
CN106680597A (en) * 2016-12-13 2017-05-17 云南电网有限责任公司电力科学研究院 Method and system for determining orientation of strongest field sources
CN106872936A (en) * 2017-03-21 2017-06-20 陕西理工大学 Near field sources L-type acoustic vector-sensor array row ambiguity solution Multiple Parameter Estimation Methods
CN107422299A (en) * 2017-05-03 2017-12-01 惠州学院 A kind of mixed source localization method and mixed source alignment system
CN108445442A (en) * 2018-02-28 2018-08-24 西安交通大学 A kind of near-field signals source localization method based on the singular value decomposition blocked
CN109557504A (en) * 2018-10-25 2019-04-02 西安交通大学 A kind of localization method near field narrow band signal source
CN109884592A (en) * 2019-03-04 2019-06-14 浙江大学 A kind of auditory localization emulation mode towards low frequency Gaussian noise source
CN110687506A (en) * 2019-10-11 2020-01-14 国网陕西省电力公司电力科学研究院 Low-frequency noise source positioning device and method based on vector microphone array
CN111880141A (en) * 2020-08-05 2020-11-03 四川大学 Information source positioning method, device, electronic equipment and computer readable storage medium
CN113625225A (en) * 2021-08-12 2021-11-09 电子科技大学 Near-field three-dimensional space positioning method based on multiple uniform linear arrays

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104103277B (en) * 2013-04-15 2017-04-05 北京大学深圳研究生院 A kind of single acoustics vector sensor target voice Enhancement Method based on time-frequency mask
WO2015014007A1 (en) * 2013-07-30 2015-02-05 北京邮电大学 Near-field source localization method, apparatus and system based on minimum description length
CN104181505A (en) * 2014-08-18 2014-12-03 吉林大学 Multi-target acoustic positioning method and system based on near-field source positioning algorithm
CN104181505B (en) * 2014-08-18 2017-09-01 吉林大学 A kind of multi-target underwater acoustic positioning method and system based on near-field sources localization algorithm
CN104360310B (en) * 2014-12-03 2017-06-27 吉林大学 A kind of multiple target near-field sources localization method and apparatus
CN104360310A (en) * 2014-12-03 2015-02-18 吉林大学 Multi-objective and near-field source locating method and multi-objective and near-field source locating device
CN104699965A (en) * 2015-03-08 2015-06-10 西安电子科技大学 Estimation method of parameters of near-field source based on rotating interferometer
CN104699965B (en) * 2015-03-08 2017-06-13 西安电子科技大学 Estimation of parameters of near field sources method based on angle measuring interferometer
CN104931928A (en) * 2015-07-01 2015-09-23 西北工业大学 Signal source positioning method and apparatus
CN106680597A (en) * 2016-12-13 2017-05-17 云南电网有限责任公司电力科学研究院 Method and system for determining orientation of strongest field sources
CN106680597B (en) * 2016-12-13 2019-02-15 云南电网有限责任公司电力科学研究院 Determine the method and system in most high field source orientation
CN106872936A (en) * 2017-03-21 2017-06-20 陕西理工大学 Near field sources L-type acoustic vector-sensor array row ambiguity solution Multiple Parameter Estimation Methods
CN106872936B (en) * 2017-03-21 2019-04-23 陕西理工大学 Near field sources L-type acoustic vector-sensor array column ambiguity solution Multiple Parameter Estimation Methods
CN107422299A (en) * 2017-05-03 2017-12-01 惠州学院 A kind of mixed source localization method and mixed source alignment system
CN108445442A (en) * 2018-02-28 2018-08-24 西安交通大学 A kind of near-field signals source localization method based on the singular value decomposition blocked
CN108445442B (en) * 2018-02-28 2020-08-18 西安交通大学 Near-field signal source positioning method based on truncated singular value decomposition
CN109557504A (en) * 2018-10-25 2019-04-02 西安交通大学 A kind of localization method near field narrow band signal source
CN109557504B (en) * 2018-10-25 2020-10-27 西安交通大学 Method for positioning near-field narrow-band signal source
CN109884592A (en) * 2019-03-04 2019-06-14 浙江大学 A kind of auditory localization emulation mode towards low frequency Gaussian noise source
CN109884592B (en) * 2019-03-04 2021-01-26 浙江大学 Sound source positioning simulation method facing low-frequency Gaussian noise source
CN110687506A (en) * 2019-10-11 2020-01-14 国网陕西省电力公司电力科学研究院 Low-frequency noise source positioning device and method based on vector microphone array
CN111880141A (en) * 2020-08-05 2020-11-03 四川大学 Information source positioning method, device, electronic equipment and computer readable storage medium
CN111880141B (en) * 2020-08-05 2023-07-21 四川大学 Information source three-dimensional space positioning method of fully independent distributed linear array and related device
CN113625225A (en) * 2021-08-12 2021-11-09 电子科技大学 Near-field three-dimensional space positioning method based on multiple uniform linear arrays
CN113625225B (en) * 2021-08-12 2023-04-28 电子科技大学 Near-field three-dimensional space positioning method based on multiple uniform linear arrays

Similar Documents

Publication Publication Date Title
CN102736063A (en) Near-field sound source positioning method
CN102411136B (en) Phase interferometer direction finding method for ambiguity resolution by extension baselines
CN111123192B (en) Two-dimensional DOA positioning method based on circular array and virtual extension
CN104407335B (en) DOA estimation method of 3-axis cross array
CN107092004A (en) Relatively prime array Wave arrival direction estimating method based on signal subspace rotational invariance
CN109143153A (en) A kind of super nested array Wave arrival direction estimating method based on sparse reconstruct
CN101995574A (en) Near field focusing beam forming positioning method
CN104793177B (en) Microphone array direction-finding method based on least square method
CN103454616B (en) A kind of direction estimation method of cross vibration velocity gradient nautical receiving set
CN102520399B (en) Electromagnetic vector array based angle estimation method for metric-wave radar
CN106950529A (en) Acoustic vector near field sources ESPRIT and MUSIC method for parameter estimation
CN104330768B (en) A kind of motor-driven sound bearing based on acoustic vector sensors method of estimation
CN106019214A (en) DOA estimation method for broadband coherent signal source
Liao et al. Direction-of-arrival estimation in subarrays-based linear sparse arrays with gain/phase uncertainties
CN103267966A (en) Orientation estimation method for single two-dimensional differential pressure type vector hydrophone
CN110389316B (en) Near-field and far-field mixed information source positioning method based on two-step matrix difference
CN105182285A (en) Target direction-finding method based on acoustic vector two-dimensional nested array
CN106997037A (en) Acoustic vector-sensor array column space rotates decorrelation LMS angle-of- arrival estimation method
CN112285647B (en) Signal azimuth high-resolution estimation method based on sparse representation and reconstruction
CN101252382B (en) Wide frequency range signal polarizing and DOA estimating method and apparatus
CN106249196A (en) Three-component acoustic vector sensors thinned array quaternary number ambiguity solution method
CN106249225A (en) Sparse circular acoustic vector-sensor array row quaternary number ESPRIT method for parameter estimation
CN108469599B (en) Acoustic vector sensor amplitude weighting MUSIC direction-finding method
CN104931923A (en) Grid iterative estimation of signal parameters via rotational invariance techniques (ESPRIT), namely, extensible rapid estimation algorithm capable of being used for uniform circular array 2-dimensional direction of arrival (2D DOA)
CN108318855B (en) Near-field and far-field mixed signal source positioning method based on uniform circular array

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C04 Withdrawal of patent application after publication (patent law 2001)
WW01 Invention patent application withdrawn after publication

Application publication date: 20121017