CN102728331A - Preparation method of metal-organic framework material for adsorbing separation of carbon dioxide/ methane - Google Patents

Preparation method of metal-organic framework material for adsorbing separation of carbon dioxide/ methane Download PDF

Info

Publication number
CN102728331A
CN102728331A CN2012102529434A CN201210252943A CN102728331A CN 102728331 A CN102728331 A CN 102728331A CN 2012102529434 A CN2012102529434 A CN 2012102529434A CN 201210252943 A CN201210252943 A CN 201210252943A CN 102728331 A CN102728331 A CN 102728331A
Authority
CN
China
Prior art keywords
carbon dioxide
methane
organic framework
framework material
metal
Prior art date
Application number
CN2012102529434A
Other languages
Chinese (zh)
Other versions
CN102728331B (en
Inventor
吴晓蕾
黎维彬
Original Assignee
清华大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学深圳研究生院 filed Critical 清华大学深圳研究生院
Priority to CN 201210252943 priority Critical patent/CN102728331B/en
Publication of CN102728331A publication Critical patent/CN102728331A/en
Application granted granted Critical
Publication of CN102728331B publication Critical patent/CN102728331B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C10/00CO2 capture or storage
    • Y02C10/08Capture by adsorption

Abstract

The invention discloses a preparation method of a metal-organic framework material for adsorbing separation of carbon dioxide/ methane. The preparation method comprises the following steps of: (1) mixing 0.46-1.16mol/L cupric nitrate water solution and 0.23-0.58mol/L trimesic acid ethanol solution, fully stirring, then adding into a stainless steel reaction kettle provided with a polytetrafluoroethylene inner liner for sealing, and carrying out solvent thermal reaction while controlling the crystallization temperature to be 60-150 DEG C and the crystallization time at 12-24h; (2) opening the stainless steel reaction kettle, filtering, sequentially washing by methyl alcohol and deionized water, and drying at the temperature of 80-105 DEG C to obtain blue crystal; and (3) vacuumizing the blue crystal at the temperature of 150-200 DEG C to obtain the Cu-containing metal-organic framework material.

Description

吸附分离二氧化碳/甲烷的金属有机骨架材料的制备方法 The method of preparing a metal organic framework material adsorptive separation of carbon dioxide / methane

技术领域 FIELD

[0001] 本发明属于环境保护技术领域,特别涉及一种吸附分离二氧化碳/甲烷的金属有机骨架材料的制备方法。 [0001] The present invention belongs to the technical field of environmental protection, particularly to a method for preparing a metal organic framework material of adsorptive separation of carbon dioxide / methane.

背景技术 Background technique

[0002] 二氧化碳是沼气垃圾填埋气中除甲烷外含量最高组分,占沼气成分的309^40%。 [0002] Carbon dioxide gas in addition to methane, landfill gas outside the highest content component, accounting for 40% of the 309 ^ methane component. 沼气中二氧化碳的存在大大降低了沼气燃烧的热值,使其能量的利用效率降低。 In the presence of carbon dioxide gas greatly reduces the heating value of the combustion gas, so as to reduce the energy efficiency. 因而在沼气净化技术中,实现甲烷和二氧化碳的分离以得到高纯度的甲烷,是提升能量利用效率,产出高品位产品,提升沼气经济价值的需求。 Thus the biogas purification technology, the separation of methane and carbon dioxide in order to obtain high-purity methane, is to enhance energy efficiency, produce high quality products to enhance the economic value of gas demand.

[0003] 近些年来,已经有部分研究学者对沼气除杂、提纯和高值利用技术进行了研究,在吸附/吸收剂开发、提纯设备和工艺设计方面都取得了很多有意义的成果。 [0003] In recent years, researchers have been part of the biogas cleaning, purification and use of high-value technology have been studied in the adsorption / absorbent development, purification equipment and process design have made many meaningful results. 譬如,中国专利200610096998. 5公开了一种沼气净化、加压储存及输送工艺方法:该发明用生石灰和水混合的碱溶液,或氢氧化钠溶液去除沼气中的二氧化碳、硫化氢、水汽等杂质,从而提高甲烷含量可达到70%以上。 For example, Chinese patent 200610096998.5 discloses a gas purification, storage and transport process for pressing: the invention is mixed with lime and water alkaline solution, sodium hydroxide solution or in the removal of carbon dioxide gas, hydrogen sulfide, water vapor and other impurities , thereby increasing the methane content can be over 70%. 此类液相吸收法常带来二次污染,分离效率也相对较低。 Such absorption is often caused phase secondary pollution, the separation efficiency is relatively low.

[0004] 此外,吸附法也是气体分离的有效技术之一,其核心在于选择与研制高效吸附剂,理想的吸附材料具有吸附容量大、选择性强且再生方便。 [0004] In addition, one of the effective techniques are adsorption gas separation, the core is selected with the development of highly efficient adsorbents, the adsorbent material preferably has a large adsorption capacity, selectivity and easy regeneration. 针对于甲烷与二氧化碳混合气体的分离问题,中国专利00104481. 8公开了一种用于甲烷二氧化碳分离的分子筛炭织物及其制备方法:用聚丙烯腊纤维、粘胶纤维、酚醛纤维、浙青纤维等为原料进行炭化后,用水蒸气进行活化处理制得织物状炭分子筛,用于甲烷二氧化碳分离过程,分离得到的甲烷气纯度超过96%。 For separation problem methane with carbon dioxide mixed gas, Chinese Patent No. 00104481.8 discloses a method for preparing a molecular sieving carbon fabric for methane and carbon dioxide separation: December polypropylene fibers, rayon fibers, phenol fibers, fibrous green Zhejiang Once carbonization as raw material, obtained by steam activation fabric-like carbon molecular sieve, carbon dioxide separation processes for methane, the methane gas of a purity of over 96% was isolated. 中国专利申请201110295013. 2也公开了一种变压吸附分离和提纯沼气中二氧化碳的方法。 Chinese Patent Application No. 201110295013.2 also discloses a pressure swing adsorption method for separating methane and carbon dioxide purification. 所用的吸附剂为活性炭、颗粒状氧化铁或氧化钙、硅胶组成的复合吸附剂,吸附容量不够高,因而需要设置八个吸附塔,循环地变动所组合的各个吸附塔压力,操作过程很烦琐。 The activated carbon used for the adsorbent, the composite adsorbent particulate iron oxide or calcium oxide, colloidal silica, the adsorption capacity is not high enough, thus requiring eight adsorption towers disposed, the combined cycle varies the pressure in each adsorption tower, is very cumbersome operation .

[0005] 近几年得到关注的金属有机骨架材料(MOFs)是一种新型的多孔材料,由金属离子和有机配体自组装而成,具有高孔隙率、大比表面积等特点,制备过程中通过选择不同金属离子、有机配体分子可以实现对孔的大小、形状和表面特性进行调控,因而在气体分离方面具有良好的应用前景。 [0005] In recent years, attention resulting metal-organic framework materials (of MOFs) are a new type of porous material, a metal ion and an organic ligand obtained by self-assembly, it has a high porosity, large surface area, etc., the manufacturing process by selecting various metal ions, an organic ligand molecule can be achieved on the size, shape and surface properties of the pores to regulate, which has a good prospect in terms of gas separation.

[0006] 中国专利申请200780005157. I公开了一种制备多孔的金属-有机框架材料的方法,该方法要求一种不含结晶水的铜化合物与至少一种二齿的有机化合物,在非水性溶剂存在下反应,在大气压和高于80°C下进行。 [0006] Chinese Patent Application No. 200780005157. I discloses preparation of a porous metal - an organic framework material, the method requires an organic compound containing crystal water and a copper compound and at least one bidentate, in a non-aqueous solvent the presence of the reaction, at atmospheric pressure and higher than 80 ° C. 中国专利申请201010145406. 0公开了一种用于二氧化碳吸附与分离的金属有机骨架材料及其制备方法,该方法先以铜或锌的硝酸盐、氯化物或者碳酸盐和1,3,5-均苯三羧酸反应制备了一种金属有机骨架材料,然后再与聚乙烯亚胺溶液反应得到一种吸附剂,用于二氧化碳的吸附与分离,用于二氧化碳从真空到一个大气压范围内的低压吸附。 Chinese Patent Application No. 201010145406.0 discloses a metal organic framework material and a preparation method for carbon dioxide adsorption and separation, the first method of copper or zinc nitrate, chloride or carbonate and 1,3,5- the reaction of trimesic acid, a metal organic framework material is prepared, and then the solution is reacted with polyethyleneimine to obtain an adsorbent for adsorption and separation of carbon dioxide, the carbon dioxide for the low pressure vacuum from atmospheric pressure into a range of adsorption.

[0007] 中国专利申请200680048735. 5公开了一种MOF在压力摆动吸附中的应用,该方法将氢流在2MPa〜5MPa (20-50大气压)的较高压力下,对甲烷的吸附,包含了多个吸附床并使压力顺序地通过床循环以形成连续过程的复杂过程。 [0007] Chinese Patent Application No. 200680048735.5 discloses an application of MOF in a pressure swing adsorption, the process hydrogen stream at 2MPa~5MPa (20-50 atm) higher pressure adsorption of methane, comprising the a plurality of adsorbent beds and process complicated pressure sequentially through the bed to form a continuous loop process.

[0008] 上述制备或气体分离过程常要求制备过程采用非水溶剂,或者要使用有毒性的乙烯亚胺改性,或者涉及高压的处理混合气体分离过程,步骤复杂且提高了吸附材料的使用成本。 [0008] The gas separation process of preparation or manufacturing process often requires the use of non-aqueous solvent, or to use toxic ethyleneimine-modified, or to a high-pressure mixed gas separation process, the step increases the complexity and cost of the adsorbent material .

发明内容 SUMMARY

[0009] 本发明所要解决的技术问题是:弥补上述现有技术的不足,提出一种吸附分离二氧化碳/甲烷的金属有机骨架材料的制备方法。 [0009] The present invention solves the technical problem: sufficient to cover the above-described prior art, provides a method of preparing the carbon dioxide separation / metal organic framework material methane adsorption. [0010] 本发明的技术问题通过以下的技术方案予以解决: [0010] The technical problem to be solved by the present invention, the following technical solutions:

一种吸附分离二氧化碳/甲烷的金属有机骨架材料的制备方法,包括如下步骤: The method of preparing a metal organic framework material of adsorptive separation of carbon dioxide / methane, comprising the steps of:

(1)将0.46〜I. 16 mol/L的硝酸铜水溶液和0. 23〜0. 58 mol/L的均苯三甲酸乙醇溶液混合,充分搅拌后加入带聚四氟乙烯内衬的不锈钢反应釜中密封,控制晶化温度为6(Tl50°C及晶化时间为12〜24小时进行溶剂热反应; Mixing (1) 0.46~I. 16 mol / L and an aqueous solution of copper nitrate 0. 23~0. 58 mol / L of trimesic acid ethanol solution was added. After stirring with a Teflon-lined stainless steel reactor sealing the autoclave, the crystallization temperature was controlled 6 (Tl50 ° C and the crystallization time is 12~24 hours solvothermal reaction;

(2)打开不锈钢反应釜,经过滤,并依次用甲醇和去离子水洗涤,在8(T105°C下干燥得到监色晶体; (2) Open stainless steel reactor, filtered, and washed with methanol and deionized water, and dried to give colorless crystals monitored at 8 (T105 ° C;

(3)将所述蓝色晶体在15(T200°C下抽真空处理得到含铜金属有机骨架材料。 (3) the obtained blue crystals vacuuming containing metal organic framework material at 15 (T200 ° C.

[0011] 本发明采用溶剂热法,以硝酸铜的水溶液和均苯三甲酸的乙醇溶液为初始原料,在具有聚四氟乙烯内衬的不锈钢反应釜中,在水与乙醇的混合溶剂中,在一定晶化温度与晶化时间条件下,对合成的固体经甲醇和去离子水洗涤并干燥、控制一定的干燥温度,再在一定的温度下经抽真空,在以上各步骤的一系列条件的共同作用下,最终得到具有高比表面积的含铜金属有机骨架材料,其呈蓝色晶体状粉末状。 [0011] The present invention solvothermal method, an aqueous solution of ethanol and a solution of copper nitrate are trimesic acid as the starting material, in a stainless steel autoclave having a Teflon-lined, in a mixed solvent of water and ethanol, in certain crystallization temperature and crystallization time conditions for the synthesis of methanol and the solid was washed with deionized water and dried, the drying temperature constant control, at a certain temperature and then evacuated by a series of steps in the above conditions under the action, the finally obtained copper-containing metal organic framework materials having a high specific surface area, which was blue crystalline powder.

[0012] 优选地,所述步骤(3)中的温度为160_180°C。 [0012] Preferably, the temperature (3) in the step 160_180 ° C.

[0013] 一种金属有机骨架材料,由上述任意一项所述的制备方法制得,其比表面积为500〜1200 m2/g。 [0013] A metal-organic framework material, according to any one of the above production method to obtain a specific surface area of ​​500~1200 m2 / g.

[0014] 上述的金属有机骨架材料在吸附分离二氧化碳/甲烷中的应用,其中,吸附压力为0. IMPa〜0. 4MPa,吸附温度为_15°C〜85°C,以及甲烷和二氧化碳混合气体中二氧化碳的体积分数为5%〜60%。 [0014] Application of the above-described metal-organic framework material in the adsorptive separation of carbon dioxide / methane, wherein the adsorption pressure is 0. IMPa~0. 4MPa, adsorption temperature of _15 ° C~85 ° C, and a mixed gas of methane and carbon dioxide volume fraction of carbon dioxide is 5% ~ 60%.

[0015] 上述的金属有机骨架材料在吸附分离二氧化碳/甲烷中的应用时,实验证明,在以上的吸附压力、吸附温度条件下,对甲烷、二氧化碳气体的单组分吸附容量大,对于一定二氧化碳浓度范围的甲烷与二氧化碳混合气体具有高的变压吸附选择性分离效果:例如,实验证明,在25°C和0. 4 MPa压力下,该材料对二氧化碳和甲烷的单组分吸附容量分别可达8. 01mmol/g和3. 40mmol/g ;在25°C和0. 4 MPa压力下,该材料对不同配比的甲烧/ 二氧化碳混合气具有良好的分离能力,可获得纯度为99% (体积分数)以上的甲烷气体。 [0015] The metal-organic framework material in separating methane, carbon dioxide application / adsorption experiments demonstrated, in the above adsorption pressure, the adsorption temperature conditions, single component methane, carbon dioxide gas adsorption capacity, for a given carbon dioxide concentration range of mixed gas of methane and carbon dioxide having a high selective pressure swing adsorption separation: for example, experiments show that, at 25 ° C under pressure of 0. 4 MPa and the material of the one-component carbon dioxide and methane adsorption capacity respectively up to 8. 01mmol / g and 3. 40mmol / g; and at 25 ° C under pressure of 0. 4 MPa, the ratio of the different materials for methane / carbon dioxide gas mixture has excellent separation ability, the purity of 99% (volume fraction) than methane gas.

[0016] 本发明进一步具有如下优点:为分离净化甲烷与二氧化碳混合气体提供了一个行之有效、便捷的技术,所涉及的吸附技术具有压力低、能耗低、吸附材料无毒性、环境效益好等优点且操作工艺简单,材料可再生重复使用,且具有良好的使用耐受性。 [0016] The present invention further has the following advantages: provides for the separation purifying a mixed gas of methane and carbon dioxide, an effective, convenient techniques, adsorption techniques involved with low pressure, low energy consumption, an adsorbent material non-toxic, good environmental benefits etc. and the operation process is simple, the material can be repeated use, and has good resistance to use.

附图说明 BRIEF DESCRIPTION

[0017]图I是本发明实施例一所制备得到的含铜金属骨架材料的X射线衍射谱图。 [0017] Figure I is a X-ray diffraction spectrum of Example containing metal matrix material prepared in an embodiment of the present invention. 具体实施方式 Detailed ways

[0018] 下面对照附图并结合优选具体实施方式对本发明进行详细的阐述。 In conjunction with the accompanying drawings and preferred embodiments of the present invention will be explained in detail [0018] below with reference.

[0019] 本发明提供一种吸附分离二氧化碳/甲烷的金属有机骨架材料的制备方法,在一种实施例中,包括如下步骤: [0019] The present invention provides a method for preparing separation of carbon dioxide / methane metal organic framework material is adsorbed, in one embodiment, comprising the steps of:

(I)将0. 46〜I. 16 mol/L的硝酸铜水溶液和0. 23〜0. 58 mol/L的均苯三甲酸均苯(I, 3, 5-Benzenetricarboxylic Acid, C9 H6O6 ,简记为H3btc)乙醇溶液混合,充分搅拌后加入带聚四氟乙烯内衬的不锈钢反应釜中密封,控制晶化温度为6(T15(TC及晶化时间为12〜24小时进行溶剂热反应; (I) will be 0. 46~I. 16 mol / L and an aqueous solution of copper nitrate 0. 23~0. 58 mol / L of trimesic pyromellitic acid (I, 3, 5-Benzenetricarboxylic Acid, C9 H6O6, Jane referred to as a mixed ethanol solution H3btc), was added. after stirring with a Teflon-lined stainless steel autoclave sealed, the crystallization temperature was controlled 6 (T15 (TC and the crystallization time is 12~24 hours solvothermal reaction;

(2)打开不锈钢反应釜,经过滤,并依次用甲醇和去离子水洗涤,在8(T105°C下干燥得到监色晶体; (2) Open stainless steel reactor, filtered, and washed with methanol and deionized water, and dried to give colorless crystals monitored at 8 (T105 ° C;

(3)将所述蓝色晶体在15(T200°C下抽真空处理得到含铜金属有机骨架材料。 (3) the obtained blue crystals vacuuming containing metal organic framework material at 15 (T200 ° C.

[0020] 优选所述步骤(3)中的温度为160_180°C。 [0020] Preferably, the temperature in step (3) is from 160_180 ° C.

[0021] 优选步骤(2)中的干燥时间2-10h。 [0021] Preferably the step of drying time 2-10h (2) in.

[0022] 优选步骤(3)中的抽真空时间为3_15h。 [0022] Preferably the step of vacuum pumping period (3) is 3_15h.

[0023] 本发明还提供一种金属有机骨架材料,由上述的制备方法制得,其比表面积为500〜1200 m2/g。 [0023] The present invention further provides a metal-organic framework material, prepared by the above methods have a specific surface area of ​​500~1200 m2 / g.

[0024] 为了更具体的说明本发明的内容,以下给出更优选的实施例。 [0024] For a more particular description of the present invention, the following is given a more preferred embodiment.

[0025] 实施例一 [0025] Example a

称取一定量的Cu (NO3)2 *3H20,溶于一定量的去离子水中,配制成浓度为I. 16 mol/L的25ml Cu(NO3)2 • 3H20水溶液,标记为溶液I ;配制浓度为0. 58 mol/L的25ml H3btc的乙醇溶液,标记为溶液II ;将溶液I和溶液II混合,充分搅拌后装入容量为IOOml的带聚四氟乙烯内衬的不锈钢反应釜中,95°C晶化15小时,过滤后依次用甲醇和去离子水洗涤三次,每次50ml,充分搅拌lOmin,105°C干燥10小时,得到蓝色晶体。 Weigh a quantity of Cu (NO3) 2 * 3H20, dissolved in an amount of deionized water to prepare a concentration of I. 16 mol / L of 25ml Cu (NO3) 2 • 3H20 aqueous solution labeled I; prepared at a concentration to 0. 58 mol / L ethanol solution 25ml H3btc, labeled II solution; the mixed solution I and solution II, after sufficient stirring capacity stainless steel autoclave was charged with IOOml Teflon-lined, 95 crystallization ° C for 15 hours, filtered and washed with methanol and deionized water three times, each 50ml, stir lOmin, 105 ° C for 10 hours, to give blue crystals. 所得蓝色晶体在175°C抽真空处理10小时,测得比表面积为1136m2/g,X射线衍射图谱(XRD)如图I所示,图中2 0角为6. 72。 The resultant blue crystals evacuated at 175 ° C for 10 hours, and measuring a specific surface area of ​​1136m2 / g, X-ray diffraction pattern (XRD) shown in FIG. I, 20 in FIG angle is 6.72. ,9. 56° ,11. 70° ,13. 48° ,14. 70° ,16. 5° ,17. 54° 处出现特征峰值,表明该材料具有典型的金属有机框架材料结构。 , 9. 56 °, 11. 70 °, 13. 48 °, 14. 70 °, 16. 5 °, 17. 54 ° occurs at a characteristic peak, indicating that the material has a typical metal-organic framework material structure.

[0026] 实施例二 [0026] Second Embodiment

与实施例一的区别在于:在带聚四氟乙烯内衬的不锈钢反应釜中,在60°C下晶化15小时,过滤后依次用甲醇和去离子水洗涤三次,每次50ml,充分搅拌lOmin,80°C干燥2小时,得到蓝色晶体。 A difference in that Example: In a Teflon-lined stainless steel autoclave, at 60 ° C for crystallization for 15 hours, filtered and washed with methanol and deionized water three times, each 50ml, stir lOmin, 80 ° C for 2 hours, to give blue crystals. 所得蓝色晶体在150°C抽真空处理3小时,测得比表面积为539m2/g。 The resultant blue crystals evacuated at 150 ° C for 3 hours, measuring a specific surface area of ​​539m2 / g.

[0027] 实施例三 [0027] Example three

与实施例一的区别在于:在带聚四氟乙烯内衬的不锈钢反应釜中,在150°C下晶化15小时,过滤后依次用甲醇和去离子水洗漆三次,每次50ml,充分搅拌lOmin, 105°C干燥10小时,得到蓝色晶体。 A difference in that Example: In a Teflon-lined stainless steel autoclave at 150 ° C for crystallization for 15 hours, filtered and washed with methanol three times with deionized water paint, each 50ml, stir lOmin, 105 ° C for 10 hours, to give blue crystals. 所得蓝色晶体在200°C抽真空处理15小时,测得比表面积为967m2/g。 The resultant blue crystals 200 ° C in vacuum for 15 hours to measure a specific surface area of ​​967m2 / g.

[0028] 实施例四 [0028] Fourth Embodiment

与实施例一的区别在于:在带聚四氟乙烯内衬的不锈钢反应釜中,在95°C下晶化12小时,过滤后依次用甲醇和去离子水洗漆三次,每次50ml,充分搅拌lOmin, 105°C干燥10小时,得到蓝色晶体。 A difference in that Example: In a Teflon-lined stainless steel autoclave, at 95 ° C for crystallization for 12 h, filtered, washed with methanol and three times with deionized water paint, each 50ml, stir lOmin, 105 ° C for 10 hours, to give blue crystals. 所得蓝色晶体在160°C抽真空处理10小时,测得比表面积为1025m2/g。 The resultant blue crystals evacuated at 160 ° C for 10 hours, and measuring a specific surface area of ​​1025m2 / g. [0029] 实施例五 [0029] Embodiment V

配制浓度为I. 16 mol/L的25ml Cu(NO3)2 • 3H20水溶液,标记为溶液I ;配制浓度为0.58 mol/L的25ml H3btc的乙醇溶液,标记为溶液II ;将溶液I和溶液II混合,充分搅拌45min后装入容量为IOOml的带聚四氟乙烯内衬的不锈钢反应釜中,在95°C下晶化24小时,过滤后依次用甲醇和去离子水洗漆三次,每次50ml,充分搅拌lOmin, 105°C干燥10小时,得到蓝色晶体。 Prepared at a concentration I. 16 mol 2 • 3H20 aqueous solution / L, 25ml Cu (NO3), solution I labeled; formulated at a concentration of 0.58 mol / L ethanol solution 25ml H3btc, labeled II solution; Solution I and the solution II mixed, sufficiently stirred stainless steel autoclave was charged capacity IOOml after 45min with Teflon-lined, after crystallization 95 ° C for 24 hours, filtered and washed with methanol three times with deionized water paint, each 50ml , stir lOmin, 105 ° C for 10 hours, to give blue crystals. 所得蓝色晶体在180°C抽真空处理10小时,测得比表面积为llllm2/g。 The resultant blue crystals evacuated at 180 ° C for 10 hours, and a specific surface area was measured llllm2 / g.

[0030] 实施例六 [0030] Sixth Embodiment

与实施例一的区别在于:在带聚四氟乙烯内衬的不锈钢反应釜中,在95°C晶化15小时,过滤后依次用甲醇和去离子水洗漆三次,每次50ml,充分搅拌lOmin, 105°C干燥10小时,得到蓝色晶体。 A difference in that Example: In a Teflon-lined stainless steel autoclave and crystallized at 95 ° C for 15 hours and filtered and sequentially washed with methanol three times with deionized water paint, each 50ml, stir lOmin , 105 ° C for 10 hours, to give blue crystals. 所得蓝色晶体在175°C抽真空处理10小时,测得比表面积为866m2/g。 The resultant blue crystals evacuated at 175 ° C for 10 hours, and measuring a specific surface area of ​​866m2 / g.

[0031] 本发明还提供一种上述任意一个实施例制备得到的金属有机骨架材料在吸附分离二氧化碳/甲烷中的应用,其中,吸附压力为0. IMPa〜0. 4MPa,吸附温度为_15°C〜85°C, 以及甲烷和二氧化碳混合气体中二氧化碳的体积分数为5%飞0%。 [0031] The present invention also provides any of the above prepared metal-organic framework material obtained in Example methane separation of carbon dioxide in the application / adsorbent, wherein the adsorption pressure is 0. IMPa~0. 4MPa, adsorption temperature of _15 ° C~85 ° C, and the volume fraction of methane and carbon dioxide mixed gas of carbon dioxide is 5% to 0% fly.

[0032] 本发明将金属有机骨架材料装入吸附温度为-15°C〜85°C,吸附压力为0. IMPa〜0. 4MPa的变压吸附装置中,通入纯二氧化碳或纯甲烷气体,测量吸附床中压力的变化,从而得到不同压力条件下吸附剂对纯气体的吸附容量和吸附等温线;对于气体混合物,本发明将金属有机骨架材料装入吸附温度为_15°C〜85°C,吸附压力为0. IMPa〜0. 4MPa的变压吸附装置中,以氦气作为载气,通入二氧化碳浓度为5%飞0%的甲烷/ 二氧化碳混合气,利用气相色谱测量吸附床出口气体的组成,得到气体的穿透曲线以及吸附选择性。 [0032] The present invention will be loaded metal organic framework material, the adsorption temperature is -15 ° C~85 ° C, adsorption pressure swing adsorption apparatus 0. IMPa~0. 4MPa, the pure or pure carbon dioxide into methane gas, measuring the pressure variation in the adsorption bed, thereby obtaining adsorbent capacity and adsorption isotherms of the pure gas at different pressures; for gas mixtures, the present invention is a metal organic framework material into an adsorption temperature of _15 ° C~85 ° C, adsorption pressure swing adsorption apparatus 0. IMPa~0. 4MPa, the helium as a carrier gas, into the carbon dioxide concentration of 5% fly 0% methane / carbon dioxide gas mixture, the adsorption bed outlet by gas chromatography measurement composition of the gas, and gas breakthrough curve obtained adsorption selectivity.

[0033] 以下通过具体实施例进行说明。 [0033] The following embodiments will be described by way of specific examples.

[0034] 实施例七 [0034] Seventh Embodiment

将实施例一中制得的含铜金属骨架材料0. 6g,175°C下抽真空处理10小时后装入变压吸附床中,在85°C下通入纯的二氧化碳或甲烷气体,在0. 4MPa压力下,该材料对二氧化碳的吸附容量高达6. 40mmol/g,对甲烷的吸附容量为2. 55mmol/g。 The pump in the first embodiment obtained copper-containing metal reinforcing materials 0. 6g, 175 ° C was charged in vacuum pressure swing adsorbent bed 10 hours at 85 ° C under aeration with pure carbon dioxide or methane gas, in 0. 4MPa under pressure, carbon dioxide adsorption capacity of the material up to 6. 40mmol / g, the adsorption capacity of methane 2. 55mmol / g.

[0035] 实施例八 [0035] In the eighth embodiment

将实施例一中制得的含铜金属骨架材料0. 6g,175°C下抽真空处理10小时后装入变压吸附床中,在-15°C下通入纯的二氧化碳或甲烷气体,在0. 4MPa压力下,该材料对二氧化碳的吸附容量高达9. 40mmol/g,对甲烷的吸附容量为3. 90mmol/g。 The pump in the first embodiment obtained copper-containing metal reinforcing materials 0. 6g, 175 ° C was charged 10 hours in vacuum pressure swing adsorption bed at -15 ° C into pure carbon dioxide gas or methane, 0. 4MPa at a pressure of carbon dioxide adsorption capacity of the material up to 9. 40mmol / g, the adsorption capacity of methane 3. 90mmol / g.

[0036] 实施例九 [0036] Embodiment 9

将实施例一中制得的含铜金属骨架材料14g,175°C下抽真空处理10小时后装入变压吸附床中,以氦气为载气保持吸附床中0. 4MPa的操作压力,通入二氧化碳体积浓度为60%的甲烷/ 二氧化碳混合气,在吸附床出口以气相色谱检测气体成分变化;选择甲烷或二氧化碳出口浓度为初始浓度的50%时为穿透点,得到甲烷在7. 3分钟时穿透,二氧化碳在16. 5分钟穿透,从而计算可得二氧化碳/甲烷混合气体的吸附选择性为3. 10。 Examples prepared in a copper-containing metal reinforcing material 14g, pumping at 175 ° C was charged 10 hours vacuum pressure swing adsorbent bed, helium as the carrier gas to maintain the operating pressure of the adsorbent bed 0. 4MPa, with carbon dioxide concentration of 60% by volume of methane / carbon dioxide mixed gas, the adsorbent bed outlet to detect gas composition by gas chromatography; the choice of methane or carbon dioxide exit concentration of 50% of the initial concentration point to penetrate, resulting in methane 7. 3 minutes penetration, the penetration of carbon dioxide at 16.5 minutes, can be obtained to calculate the adsorption selectivity of carbon dioxide / methane mixed gas was 3.10.

[0037] 实施例十 [0037] Embodiment 10 Embodiment

将实施例一中制得的含铜金属骨架材料14g,175°C下抽真空处理10小时后装入变压吸附床中,以氦气为载气保持吸附床中0. 4MPa的操作压力,通入二氧化碳浓度为5%的甲烷/ 二氧化碳混合气,在吸附床出口以气相色谱检测气体成分变化,绘制穿透曲线;选择甲烷或二氧化碳出口浓度为初始浓度的50%时为穿透点,得到甲烷在5. 7分钟时穿透,二氧化碳在32. 9分钟穿透,从而计算可得二氧化碳/甲烷混合气体的吸附选择性为10. 76。 Examples prepared in a copper-containing metal reinforcing material 14g, pumping at 175 ° C was charged 10 hours vacuum pressure swing adsorbent bed, helium as the carrier gas to maintain the operating pressure of the adsorbent bed 0. 4MPa, into a carbon dioxide concentration of 5% methane / carbon dioxide mixed gas, the adsorbent bed outlet to detect changes in gas composition by gas chromatography, breakthrough curve drawn; is selected outlet methane or carbon dioxide concentration of 50% of the initial concentration point to penetrate, to give methane penetration at 5.7 minutes, 32.9 minutes penetration of carbon dioxide, can be obtained to calculate the adsorption selectivity of carbon dioxide / methane mixed gas was 10.76.

[0038] 以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。 [0038] The above content with the specific preferred embodiments of the present invention is further made to the detailed description, specific embodiments of the present invention should not be considered limited to these descriptions. 对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,做出若干等同替代或明显变型,而且性能或用途相同,都应当视为属于本发明的保护范围。 Those of ordinary skill in the art for the present invention, without departing from the inventive concept, the scope of protection of the present invention made several significant modifications or equivalents, and the same performance or use, should be considered.

Claims (4)

1. 一种吸附分离ニ氧化碳/甲烷的金属有机骨架材料的制备方法,其特征在于,包括如下步骤: (1)将0.46〜I. 16 mol/L的硝酸铜水溶液和0. 23〜0. 58 mol/L的均苯三甲酸こ醇溶液混合,充分搅拌后加入带聚四氟こ烯内衬的不锈钢反应釜中密封,控制晶化温度为6(Tl50°C及晶化时间为12〜24小时进行溶剂热反应; (2)打开不锈钢反应釜,经过滤,并依次用甲醇和去离子水洗涤,在8(T105°C下干燥得到监色晶体; (3)将所述蓝色晶体在15(T200°C下抽真空处理得到含铜金属有机骨架材料。 The method of preparing a metal organic framework material Ni An adsorptive separation of carbon dioxide / methane, characterized by comprising the steps of: (1) the 0.46~I 16 mol / L of an aqueous solution of copper nitrate and 0. 23~0 . 58 mol / L were mixed alcohol solution ko trimesic acid, was added. after stirring with a polytetrafluoroethylene lined ko alkenyl sealed stainless steel reactor, controlling the crystallization temperature of 6 (Tl50 ° C and the crystallization time of 12 ~ 24 hours solvothermal reaction; (2) open stainless steel reactor, filtered, and washed with methanol and deionized water, and dried to give colorless crystals in supervisor (at T105 ° C 8; (3) the blue vacuuming to give crystals containing metal organic framework material at 15 (T200 ° C.
2.如权利要求I所述的金属有机骨架材料的制备方法,其特征在于:所述步骤(3)中的温度为160-180°C。 Method I Preparation of the metal-organic framework material as claimed in claim 2, wherein: said temperature of step (3) in the range 160-180 ° C.
3. ー种金属有机骨架材料,其特征在于:由权利要求1-2任意一项所述的制备方法制得,其比表面积为500〜1200 m2/g。 3. ー metal organic framework material, comprising: a preparation method of any of claims 1-2 prepared according to have a specific surface area of ​​500~1200 m2 / g.
4.权利要求3所述的金属有机骨架材料在吸附分离ニ氧化碳/甲烷中的应用,其特征在于:吸附压カ为0. IMPa〜0. 4MPa,吸附温度为_15°C〜85°C,以及甲烷和ニ氧化碳混合气体中ニ氧化碳的体积分数为5%〜60%。 4. The application of metal-organic framework material as claimed in claim 3 Ni adsorptive separation of carbon dioxide / methane, wherein: ka adsorption pressure is 0. IMPa~0 4MPa, adsorption temperature of _15 ° C~85 °. C, and a mixed gas of methane and carbon dioxide ni ni carbon monoxide in a volume fraction of 5% ~ 60%.
CN 201210252943 2012-07-20 2012-07-20 The method of preparing a metal organic framework material adsorptive separation of carbon dioxide / methane CN102728331B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210252943 CN102728331B (en) 2012-07-20 2012-07-20 The method of preparing a metal organic framework material adsorptive separation of carbon dioxide / methane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 201210252943 CN102728331B (en) 2012-07-20 2012-07-20 The method of preparing a metal organic framework material adsorptive separation of carbon dioxide / methane
HK12112979.6A HK1171981A1 (en) 2012-07-20 2012-12-14 Preparation method of metal organic skeleton material

Publications (2)

Publication Number Publication Date
CN102728331A true CN102728331A (en) 2012-10-17
CN102728331B CN102728331B (en) 2014-10-29

Family

ID=46985046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210252943 CN102728331B (en) 2012-07-20 2012-07-20 The method of preparing a metal organic framework material adsorptive separation of carbon dioxide / methane

Country Status (2)

Country Link
CN (1) CN102728331B (en)
HK (1) HK1171981A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691399A (en) * 2013-12-18 2014-04-02 北京科技大学 Preparation method of high-performance carbon molecular sieve for separating carbon dioxide/methane
CN105312026A (en) * 2014-07-09 2016-02-10 江苏瑞丰科技实业有限公司 Normal temperature methane high-efficiency adsorption material
CN105669593A (en) * 2014-11-19 2016-06-15 中国科学院大连化学物理研究所 Barium base metal organic framework material preparation method
CN106622139A (en) * 2015-11-03 2017-05-10 中国石油化工股份有限公司 Metal organic framework material and preparation method and application thereof
CN106693896A (en) * 2015-11-12 2017-05-24 中国科学院大连化学物理研究所 Heterogeneous composite structure adsorption materials, and preparation method and application thereof
CN107376997A (en) * 2017-07-04 2017-11-24 常州大学 A kind of catalyst preparation and its application for Oxybenzene methyl alcohol producing benzaldehyde

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491740B1 (en) * 1999-07-22 2002-12-10 The Boc Group, Inc. Metallo-organic polymers for gas separation and purification
CN101816924A (en) * 2010-04-13 2010-09-01 东南大学 Metal organic framework material used for absorbing and separating CO2 and preparation method thereof
CN102336774A (en) * 2011-07-20 2012-02-01 中国科学院化学研究所 Method for synthesizing BTC (1,3,5-benzenetricarboxylic acid)-based nanoscale organometallic framework material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491740B1 (en) * 1999-07-22 2002-12-10 The Boc Group, Inc. Metallo-organic polymers for gas separation and purification
CN101816924A (en) * 2010-04-13 2010-09-01 东南大学 Metal organic framework material used for absorbing and separating CO2 and preparation method thereof
CN102336774A (en) * 2011-07-20 2012-02-01 中国科学院化学研究所 Method for synthesizing BTC (1,3,5-benzenetricarboxylic acid)-based nanoscale organometallic framework material

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KLAUS SCHLICHTE ET AL.: "Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2", 《MICROPOROUS AND MESOPOROUS MATERIALS》, vol. 73, 31 December 2004 (2004-12-31), pages 81 - 88 *
QINGMIN WANG ET AL.: "Metallo-organic molecular sieve for gas separation and purification", 《MICROPOROUS AND MESOPOROUS MATERIALS》, vol. 55, 31 December 2002 (2002-12-31), pages 217 - 230, XP004379411, DOI: doi:10.1016/S1387-1811(02)00405-5 *
李忠月等: "一系列稀土金属有机骨架的储气以及荧光性质", 《无机化学学报》, vol. 28, no. 4, 30 April 2012 (2012-04-30), pages 710 - 714 *
蔡洪培: "聚亚酰胺和金属有机框架材料Cu3(BTC)2混合中空纤维膜及其气体吸附分离研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》, no. 1, 15 January 2012 (2012-01-15), pages 14 - 16 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691399A (en) * 2013-12-18 2014-04-02 北京科技大学 Preparation method of high-performance carbon molecular sieve for separating carbon dioxide/methane
CN105312026A (en) * 2014-07-09 2016-02-10 江苏瑞丰科技实业有限公司 Normal temperature methane high-efficiency adsorption material
CN105312026B (en) * 2014-07-09 2017-10-31 江苏瑞丰科技实业有限公司 Normal temperature methane efficient absorption material
CN105669593A (en) * 2014-11-19 2016-06-15 中国科学院大连化学物理研究所 Barium base metal organic framework material preparation method
CN105669593B (en) * 2014-11-19 2018-04-06 中国科学院大连化学物理研究所 A kind of preparation method of barium Base Metal organic framework material
CN106622139A (en) * 2015-11-03 2017-05-10 中国石油化工股份有限公司 Metal organic framework material and preparation method and application thereof
CN106622139B (en) * 2015-11-03 2019-05-21 中国石油化工股份有限公司 A kind of metal-organic framework materials and the preparation method and application thereof
CN106693896A (en) * 2015-11-12 2017-05-24 中国科学院大连化学物理研究所 Heterogeneous composite structure adsorption materials, and preparation method and application thereof
CN107376997A (en) * 2017-07-04 2017-11-24 常州大学 A kind of catalyst preparation and its application for Oxybenzene methyl alcohol producing benzaldehyde

Also Published As

Publication number Publication date
CN102728331B (en) 2014-10-29
HK1171981A1 (en) 2015-07-03

Similar Documents

Publication Publication Date Title
Song et al. Mesoporous metal–organic frameworks: design and applications
KR101493529B1 (en) Metal organic framework based on aluminum fumarate
Yang et al. CO2 adsorption over ion-exchanged zeolite beta with alkali and alkaline earth metal ions
EP1148025B1 (en) Method for purifying hydrogen-based gas mixture
CN102962037B (en) Metal-organic framework material for methane adsorption separation and preparation method thereof
Qian et al. Highly selective carbon dioxide adsorption in a water-stable indium–organic framework material
Borjigin et al. A microporous metal–organic framework with high stability for GC separation of alcohols from water
US6749819B2 (en) Process for purifying ammonia
Choi et al. Microwave synthesis of a porous metal-organic framework, zinc terephthalate MOF-5
Munusamy et al. Sorption of carbon dioxide, methane, nitrogen and carbon monoxide on MIL-101 (Cr): volumetric measurements and dynamic adsorption studies
CN103432997B (en) Cu-based organic backbone - graphene oxide composite porous material and its preparation method
Han et al. Efficient MgO-based mesoporous CO2 trapper and its performance at high temperature
Feng et al. Metal–organic frameworks HKUST-1 for liquid-phase adsorption of uranium
He et al. A bifunctional metal–organic framework featuring the combination of open metal sites and Lewis basic sites for selective gas adsorption and heterogeneous cascade catalysis
CN102658082B (en) Inorganic composite material for absorbent refining multiple metal ion industrial sewage and application method thereof
Yoon et al. A porous mixed-valent iron MOF exhibiting the acs net: Synthesis, characterization and sorption behavior of Fe3O (F4BDC) 3 (H2O) 3·(DMF) 3.5
Ye et al. Post-combustion CO2 capture with the HKUST-1 and MIL-101 (Cr) metal–organic frameworks: Adsorption, separation and regeneration investigations
JP2015504000A (en) Alkylamine functionalized metal organic framework for gas separation
CN103240130A (en) TiO2 / MIL-101 composite catalyst for photocatalytic water splitting and preparation method and applications thereof
US8313559B2 (en) Aluminum aminocarboxylates as porous metal organic frameworks
CN102218298B (en) Preparation method of modified ZIF-8 zeolitic imidazolate framework material
Yao et al. Two stable 3D porous metal–organic frameworks with high performance for gas adsorption and separation
US8227377B2 (en) Carbon dioxide adsorbent capable of adsorption and desorption in dependence on pressure of atmospheric pressure or higher
EP2089153A1 (en) Aluminum naphthalenedicarboxylate as a porous organometallic framework material
CN100377776C (en) Method for preparing molecular sieve absorbent with high adsorption capacity

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1171981

Country of ref document: HK

C14 Grant of patent or utility model
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1171981

Country of ref document: HK