CN102711274A - WLAN communication channel detecting method based on optimal stopping theory - Google Patents

WLAN communication channel detecting method based on optimal stopping theory Download PDF

Info

Publication number
CN102711274A
CN102711274A CN2012101788677A CN201210178867A CN102711274A CN 102711274 A CN102711274 A CN 102711274A CN 2012101788677 A CN2012101788677 A CN 2012101788677A CN 201210178867 A CN201210178867 A CN 201210178867A CN 102711274 A CN102711274 A CN 102711274A
Authority
CN
China
Prior art keywords
channel
optimal
ch
sounding
terminal
Prior art date
Application number
CN2012101788677A
Other languages
Chinese (zh)
Other versions
CN102711274B (en
Inventor
张继红
李志咏
李秉毅
梁柯
申磊
Original Assignee
重庆亚东亚集团软件有限公司
重庆市电力公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆亚东亚集团软件有限公司, 重庆市电力公司 filed Critical 重庆亚东亚集团软件有限公司
Priority to CN201210178867.7A priority Critical patent/CN102711274B/en
Publication of CN102711274A publication Critical patent/CN102711274A/en
Application granted granted Critical
Publication of CN102711274B publication Critical patent/CN102711274B/en

Links

Abstract

The invention discloses a WLAN (Wireless Local Area Network) communication channel detecting method based on the optimal stopping theory, which belongs to the field of telecommunications. A terminal is switched in a wireless access terminal through a random communication channel; a control frame is used for consulting with a wireless AP (Access Point) so as to enable the AP to calculate the optimal SNR (Signal Noise Ratio) of the communication channel by the optimal stopping theory and to compare with the practical SNR of the communication channel to determine whether to continually seek for a next to-be-detected communication channel; after a optimal communication channel is found, the optimal communication channel and a detection interval are transmitted to a source terminal by the control frame in a piggybacked load manner; and the other terminals obtain the information by network allocation vector and are cached in a local buffer. All the terminals access the communication channel still according to the carrier sense multiple access/collision avoidance mode, and the detection of the optimal communication channel is no longer required. By adopting the method provided by the invention, the problem of same frequency communication channel interference is quickly and effectively solved, and the throughput of wireless system transmission is improved.

Description

基于最优停止理论的无线局域网信道探测方法 Based on a wireless LAN channel sounding method optimal stopping Theory

技术领域 FIELD

[0001] 本发明涉及无线局域网及通信技术领域,尤其是一种基于最优停止理论的无线局域网信道探测方法。 [0001] The present invention relates to the field of wireless local area network communication technology and, in particular, a wireless LAN channel detection method based on the theory of optimal stopping.

背景技术 Background technique

[0002] 当前无线接入点(AP)在使用时,基本上都是手工设置信道,无线网卡等终端产品在工作时自动匹配其设置,工作的时候都是工作在同一个信道,这样就会出现如果小区内有多个无线AP和终端都处于工作状态时,由于没有公共权威的信道管理机构有序的分配信道,很可能存在同信道干扰问题,见图1,这样会大大影响传输的服务质量(QoS),尤其是吞吐量性能。 [0002] Current wireless access point (AP), in use, substantially all manually set the channel, wireless LAN and other end products automatic matching set at work, when the work is a work in the same channel, this will If there is a cell a plurality of wireless AP and the terminals are in working condition occurs, since the orderly allocation channel no public authority channel management means, it is the presence of co-channel interference problems that may, in Figure 1, it will greatly affect the transmission service quality (QoS), throughput performance in particular. 即使目前无线AP设置中有自动信道探测功能,但是大多数产品只是初次配置时选择一个干扰较小的信道,实际使用中还是固定信道进行工作,并没有根据周围无线干扰环境做出最优信道的选择。 Even with automatic channel counter current wireless AP setting, but the choice of a less interference channel Most products are only the initial configuration, or a fixed channel operational use, and did not make the best channel according to surrounding radio interference environment select.

[0003] 而目前针对多无线AP共存下的信道分配方法有以下几种: [0003] The current channel allocation method for multi-radio coexistence AP are the following:

[0004] 方法一:定期轮询所有信道寻找干扰最小信道的方法。 [0004] Method a: periodically polls all the channels to find ways to minimize channel interference. 该方法采用RTS (Requestto Send)/CTS (Clear to Send)依次从I号信道轮询到最大号信道,无线终端记录每个信道上接收到的控制帧的物理层前导携带的信噪比(SNR)信息,统计完所有信道的SNR后,进行SNR数值大小的比较,最大SNR所在的信道即为干扰最小的信道,然后通过网络分配矢量(NAV)方式传输给所在无线小区的所有终端。 The method uses RTS (Requestto Send) / CTS (Clear to Send) sequentially polls the channel number from I to the maximum number of channels, the wireless terminal physical layer preamble recording control frame received on each channel to carry the signal to noise ratio (SNR ) information, after statistical SNR of all the channels, comparing the numerical size of SNR, channel maximum SNR is located is the minimum interference channel, and then transmitted to all terminals to the host radio cell by a network allocation vector (NAV) mode. 在最优信道轮询间隔时间内,终端把此干扰最小的信道当做固定信道进行使用,不再进行最优信道的寻找。 Optimal channel in the polling interval, this minimum interference to the terminal a channel used as a fixed channel, the channel is no longer optimal search. 该方法能简单有效地解决其它无线AP固定信道的同频干扰,并能定期根据环境的干扰情况更新最优信道,能较好地提供系统的吞吐量,但是该方法有一个不足,即每次寻找最优信道都要依次轮询所有信道,在寻找最优信道上耗费时间相对较多,并且寻找方法不够高效。 This method can simply and effectively solve the other wireless AP fixed channel co-channel interference, and interference can be regularly updated optimal channel environment and can provide better throughput of the system, but this method has a disadvantage that each finding the best channel to be sequentially polls all channels, to find the optimal channel in a relatively large time-consuming, and not efficient enough to find ways.

[0005] 方法二:快速动态信道的分配处理方法。 [0005] Method II: allocating processing method of fast dynamic channel. 此方法从无线网络控制器(RNC)内部出发,从用户释放的角度进行考虑,动态的查询小区各载波的负荷,从而根据载波负荷的高低来动态的分配信道,其实现过程如下:首先,有无线网络控制器查询各载波负荷,确定有高速下行分组接入用户释放,同时确定高速下行分组接入用户数最少的第一载波与高速下行分组接入用户最少的第二载波;然后由无线网络控制器对第一载波上的高速下行分组接入用户调整到第二载波上,从而实现快速动态信道分配。 This method from the internal radio network controller (the RNC), considered in the load of each carrier dynamic query cell from the perspective of the user released, so that according to the level to dynamically carrier load distribution channel, which process is as follows: First, there the radio network controller can check the carrier load, high-speed downlink packet access determined user releases, at the same time determining the minimum high-speed downlink packet access users and a first carrier HSDPA users least a second carrier; and then by a wireless network speed downlink packet access controller the user on a first carrier to a second carrier adjusted to achieve fast dynamic channel allocation. 本方法虽然实现了信道动态分配,提高小区总的吞吐率,但是只考虑了信道载波的负荷和接入用户情况,按照信道上负荷的多少进行信道分配,并没有考虑实际信道的干扰情况,没有很好地缓解同频干扰问题。 This method, although implements dynamic channel allocation, to improve the overall throughput of a cell, but only consider channel carrier load and access user, the channel allocation is performed according to how many channel load, and does not consider interference of an actual channel, there is no well alleviate co-channel interference problems.

发明内容 SUMMARY

[0006] 本发明的目的是提供一种基于最优停止理论的无线局域网信道探测方法,可快速有效地解决同频信道干扰问题,提高无线系统传输中的吞吐量。 [0006] The object of the present invention is to provide a wireless local area network based on a channel sounding method optimal stopping theory, it can be quickly and efficiently solve the problem of co-channel interference, improving throughput in a wireless transmission system.

[0007] 为了实现上述目的,本发明提供了一种基于最优停止理论的无线局域网信道探测方法,其特征在于包括以下步骤:[0008] SI、统计无线局域网中信道的总数L,并且设定信道的探测次数为n,初始化n为1,其中0〈n < L且n、L均为整数; [0007] To achieve the above object, the present invention provides a wireless LAN based on a channel sounding method optimal stopping theory, comprising the steps of: [0008] SI, then count the number L of channels in the wireless LAN and sets detecting the number of channels is n, n is 1 initializes, where 0 <n <L and n, L are integers;

[0009] S2、当终端接入无线接入点时,该终端通过该无线局域网中任意一个信道CH发送RTS控制帧给该无线接入点,其中CH为大于0的整数; [0009] S2, when the terminal accesses the wireless access point, the wireless LAN terminal via the any one control channel CH transmits an RTS frame to the wireless access point, wherein the CH is an integer greater than 0;

[0010] S3、该无线接入点基于最优停止理论探测该信道CH是否为最优信道: [0010] S3, the wireless access point based on the theory of optimal stopping detecting whether the channel CH optimal channel:

[0011 ] 如果该信道CH是最优信道,则停止信道探测,并将该最优信道的序号CH发送给该终端; [0011] If the channel CH is optimal channel, channel sounding is stopped, and transmits the optimum channel number CH to the terminal;

[0012] 如果该信道CH不是最优信道,则n++,并且该无线接入点发送CTS控制帧给该终端,该终端判断CH是否小于L :如果CH〈L则该终端通过无线局域网中信道CH++发送RTS控制帧给该无线接入点,重复执行步骤S3,继续信道探测;如果CH > L则将CH复位为1,则该终端通过无线局域网中信道I发送RTS控制帧给该无线接入点,重复执行步骤S3,重新进行信道探测。 [0012] If the channel CH is not optimal channel, the n ++, and the wireless access point transmits a CTS control frames to the terminal, the terminal determines CH is smaller than L: If CH <L then the terminal through a wireless local area network of channels CH ++ transmits an RTS frame to control the wireless access point, repeat the step S3, the continuing channel sounding; If CH> L CH will be reset to 1, the wireless LAN terminal via the channel I transmitted RTS frame to control the wireless access point repeat step S3, the re-channel sounding.

[0013] 在步骤S3中无线接入点基于最优停止理论探测该信道CH是否为最优信道的过程由以下步骤组成: [0013] Based on the theory of optimal stopping detecting whether the channel CH during optimal channel consists of the following steps in the step S3, the wireless access point:

[0014] S30、无线接入点对RTS控制帧的物理层前导进行解码,获得该信道CH的实际信噪比SNR ; [0014] S30, the wireless access point for controlling a physical layer preamble RTS frame is decoded, to obtain the actual SNR of the channel is CH;

[0015] S31、根据公式g = gXp(g>Xn)+E[Xn] Xp(g彡Xn)_cn,求取第n次信道探测时实际增益g,其中E [Xn]表示第n次信道探测时信道质量Xn的期望值,Cn表示第n次信道探测时控制帧的附加开销,P (g>Xn)表示第n次信道探测时实际增益g>信道质量Xn出现的概率,P (g ( Xn)表示第n次信道探测时实际增益g <信道质量Xn出现的概率; [0015] S31, according to the equation g = gXp (g> Xn) + E [Xn] Xp (g San Xn) _cn, when obtaining the n-th channel detect an actual gain of g, where E [Xn] denotes the n-th channel when the sounding channel quality Xn expectations, Cn represents a control frame n-th channel sounding overhead, P (g> Xn) represents the probability that n-th channel sounding real gain g> channel quality Xn occur, P (g ( Xn) represents the probability that n-th channel sounding real gain g <Xn channel quality appears;

m m

[0016] A、根据公式£[X„] = ^凡,A,计算该第n次信道探测时信道质量Xn的期望值E [Xj, [0016] A, according to the formula £ [X "] = ^ where, A, Xn is calculated when the channel quality of the n-th channel sounding expectation E [Xj,

/=1 / = 1

Xni表示第n次信道探测中第i个速率下的信道质量,Pni表示第n次信道探测中第i个速率出现的概率,m表示在当前信道CH下所支持的理论速率等级数目,I彡n彡L,1彡i彡m且n、i和m均为整数,L表示无线局域网中信道的总数; Xni represents the n-th channel sounding channel quality in the i-th rate, Pni represents the probability of the n-th channel sounding the i-th rate occurs, m represents the number of theoretical rate level in the current channel CH supported, I San n San L, 1 San i San m and n, i and m are integers, L denotes the total number of channels in the wireless LAN;

[0017] 其中xm_ = Ldata ,Ldata表不MAC层需要传递负载的长度,Rni表不在第n次信道 [0017] wherein xm_ = Ldata, Ldata table does not need to pass the length of the MAC layer load, Rni table is not the n-th channel

base base

探测中的第i个速率Ri, Rbase表示第n次信道探测中的基本传输速率; Detection of the i-th rate Ri, Rbase denotes the n-th fundamental transmission rate of the channel sounding;

[0018] pni = Pn(SNRw)-Pn(SNRi),i G [1,m_l], SNRi 表示保证以第i 个速率Ri 传输时的最小信噪比,SNRi+1表示保证以第i个速率Ri+1传输时的最小信噪比,Pn(SNRi)表示在第n次信道探测中SNRi出现的概率,pn(SNRi+1)表示在第n次信道探测中SNRi+1出现的概率,m表示该信道CH所支持的理论速率等级数目; [0018] pni = Pn (SNRw) -Pn (SNRi), i G [1, m_l], SNRi represents a guaranteed minimum SNR to the i-th transmission rate Ri, SNRi + 1 represents the i-th rate to ensure Ri + minimum SNR of a transmission, Pn (SNRi) represents the probability of the n-th channel detection SNRi occur, pn (SNRi + 1) represents the probability of the n-th channel sounding in SNRi + 1 appears, m the number represents the theoretical rate level supported by a channel CH;

[0019] 并且信噪比函数SNR(t)与衰落信道概率密度函数P (i)、双径地面反射模型 [0019] function and signal to noise ratio SNR (t) and fading channel probability density function P (i), bis-diameter reflecting surface model

/ .、 J^C/ Cf h" h" /., J ^ C / Cf h "h"

Pr (d)的关系为并且巧(O =」1J/ rd表示发射天线与接收天线之 Relationship Pr (d) is a clever and (O = "1J / rd represents the transmit and receive antennas

1 , S~ a 厂? 1, S ~ a factory?

间的距离,Pt表示发射天线的功率,ht和b分别发射天线和接收天线的高度,L=L Gt和4分别表示发送方和接收方的天线增益; The distance between, Pt represents the power of the transmitting antenna, ht height and b are each transmit antenna and a receiving antenna, L = L Gt and 4 show antenna gains of transmitting and receiving;

f Tnts + Tccts + SIFS,n = I f Tnts + Tccts + SIFS, n = I

[0020] B、根据求取第n [0020] B, is obtained in accordance with the n

"[/7X + (/7-1) X Tcrs+7'cns + (In -1) XS/I 'S, ne[2,L]次信道探测时控制帧的附加开销Cn,其中Tkts表示RTS控制帧的传输时间,Tcts表示CTS控制中贞的传输时间,Tccts表不CCTS控制巾贞的传输时间,SIFS表不短巾贞之间间隔; "[/ 7X + (/ 7-1) X Tcrs + 7'cns + (In -1) XS / I 'S, ne [2, L] control overhead time frames Cn secondary channel sounding, which represents RTS Tkts controlling the transmission time frame, Tcts represents CTS transmission time control Chen, Tccts table does not control towel Chen CCTS transmission time, SIFS shorter than the interval between the table towel Zhen;

[0021] S32、判断该实际增益g是否在最大增益(T的限制范围内,该最大增益(T的限制范 [0021] S32, determines whether the actual gain g (T within the limits of the maximum gain, the maximum gain (the range limits T

围为G':se (L:!(! IG [I, m-1],其中Ldata表示MAC层需要传递负载的长度, Wai as G ': se (L:! (IG [I, m-1], wherein the MAC layer needs to pass Ldata represents the length of the load,!

base base base base

Rbase表示在第n次信道探测中的基本传输速率,Ri表示在第n次信道探测中的第i个速率,Ri+1表示在第n次信道探测中的第i+1个速率,m表示当前信道CH所支持的理论速率等级数目: Rbase denotes the fundamental transmission rate in the n-th channel Detection, Ri represents the i-th rate in the n-th channel Detection, Ri + 1 represents the i + 1-th rate in the n-th channel probing, m represents an the current channel number CH theoretical rate level supported:

[0022] 如果该实际增益g在该最大增益G*的限制范围内,则将该实际增益g赋值给该最大增益G%即G* = g; [0022] If the actual gain g in the maximum gain G * limits, then the actual gain g is assigned to the maximum gain i.e. G * = G% g;

[0023] S33、根据公式f 求取最优速率R%其中Ldata表示MAC层需要传递负载 [0023] S33, according to the formula f wherein obtaining the optimal rate R% represents Ldata MAC layer needs to transfer load

'data 'Data

的长度,Rbase表示在第n次信道探测中的基本传输速率,G*表示最大增益; Length, Rbase denotes the fundamental transmission rate in the n-th channel Detection, G * represents the maximum gain;

^rn SNR .-SNR ^ Rn SNR.-SNR

[0024] S34、 根据公式_ 1 W、ie [1,m-1],求取最优理论信噪比 [0024] S34, according to the formula _ 1 W, ie [1, m-1], the theoretical optimum SNR is obtained

八,f I — Eight, f I -

SNRtjptimal,其中SNRi表示保证以第i个速率Ri传输时的最小信噪比,SNRi+1表示保证以第i个速率Ri+1传输时的最小信噪比,Ri表示在第n次信道探测中的第i个速率,Ri+1表示在第n次信道探测中的第i+1个速率,m表示当前信道CH所支持的理论速率等级数目; SNRtjptimal, wherein SNRi represents a signal to noise ratio at the minimum to ensure the i-th transmission rate Ri, SNRi + 1 represents the i-th guarantee the minimum rate Ri + 1 SNR of the transmission, Ri represents the n-th channel Detection the i-th rate, Ri + 1 i + 1 represents the n-th rate in the secondary channel sounding, m represents the number of theoretical rate level of the current channel CH supported;

[0025] S35、将步骤S30中获得的实际信噪比SNR与该最优理论信噪比SNRtjptimal进行比较: [0025] S35, the actual SNR is obtained in step S30 is compared with the optimal theoretical SNR SNRtjptimal:

[0026] 如果SNR>SNR_imal,则表示该信道CH为最优信道,停止信道探测,并将该信道的序号CH发送给对应终端; [0026] If the SNR> SNR_imal, the channel CH indicates the optimal channel, channel sounding is stopped, and transmits the channel number CH to the corresponding terminal;

[0027] 如果SNR ( SNRoptimal,则n++,并且该无线接入点发送CTS控制帧给该终端,该终端判断CH是否小于L :如果CH〈L则该终端通过无线局域网中信道CH++发送RTS控制帧给该无线接入点,重复执行步骤S30〜S35,继续信道探测;如果CH > L则将CH复位为1,该终端通过无线局域网中信道I发送RTS控制帧给该无线接入点,重复执行步骤S30〜S35,继续信道探测。 [0027] If the SNR (SNRoptimal, the n ++, and the wireless access point transmits a CTS control frames to the terminal, the terminal determines CH is smaller than L: Control if CH <L then the terminal through a wireless local area network of channels CH ++ transmits an RTS frame to the wireless access point, repeat steps S30~S35, continued channel sounding; If CH> L will be reset to CH 1, the wireless LAN terminal via the channel I transmitted RTS frame to the wireless access control point is repeatedly performed step S30~S35, continued channel sounding.

[0028] 设置信道探测间隔,在该信道探测间隔内,该无线接入点基于最优停止理论探测该信道CH是否为最优信道:如果信道CH是最优信道,则停止信道探测,并在该信道探测间隔内采用该最优信道进行数据传输。 [0028] provided a channel sounding interval within the channel sounding interval, the wireless access point based on the optimal stopping theory sounding the channel CH whether the optimal channel: if the channel CH is optimal channel, stopping channel sounding, and the data transmission channel using the optimum channel spacing within channel sounding.

[0029] 操作人员通过无线接入点的配置界面,可以手动选择是否进行最优信道探测,并设置信道探测间隔。 [0029] The wireless access point operator via the configuration interface, can manually select an optimal channel to detect whether or not, and set the channel sounding interval.

[0030] 在步骤S3中如果该信道CH是最优信道,则将该最优信道的序号CH和信道探测间隔以CCTS控制帧的形式发送给该终端,其中该CCTS控制帧为改进的CTS控制帧,该CCTS控制帧中从左至右依次为帧控制域、持续时间域、接收地址域、最优信道序号域、信道探测间隔域和CRC码。 [0030] In step S3, if the channel CH is optimal channel, then the number of CH and channel optimum channel detection space form CCTS control frame is transmitted to the terminal, wherein the CCTS control frame is improved CTS control frame, the CCTS control frame from left to right the frame control field, a duration field, receiver address field, the optimal domain channel number, channel sounding interval field and the CRC code.

[0031] 该最优信道序号域和信道探测间隔域分别为I个字节,其中最优信道序号的高4位固定为0000且低4位按照8421编码;信道探测间隔按照8个bit的二进制-十进制编码。 [0031] The optimum channel number field and a channel detection space domain is I bytes, wherein the high optimum channel number of 4 fixed to 0000 and the lower 4 bits in accordance with the 8421 coding; channel detection space binary 8 bit according to - coded decimal. [0032] 其他终端以网络分配矢量的形式监听该CCTS控制帧,并将该CCTS控制帧缓存至缓冲池中。 [0032] Other terminal monitors in the form of a network allocation vector CCTS control frame, and the frame buffer to control CCTS pool.

[0033] 各终端按照载波监听多址访问/碰撞避免的MAC接入方式抢占信道,并通过标准的RTS/CCTS/DATA/ACK数据传输机制在最优信道上进行数据传输。 [0033] Each terminal in accordance with the Carrier Sense Multiple Access / MAC access collision avoidance seizing the channel, and CCTS / DATA / ACK data transfer mechanism at an optimal data transmission channel by standard RTS /.

[0034] 综上所述,由于采用了上述技术方案,本发明的有益效果是: [0034] In summary, the use of the above technical solutions, advantageous effects of the present invention are:

[0035] I、采用最优停止理论对无线局域网中信道进行探测,在探测到该信道是最优信道时将该信道的序号发送给对应的终端,本方法基于信道的信噪比,有效地解决了同频信道之间的干扰问题,提高了无线传输中的吞吐量,并且不必依次轮询各信道,提高了最优信道的寻找效率; [0035] I, using the theory of optimal stopping WLAN detect the channel, the channel number sent to the terminal corresponding to the channel in the probe is optimal channel, the method based on the channel SNR, effectively solve the problem of co-channel interference between channels, improved throughput in wireless transmission, and not necessarily sequentially polling each channel to find optimal efficiency improves channel;

[0036] 2、设置信道探测间隔,间隔地更新最优信道,更加有效地解决了同频信道之间的干扰问题,并且在信道探测间隔内一旦寻找到最优信道就不再进行探测; [0036] 2, disposed channel sounding interval, updated optimum channel spacing, the more effectively solve the problem of interference with the frequency between the channels, and once to find the optimal channel will not detect within a channel detection space;

[0037] 3、通过无线接入点的配置界面,可以手动选择是否进行最优信道探测,并设置信道探测间隔,操作更加人性化,更能满足用户的需求; [0037] 3, through a wireless access point configuration interface, can manually select whether to perform optimal channel sounding, and setting the channel sounding interval, the operation more user-friendly, to better meet the needs of users;

[0038] 4、该最优信道的序号和信道探测间隔以CCTS控制帧的形式发送给终端,实现了最优信道序号的发送; [0038] 4, the optimum number of channels and channel spacing probe to the terminal control frame in the form of CCTS, to achieve an optimal transmission of the channel number;

[0039] 5、其他终端以网络分配矢量的形式监听该CCTS控制帧,并将该CCTS控制帧缓存至缓冲池中,不必针对每一终端寻找最优信道,进一步提高了最优信道的寻找效率; [0039] 5, in the form of other terminal monitors the network allocation vector CCTS control frame, and the frame buffer to control CCTS pool without having to find the optimal channel for each terminal, to further improve the efficiency of finding the optimal channel ;

[0040] 6、在信道探测间隔内,各终端按照载波监听多址访问/碰撞避免的MAC接入方式抢占信道,并通过标准的RTS/CTS/DATA/ACK数据传输机制在最优信道上进行数据传输,实现了终端数据的传输。 [0040] 6, the probe within the channel spacing, each terminal in accordance with the Carrier Sense Multiple Access / MAC access collision avoidance seizing the channel, and the CTS / DATA / ACK transmission mechanism at an optimal data channel by standard RTS / data transmission, to achieve a data transmission terminal.

附图说明 BRIEF DESCRIPTION

[0041] 本发明将通过例子并参照附图的方式说明,其中: [0041] The embodiment of the present invention and will be described by way of example with reference to the accompanying drawings, wherein:

[0042] 图I是多个无线接入点共存的结构图; [0042] Figure I is a configuration diagram of a plurality of coexisting wireless access points;

[0043] 图2是本发明的流程图; [0043] FIG 2 is a flowchart of the present invention;

[0044] 图3是CCTS控制帧的帧结构; [0044] FIG. 3 is a control frame of a frame structure CCTS;

[0045] 图4是RTS/CTS/CCTS/DATA/ACK数据传输机制的示意图。 [0045] FIG. 4 is a schematic view CTS CCTS DATA ACK data transmission scheme RTS / / / /.

具体实施方式 Detailed ways

[0046] 本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。 All of the features [0046] disclosed in the present specification, or all of the steps of a method or process disclosed, except the mutually exclusive features and / or steps, can be combined in any manner.

[0047] 本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。 [0047] in this specification (including any accompanying claims, abstract and drawings) disclosed in any of the features, unless specifically described, can be replaced by other equivalent or alternative features having similar purpose. 即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。 That is, unless specifically described, each feature is only one example of a series of equivalent or similar features only.

[0048] 如图2所示,该基于最优停止理论的无线局域网信道探测方法,由以下步骤组成: [0048] As shown in FIG. 2, the wireless LAN based on a channel sounding method optimal stopping theory, comprising the steps of:

[0049] 步骤一、统计无线局域网中信道的总数L,设置信道探测间隔,并且设定信道的探测次数为n,初始化n为I,其中0〈n < L且n、L均为整数; [0049] Step a, then count the number of channels in the wireless LAN L, provided channel sounding interval and sounding channel number is set to n, n is initialized I, wherein 0 <n <L and n, L are integers;

[0050] 步骤二、当终端接入无线接入点(即无线AP)时,该终端通过该无线局域网中任意一个信道CH发送RTS控制帧给该无线接入点,其中CH为大于0的整数;[0051] 步骤三、在信道探测间隔内,该无线接入点基于最优停止理论探测该信道CH是否为最优信道: [0050] Step two, when the terminal to access the wireless access point (i.e., the AP wireless), through which the terminal is a wireless local area network of any channel CH transmits an RTS frame to control the wireless access point, which is an integer greater than 0 CH ; [0051] step three, in the channel sounding interval, the wireless access point based on the theory of optimal stopping detecting whether the channel CH optimal channel:

[0052] 如果信道CH是最优信道,则停止信道探测,并将该最优信道的序号CH发送给该终端,该终端在该信道探测间隔内采用该最优信道进行数据传输; [0052] If the channel CH is optimal channel, channel sounding is stopped, and transmits the optimum channel number CH to the terminal, the terminal uses the optimal channel for data transmission channel in the detection space;

[0053] 如果信道CH不是最优信道,则n++ (即n自加I ),并且该无线接入点发送CTS控制帧给该终端,该终端判断CH是否小于L :如果CH〈L则该终端通过无线局域网中信道CH++(即CH自加1,信道CH的下一个信道)发送RT S控制帧给该无线接入点,重复执行步骤三,继续探测信道;如果CH彡L则将CH复位为1,则该终端通过无线局域网中信道I发送RTS控制帧给该无线接入点,重复执行步骤三,重新探测信道。 [0053] If the channel CH is not optimal channel, the n ++ (i.e. n from plus the I), and the wireless access point transmits a CTS control frames to the terminal, the terminal determines CH is smaller than L: If CH <L then the terminal via a wireless local area network of channels CH ++ (i.e. CH from plus 1, the channel CH of the next channel) transmitted RT S control frame to the wireless access point, repeat steps three to continue sounding channel; if CH San L will CH reset 1, the wireless LAN terminal via the channel I transmitted RTS frame to control the wireless access point, repeat steps three, re-sounding channel.

[0054] 在实际使用中,操作人员通过无线接入点的配置界面,可以手动选择是否进行最优信道探测,并设置信道探测间隔。 [0054] In actual use, the operator interface configured by a wireless access point, can manually select an optimal channel to detect whether or not, and set the channel sounding interval. 在本发明的第一实施例中,在无线AP的配置管理界面中,增加了“最优信道探测”单选框,此框一旦选中就不能进行手工设置无线信道。 In the first embodiment of the present invention, in the wireless AP configuration management interface, increasing the "optimal channel sounding" radio button, check box, once the radio channel can not be set manually. 勾选“最优信道探测”后,出现I个子选项“探测间隔设置”选项,单位为秒,单位大小可以根据程序设计进行修改,单位数值范围在1-255之间;操作人员配置好信道探测间隔后,重新启动无线AP,配置生效。 After checking the "optimal channel sounding", a sub-option I "probe interval" option, in seconds, the unit size can be modified according to the programming, the range of values ​​between 1-255 units; operator configured channel sounding after the interval, restart the wireless AP, takes effect. 当然,信道探测间隔不仅可以手动配置,还可以由程序设计为固定值。 Of course, not only channel sounding interval can be manually configured, may also be designed as a fixed value by the program.

[0055] 具体地,该无线接入点基于最优停止理论探测该信道CH是否为最优信道的过程由以下步骤组成: [0055] Specifically, the wireless access point based on the theory of optimal stopping CH detect whether the channel is on optimal channel consists of the following steps:

[0056] 第一步,无线接入点对RTS控制帧的物理层前导进行解码,获得该信道CH的实际信噪比SNR。 [0056] The first step, the wireless access point for controlling a physical layer preamble RTS frame is decoded, to obtain the actual signal to noise ratio SNR of the channel CH.

[0057]第二步,根据公式 g = E [max {Xn, g}]_cn = g X p (g>Xn) +E [Xn] Xp(g ( Xn)_cn,求取第n次信道探测时实际增益g,其中E [Xn]表示第n次信道探测时信道质量Xn的期望值,Cn表示第n次信道探测时控制帧的附加开销,p (g>Xn)表示第n次信道探测时实际增益g大于信道质量Xn出现的概率,p (g ( Xn)表示第n次信道探测时实际增益g彡该信道CH的信道质量Xn出现的概率。 [0057] The second step, according to the formula g = E [max {Xn, g}] _ cn = g X p (g> Xn) + E [Xn] Xp (g (Xn) _cn, obtaining the n-th channel sounding when the actual gain of g, where E [Xn] denotes n-th channel sounding channel quality Xn expectations, Cn represents a control frame n-th channel sounding overhead, p (g> Xn) represents the n-th channel sounding the actual gain g occurrence probability of channel quality is greater than Xn, p (g (Xn) represents the probability that the real gain g San channel CH channel quality Xn occur when the n-th channel sounding.

[0058] (I)根据公式 [0058] (I) according to the formula

Figure CN102711274AD00081

计算该第n次信道探测时信道质量Xn的期望值 Calculating the n-th channel sounding channel quality expectations Xn

Figure CN102711274AD00082

xni表示第n次信道探测中第i个速率下的信道质量,Pni表示第n次信道探测中第i个速率出现的概率,m表示在当前信道CH下所支持的理论速率等级数目,l<n<L,l<i<m且n、i和m均为整数,L表示无线局域网中信道的总数; xni represents the n-th channel sounding channel quality in the i-th rate, Pni represents the probability of the n-th channel sounding the i-th rate occurs, m represents the number of theoretical rate level in the current channel CH supported, l < n <L, l <i <and n, i and m are integers, L represents a total number of channels in the wireless LAN m;

[0059] 其中 [0059] in which

Figure CN102711274AD00083

Ldata表不MAC层需要传递负载的长度,Rni表不在第n次信道 Ldata table does not need to pass the length of the MAC layer load, Rni table is not the n-th channel

探测中的第i个速率Ri, Rbase表示第n次信道探测中的基本传输速率; Detection of the i-th rate Ri, Rbase denotes the n-th fundamental transmission rate of the channel sounding;

[0060] Pni=Pn(SNRw)-Pn(SNRi),i G [I, m-1],SNRi 表示保证以第i 个速率Ri 传输时的最小信噪比,SNRi+1表不保证以第i个速率Ri+1传输时的最小信噪比,PnO用于表不概率,Pn(SNRi)表示在第n次信道探测中SNRi出现的概率,pn(SNRi+1)表示在第n次信道探测中SNRi+1出现的概率,m表示当前信道CH所支持的理论速率等级数目; [0060] Pni = Pn (SNRw) -Pn (SNRi), i G [I, m-1], SNRi represents a guaranteed minimum SNR to the i-th transmission rate Ri, SNRi + 1 of the table does not guarantee i-rate Ri + 1, the minimum transmission SNR, PnO probability table is not used, Pn (SNRi) represents the probability of the n-th channel appears detection SNRi, pn (SNRi + 1) represents the n-th channel SNRi + 1 occurrence probability of detection, m represents the number of channels CH theoretical rate supported by the current level;

[0061] 由于信噪比函数SNR(t)与衰落信道概率密度函数P (i)、双径地面反射模型Pr (d)的关系 [0061] Since the function of signal to noise ratio SNR (t), the relationship between fading channel probability density function P (i) bis-diameter reflecting surface model Pr (d) of

Figure CN102711274AD00091

表示发射天线与接收天线之 It represents the transmit and receive antennas

间的距离,Pt表示发射天线的功率,ht和匕分别发射天线和接收天线的高度,L=L Gt和4分别表示发送方和接收方的天线增益,因此 The distance between, Pt represents the power of the transmitting antenna, ht height of the antenna and dagger emit and receive antennas, L = L Gt and 4 represent the antenna gain of the transmission and receiving sides, and therefore

Figure CN102711274AD00092

[0062] [0062]

Figure CN102711274AD00093

取该第n次信道探测时控制帧的附加开销,包括CTS、RTS和CCTS控制帧之间的时间间隔,其中Tkts表示RTS控制帧的传输时间,Tcts表示CTS控制帧的传输时间,Teas表示CCTS控制中贞的传输时间,SIFS表不短巾贞之间间隔。 Control frame when taking the n th channel sounding overhead, including CTS, RTS and CCTS control interval between frames, wherein Tkts represents the transmission time RTS control frame, TCTS indicates the transmission time CTS control frames, Teas represents CCTS Chen transmission time control, SIFS shorter than the interval between the table Zhen towel.

[0063] 第三步,判断该实际增益g是否在最大增益G*的限制范围内,该最大增益G*的限制范围为 [0063] The third step, which determines whether the actual gain g in the maximum gain G * limits, the maximum gain limit G * range

Figure CN102711274AD00094

其中Ldata表示MAC层需要传递负载的长 Wherein the length Ldata represents the MAC layer needs to pass the load

,

度,Rbase表示在第n次信道探测中的基本传输速率,Ri表示在第n次信道探测中的第i个速率,Ri+1表示第i+1个速率,m表示当前信道CH所支持的理论速率等级数目: Degree, Rbase denotes the fundamental transmission rate in the n-th channel Detection, Ri represents the i-th rate in the n-th channel Detection, Ri + 1 represents the i + 1-th rate, m indicates the currently supported channel CH. rate number theory rating:

[0064] 如果该实际增益g在该最大增益G*的限制范围内,则将该实际增益g赋值给该最大增益G%即G* = g。 [0064] If the actual gain g in the maximum gain G * limits, then the actual gain g is assigned to the maximum gain G% i.e. G * = g.

[0065] 第四步,根据公式 [0065] The fourth step, according to the formula

Figure CN102711274AD00095

求取最优速率R%其中Ldata表示MAC层需要传递负 Obtaining the optimal rate R% represents Ldata wherein the MAC layer needs to pass a negative

载的长度,Rbase表示在第n次信道探测中的基本传输速率,G*表示最大增益。 The length of the carrier, Rbase denotes the fundamental transmission rate in the n-th channel Detection, G * represents the maximum gain.

[0066] 第五步,根据公式 [0066] The fifth step, according to the formula

Figure CN102711274AD00096

求取最优理论信噪 Obtaining optimal signal to noise theory

比SNRtjptimal,其中SNRi表示保证以第i个速率Ri传输时的最小信噪比,SNRi+1表示保证以第i个速率Ri+1传输时的最小信噪比,Ri表示在第n次信道探测中的第i个速率,Ri+1表示在第n次信道探测中的第i+1个速率,m表示当前信道CH所支持的理论速率等级数目。 Than SNRtjptimal, wherein SNRi represents a signal to noise ratio at the minimum to ensure the i-th transmission rate Ri, SNRi + 1 represents the i-th guarantee the minimum rate Ri + 1 SNR of the transmission, Ri represents the n-th detection channel the i-th rate, Ri + 1 i + 1 represents the n-th rate in the secondary channel sounding, m represents the number of theoretical rate level of the current channel CH supported.

[0067] 第六步,将第一步中获得的实际信噪比SNR与该最优理论信噪比SNRtjptimal进行比较: [0067] The sixth step, the first step in the actual SNR is obtained compared with the theoretical optimal signal to noise ratio SNRtjptimal:

[0068] 如果SNR>SNR_imal,则表示该信道CH为最优信道,停止信道探测,并将该信道的序号CH发送给对应终端; [0068] If the SNR> SNR_imal, the channel CH indicates the optimal channel, channel sounding is stopped, and transmits the channel number CH to the corresponding terminal;

[0069] 如果SNR ( SNRoptimal,则n++,并且该无线接入点发送CTS控制帧给该终端,该终端判断CH是否小于L :如果CH〈L则该终端通过无线局域网中信道CH++发送RTS控制帧给该无线接入点,重复执行第一步至第五步,继续信道探测;如果CH > L则将CH复位为1,该终端通过无线局域网中信道I发送RTS控制帧给该无线接入点,重复执行第一步至第五步,继续信道探测。 [0069] If the SNR (SNRoptimal, the n ++, and the wireless access point transmits a CTS control frames to the terminal, the terminal determines CH is smaller than L: Control if CH <L then the terminal through a wireless local area network of channels CH ++ transmits an RTS frame to the wireless access point, a fifth step the first step is repeatedly performed to continue to channel sounding; If CH> L CH will be reset to 1, the terminal control frame to the wireless access point through a wireless LAN transmits an RTS channel I repeat the first step to the fifth step, continuing channel sounding.

[0070] CCTS控制帧为改进的CTS控制帧且携带有负载,其作用是传递最优信道的序号和信道探测间隔。 [0070] CCTS CTS control frames to improve the control frame and carries a load, its role is to transmit the optimum number of channels and channel sounding interval. 该CCTS控制帧的帧结构如图3所示,包括2部分:MAC头部和负载,MAC头部依次由帧控制域(2字节)、持续时间域(2字节)和接收地址域(6字节)组成;负载部分依次由最优信道序号域(I字节)和信道探测间隔域(I字节)组成。 The control frame CCTS frame structure shown in Figure 3, consists of two parts: MAC header and a load, the MAC header from the frame sequence control field (2 bytes), a duration field (2 bytes) and a receiver address field ( 6 bytes); load section sequentially by the optimal channel number field (I bytes) and channel sounding field interval (I bytes). 最优信道序号域按照下表的编码规则进行填充,其中高4位固定为0000,低4位按照8421编码进行,并且预留了2个信道序号(14和15),如果整个字节全部为O,表示出错信息;信道探测间隔域完全按照8个比特的二进制-十进制编码(对应无符号十进制数为0-255)进行,编码之后最小的自然数代表I秒(也可以根据程序进行修改)。 Optimal Channel ID field is filled according to the coding rules table, wherein the high 4 fixed to 0000, the lower 4 bits in accordance with coding 8421, and two reserved channel number (14 and 15), if all the bytes of the entire O, showing an error message; channel sounding interval field exactly eight bit binary - coded decimal (corresponding to the unsigned decimal number 0-255) is, after coding the minimum number I represents seconds (can also be modified according to a program).

Figure CN102711274AD00101

[0072] 此外,其他终端以网络分配矢量NVA的形式监听该CCTS控制帧,并将该CCTS控制帧缓存至缓冲池中,不必针对每一终端寻找最优信道,进一步提高了最优信道的寻找效率。 [0072] Further, the other terminal monitors CCTS control frame, and the frame buffer to control CCTS pool without having to find the optimal channel for each terminal, to further improve the channel to find the optimal form of the network allocation vector NVA effectiveness. 在信道探测间隔时间内,所有终端按照载波监听多址访问/碰撞避免(CSMA/CA)的MAC接入方式抢占信道,并通过标准的RTS/CTS/DATA/ACK数据传输机制在固定信道(之前缓存的最优信道)上进行数据传输,如图4所示。 During the interval channel sounding, all terminals access according to a carrier sense multiple access / collision avoidance (CSMA / CA) in the MAC access seizing the channel, and through the standard RTS / CTS / DATA / ACK data transfer mechanism fixed channel (before for data transmission on an optimal channel buffer), as shown in FIG.

[0073] 当无线小区内有多个无线AP共存通信时,可以通过第三方无线网络观测软件观测实际无线信道使用情况。 [0073] When there are a plurality of coexisting wireless AP within the wireless communication cell, the actual wireless channel usage can be observed by a third-party wireless network observation software. 采用认知信道进行通信的无线产品,能有效地避开固有的手工配置信道,选择相对干扰较小的信道进行通信。 Channel for communication using cognitive radio products, can effectively avoid the manual configuration unique channel, selecting a relatively small interference channel for communication.

[0074] 本方法在开源的无线AP和无线网卡的源代码上进行实现,将本发明提出的RTS/CTS/CCTS/DATA/ACK MAC数据传输机制和基于最优停止理论的最优信道处理算法添加到对应驱动程序里面的MAC处理流程,编译、链接驱动并测试通过之后,以升级固件的形式下载到对应设备。 [0074] The present method is implemented on a wireless AP open source code and a wireless network card, the RTS proposed by the invention / CTS / CCTS / DATA / ACK MAC data transfer mechanism and the optimal channel based on the theory of optimal stopping processing algorithm after addition to a corresponding driver inside the MAC processing flow, compiled, linked and tested by driving, in the form of the firmware upgrade is downloaded to the corresponding device.

[0075] 升级时,升级固件的无线终端通过认证与无线AP关联,然后通过无线AP设置好的认知信道功能进行信道协商及在最优信道上进行数据传输。 [0075] When the upgrade, the upgrade of the firmware associated with the authenticated wireless terminal a wireless AP, then a good cognitive channel provided by a wireless function AP, and channel negotiation for data transmission on the optimal channel.

[0076] 本发明并不局限于前述的具体实施方式。 [0076] The present invention is not limited to the foregoing specific embodiments. 本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。 The present invention extends to any novel features disclosed in this specification, or any novel combination, or any novel combination, and any steps disclosed a new method or process.

Claims (8)

1. 一种基于最优停止理论的无线局域网信道探测方法,其特征在于包括以下步骤: 51、统计无线局域网中信道的总数L,并且设定信道的探测次数为n,初始化n为1,其中0〈n彡L且n、L均为整数; 52、当终端接入无线接入点时,该终端通过该无线局域网中任意一个信道CH发送RTS控制帧给该无线接入点,其中CH为大于O的整数; 53、该无线接入点基于最优停止理论探测该信道CH是否为最优信道: 如果该信道CH是最优信道,则停止信道探测,并将该最优信道的序号CH发送给该终端; 如果该信道CH不是最优信道,则n++,并且该无线接入点发送CTS控制帧给该终端,该终端判断CH是否小于L :如果CH〈L则该终端通过无线局域网中信道CH++发送RTS控制帧给该无线接入点,重复执行步骤S3,继续信道探测;如果CH > L则将CH复位为1,则该终端通过无线局域网中信道I发送RTS控制帧给 A wireless local area network based on a channel sounding method optimal stopping theory, comprising the steps of: 51, wireless LAN statistics total number of channels L, and sets the number of detection channels is n, n is 1 initializes, wherein 0 <n and San L n, L are integers; 52, when the terminal to access the wireless access point, the wireless LAN terminal via the any one control channel CH transmits an RTS frame to the wireless access point, which is CH an integer greater than O; and 53, the wireless access point based on the optimal stopping theory sounding the channel CH whether the optimal channel: if the channel CH is optimal channel, stopping channel sounding, and the optimal channel number CH is sent to the terminal; if the channel CH is not optimal channel, the n ++, and the wireless access point transmits a CTS control frames to the terminal, the terminal determines CH is smaller than L: If CH <L then the terminal through a wireless LAN CH ++ channel transmits an RTS frame to control the wireless access point, repeat the step S3, the continuing channel sounding; If CH> L will be reset to CH 1, the wireless LAN terminal via the channel I transmitted RTS frame to the control 该无线接入点,重复执行步骤S3,重新进行信道探测。 The wireless access point, repeat the step S3, the re-channel sounding.
2.根据权利要求I所述的基于最优停止理论的无线局域网信道探测方法,其特征在于在步骤S3中无线接入点基于最优停止理论探测该信道CH是否为最优信道的过程由以下步骤组成: 530、无线接入点对RTS控制帧的物理层前导进行解码,获得该信道CH的实际信噪比SNR ; 531、根据公式g=gX p (g>Xn) +E [Xn] X p (g彡Xn) -cn,求取第n次信道探测时实际增益g,其中E [Xn]表示第n次信道探测时信道质量Xn的期望值,Cn表示第n次信道探测时控制帧的附加开销,P (g>Xn)表示第n次信道探测时实际增益g>信道质量Xn出现的概率,p(g^ Xn)表示第n次信道探测时实际增益g <信道质。 According to claim based on a channel sounding method WLAN optimal stopping theory, characterized in that in the step S3, the wireless access point based on the theory of optimal stopping detecting whether the channel CH by the procedure of the optimum channel is I steps: 530, wireless access point for controlling a physical layer preamble RTS frame is decoded, to obtain the actual signal to noise ratio SNR of the channel CH; 531, according to the formula g = gX p (g> Xn) + E [Xn] X P (g San Xn) -CN, obtaining the actual gain g n-th channel sounding, wherein E [Xn] denotes n-th channel sounding channel quality Xn expectations, Cn represents a control frame n-th channel sounding overhead, P (g> Xn) represents the probability that n-th channel sounding real gain g> channel quality Xn occurring, p (g ^ Xn) represents the n-th channel sounding real gain g <channel quality.
3.根据权利要求I或2所述的基于最优停止理论的无线局域网信道探测方法,其特征在于:设置信道探测间隔,在该信道探测间隔内,该无线接入点基于最优停止理论探测该信道CH是否为最优信道:如果信道CH是最优信道,则停止信道探测,并在该信道探测间隔内采用该最优信道进行数据传输。 According to claim I or a wireless LAN based on a channel sounding method optimal stopping theory claim 2 wherein: setting the channel sounding interval within the channel sounding interval, the wireless access point is stopped based Optimal Detection Theory if the channel CH optimal channel: if the channel CH is optimal channel, channel sounding is stopped, and the optimal use of the data transmission channel in the channel sounding interval.
4.根据权利要求3所述的基于最优停止理论的无线局域网信道探测方法,其特征在于:操作人员通过无线接入点的配置界面,可以手动选择是否进行最优信道探测,并设置信道探测间隔。 3, according to the wireless LAN based on a channel sounding method optimal stopping theory claim wherein: the operator through the configuration interface of the wireless access point, can manually select whether to perform optimal channel sounding, and setting the channel sounding interval.
5.根据权利要求3所述的基于最优停止理论的无线局域网信道探测方法,其特征在于在步骤S3中如果该信道CH是最优信道,则将该最优信道的序号CH和信道探测间隔以CCTS控制帧的形式发送给该终端,其中该CCTS控制帧为改进的CTS控制帧,该CCTS控制帧中从左至右依次为帧控制域、持续时间域、接收地址域、最优信道序号域、信道探测间隔域和CRC码。 According to claim wireless LAN based on a channel sounding method optimal stopping theory, characterized in that in step S3, if the channel CH is optimal channel, the channel number CH and the optimal detection interval of the channel 3, CCTS transmitted in the form of a control frame to the terminal, wherein the control frame is improved CCTS CTS control frames, the CCTS control frame from left to right the frame control field, a duration field, receiver address field, most channel number domain, channel sounding interval field and the CRC code.
6.根据权利要求5所述的基于最优停止理论的无线局域网信道探测方法,其特征在于:该最优信道序号域和信道探测间隔域分别为I个字节,其中最优信道序号的高4位固定为OOOO且低4位按照8421编码;信道探测间隔按照8个bit的二进制-十进制编码。 According to claim wireless LAN based on a channel sounding method optimal stopping theory claim 5 wherein: the optimal channel and a channel number field detection space domain is I bytes, where the optimal high channel number 4 OOOO and fixed to the lower 4 bits coded according 8421; channel detection space with eight bit binary - coded decimal.
7.根据权利要求5所述的基于最优停止理论的无线局域网信道探测方法,其特征在于:其他终端以网络分配矢量的形式监听该CCTS控制帧,并将该CCTS控制帧缓存至缓冲池中。 7. The wireless local area network based on a channel sounding method optimal stopping theory, wherein according to claim 5, wherein: the other terminal monitors in the form of a network allocation vector CCTS control frame, and the frame buffer to control CCTS pool .
8.根据权利要求7所述的基于最优停止理论的无线局域网信道探测方法,其特征在于:各终端按照载波监听多址访问/碰撞避免的MAC接入方式抢占信道,并通过标准的RTS/CCTS/DATA/ACK数据传输机制在最优信道上进行数据传输。 8. The wireless local area network based on a channel sounding method optimal stopping theory, wherein according to claim 7: seize each terminal according to channel carrier sense multiple access / collision avoidance MAC access, and by the standard RTS / CCTS / dATA / ACK data transfer mechanism at an optimal data transmission channel.
CN201210178867.7A 2012-06-01 2012-06-01 WLAN communication channel detecting method based on optimal stopping theory CN102711274B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210178867.7A CN102711274B (en) 2012-06-01 2012-06-01 WLAN communication channel detecting method based on optimal stopping theory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210178867.7A CN102711274B (en) 2012-06-01 2012-06-01 WLAN communication channel detecting method based on optimal stopping theory

Publications (2)

Publication Number Publication Date
CN102711274A true CN102711274A (en) 2012-10-03
CN102711274B CN102711274B (en) 2015-03-25

Family

ID=46903777

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210178867.7A CN102711274B (en) 2012-06-01 2012-06-01 WLAN communication channel detecting method based on optimal stopping theory

Country Status (1)

Country Link
CN (1) CN102711274B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415057A (en) * 2013-09-03 2013-11-27 中国人民解放军理工大学 Optimum energy efficiency relay selecting method based on optimum stopping theory
CN104796995A (en) * 2014-01-21 2015-07-22 上海贝尔股份有限公司 Distributed channel detection method and distributed channel detection and sequential access system
CN105554949A (en) * 2016-01-19 2016-05-04 中山市倍能照明科技有限公司 Radio frequency module application-based LED system and dimming method
CN105898875A (en) * 2016-05-12 2016-08-24 华南师范大学 Communication method and system of distributed multichannel network
CN107071912A (en) * 2017-04-17 2017-08-18 北京星网锐捷网络技术有限公司 A kind of method and apparatus for distributing channel in a wireless local area network

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957565A (en) * 2004-06-04 2007-05-02 三菱电机株式会社 Wireless communication network and method for transmitting packets over channel in wireless communication network
CN101808385A (en) * 2010-03-02 2010-08-18 北京邮电大学 Method and device for wireless network access control
CN102316532A (en) * 2011-10-11 2012-01-11 重庆大学 Cognitive detection method for channel in wireless local area network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1957565A (en) * 2004-06-04 2007-05-02 三菱电机株式会社 Wireless communication network and method for transmitting packets over channel in wireless communication network
CN101808385A (en) * 2010-03-02 2010-08-18 北京邮电大学 Method and device for wireless network access control
CN102316532A (en) * 2011-10-11 2012-01-11 重庆大学 Cognitive detection method for channel in wireless local area network

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103415057A (en) * 2013-09-03 2013-11-27 中国人民解放军理工大学 Optimum energy efficiency relay selecting method based on optimum stopping theory
CN104796995A (en) * 2014-01-21 2015-07-22 上海贝尔股份有限公司 Distributed channel detection method and distributed channel detection and sequential access system
CN105554949A (en) * 2016-01-19 2016-05-04 中山市倍能照明科技有限公司 Radio frequency module application-based LED system and dimming method
CN105898875A (en) * 2016-05-12 2016-08-24 华南师范大学 Communication method and system of distributed multichannel network
CN107071912A (en) * 2017-04-17 2017-08-18 北京星网锐捷网络技术有限公司 A kind of method and apparatus for distributing channel in a wireless local area network

Also Published As

Publication number Publication date
CN102711274B (en) 2015-03-25

Similar Documents

Publication Publication Date Title
Chandra et al. A case for adapting channel width in wireless networks
Pavon et al. Link adaptation strategy for IEEE 802.11 WLAN via received signal strength measurement
Zhu et al. A survey of quality of service in IEEE 802.11 networks
EP2014024B1 (en) Dynamic carrier sensing thresholds
US9680626B2 (en) Methods and systems for frequency multiplexed communication in dense wireless environments
KR101243683B1 (en) Spectrum measurement management for dynamic spectrum access wireless systems
US7903607B2 (en) Wireless communication apparatus
CN1871806B (en) Wireless communication system, wireless communication device and wireless communication method, and computer program
Khurana et al. Effect of hidden terminals on the performance of IEEE 802.11 MAC protocol
JP4680191B2 (en) Wireless communication network and method for transmitting a packet over a channel of a wireless communication network
US10117168B2 (en) Procedure for basic service set (BSS) load management in WLAN system
JP5687766B2 (en) Method and apparatus for collision detection in higher bandwidth operation
JP2013504264A (en) Output power control for advanced WLAN and BLUETOOTH®-AMP systems
US7046651B2 (en) System topologies for optimum capacity transmission over wireless local area networks
CN101136821B (en) Device and method for controlling the transmission power of a basic service set in a wireless local area network
JP4564530B2 (en) Access point operating with smart antenna in WLAN and associated method
US7881277B2 (en) Communication method and apparatus for distributed network system where cognitive radio technology is applied
US8780831B2 (en) System and method for estimating bandwidth requirements of and allocating bandwidth to communication devices operating in a network
US20150237519A1 (en) Cloud controller for self-optimized networks
Li et al. A new backoff algorithm for IEEE 802.11 distributed coordination function
KR20150023018A (en) System and method for active scanning in multi-channel wi-fi system
US8144613B2 (en) Achieving quality of service in a wireless local area network
KR101571904B1 (en) Apparatus and method for allocating frequency resource to micro UE in a mobile communication system
ES2675694T3 (en) Deferment based on BSSID information
US7885287B2 (en) Method and apparatus for adaptive network allocation

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
CP03
TR01
CI03