CN102693603B - 一种基于双光谱的森林防火智能监控系统 - Google Patents

一种基于双光谱的森林防火智能监控系统 Download PDF

Info

Publication number
CN102693603B
CN102693603B CN201210212003.2A CN201210212003A CN102693603B CN 102693603 B CN102693603 B CN 102693603B CN 201210212003 A CN201210212003 A CN 201210212003A CN 102693603 B CN102693603 B CN 102693603B
Authority
CN
China
Prior art keywords
thermal imaging
imaging system
visible light
detection
light camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210212003.2A
Other languages
English (en)
Other versions
CN102693603A (zh
Inventor
姜玮
孙雪雁
桑建国
田忠超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Sheenrun Optics Electronics Co Ltd
Original Assignee
Shandong Sheenrun Optics Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Sheenrun Optics Electronics Co Ltd filed Critical Shandong Sheenrun Optics Electronics Co Ltd
Priority to CN201210212003.2A priority Critical patent/CN102693603B/zh
Publication of CN102693603A publication Critical patent/CN102693603A/zh
Application granted granted Critical
Publication of CN102693603B publication Critical patent/CN102693603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

一种基于双光谱的森林防火智能监控系统。其技术方案为:网络视频服务器,将现场视频和热成像仪以及可见光检测的报警信号传至监控中心。根据热成像仪和可见光检测的置信度比较,确定火警信息,通过声光报警等措施通知监控人员,对现场视频进行实时录像,对报警信息进行及时处理。系统可以对两种光谱检测进行参数设置调整,并且配合自由扫描路径快速分析技术,可以在屏幕上随意设置扫描曲线和不敏感区域。系统支持地图显示,直观显示各个探测器在监控区域的位置和监控区域的大致平面结构,在火警发生时,可以通过报警信息,快速定位报警地点,做好早期预警准备。通过监控软件还可以对云台,热成像仪,可见光摄像机进行控制。

Description

一种基于双光谱的森林防火智能监控系统
技术领域
本发明为一种基于双光谱的森林防火智能监控系统。 
背景技术
近年来,智能视频监控系统越来越受到重视。众所周知,视频监控工作劳动强度很大,它对工作人员的注意力、警惕性,特别对异常情况的反应能力要求很高,一般监控过程中发生的失误都是由于注意力不集中造成。智能视频监控能够在图像及图像描述之间建立映射关系,从而使计算机能够通过数字图像处理和分析来理解视频画面中的内容。这样既减轻了监控人员的工作负担,降低误报、漏报现象的发生,又能自动进行视频分析,及时识别可疑人员和可疑活动,提醒(或警报)安全工作人员关注相关视频画面,有足够的时间对潜在(或正在发生)的威胁进行处理,也就是通常所说的“事前处理”,真正起到安全防范的作用。
目前在大多数场所的火灾检测中通常采用常规的火灾探测方法,主要是利用火灾发生时火焰的烟雾、光的特性对火灾进行探测,但在大空间、大面积、环境比较恶劣和室外环境等场所这些方法无法发挥其作用,常常发生误报。而运用数字图像处理技术,利用火灾火焰和图像特性却能解决以上场所的火灾探测问题。本系统通过基于图像的检测算法从当前视频图像中出现的烟雾和火焰特性进行识别检测,结合可见光和热成像仪双光谱的检测,以及综合判断自动给出报警信号,达到早期火灾监测的目的。
智能化的统一监控平台将智能视频图像分析及视频监控有机的结合在一起,以监控硬件系统为基础,通过平台综合提供实时事件分析、及时预警告警、视频实时监控、视频录像及回放、现场图片抓拍及提取等统一功能。
发明内容
本发明针对现有技术的不足,提供一种基于双光谱的森林防火智能监控系统的技术方案,采用该技术方案,可同时输出两路视频信号,具有热成像仪超温检测和可见光火灾检测功能,结合可见光和热成像仪双光谱的检测,按照火灾发生时的烟火特征,从开始出现火情开始,对火情分步骤检测,给出了一种统一双视场的测量方法,并根据置信度进行综合分析后,自动给出报警信息,有效提高了报警的准确率。
本发明是通过如下技术措施实现的:一种基于双光谱的森林防火智能监控系统,其特征是,包括前端设备、网络传输及后台智能管理系统;前端设备主要由热成像仪、可见光摄像机、激光测距机、云台组成;热成像仪、可见光摄像机、激光测距机架设在云台上,将前端设备安装在监控台上,按照客户设定路径进行巡航扫描,每次扫描水平转动一定角度位置,因为检测需要在云台停止转动情况下进行,所以设这每个扫描点停留一段时间进行检测;
首先,在每个扫描点开启烟火检测,步骤如下:先由可见光进行烟雾预检测,得到此时烟雾检测置信度E1;E1与传统烟雾阈值相比较,如果小于阈值,则为误报,不做任何其他检测;如果大于阈值,则启动热成像仪进行超温检测,得到此时热成像仪检测置信度E2,以及疑似火焰区域坐标,E2与传统热成像仪检测阈值相比较,若大于阈值,则根据热成像仪焦距值计算出可见光镜头焦距值,使得可见光摄像机与热成像仪视场一致后,再启动可见光摄像机进行可见光火焰检测,得到可见光检测置信度E3,经过坐标转换,得到可见光火焰区域坐标                                                
Figure 965939DEST_PATH_IMAGE001
和热成像仪仪在可见光摄像机视场的变换区域坐标
Figure 2012102120032100002DEST_PATH_IMAGE002
的检测信息并将检测信息通过网络传输到后天智能管理系统;后台智能管理系统根据接收到的从前端设备传回的报警信号、区域坐标、置信度信息,进行疑似火焰区域匹配,如果匹配度高,表明经过热成像仪和可见光摄像机检测区域一致,则输出报警信息,并根据火灾区域成像的靶面尺寸,根据公式
Figure 2012102120032100002DEST_PATH_IMAGE003
,由可见光摄像机与热成像仪视场两视场一致,即热成像仪视场水平距离与可见光摄像机视场水平距离相等,得HA = HB,已知可见光摄像机靶面水平尺寸hB,可见光摄像机水平视场角2θB,则根据
Figure 758445DEST_PATH_IMAGE005
计算出HB,同理可得VB,根据公式S=HB *VB,求得实际的火灾面积,为监控人员对火情的控制提供必要的信息,其中,fA为热成像仪镜头焦距,已知热成像仪水平靶面尺寸为hA,观察景物距离镜头距离为D,2θA为热成像仪的水平视场角;H A为热成像仪视场水平距离;fB为可见光摄像机镜头焦距。
本发明的具体特点还有,上述热成像仪超温检测过程如下:热成像仪的图像采集模块将探测器输出的高精度图像数据写入内存,图像处理模块运行超温检测算法,首先根据目标和背景的对比度计算出原始阈值,再结合用户设定的目标温度等级,计算出二值化阈值,将图像进行二值化后进行连通域检测,计算出目标区域面积和坐标,在画面上标识出超温区域并通过串口发出报警信息。
本发明的有益效果为:本系统集成了红外热成像仪、超温检测仪、可见光摄像机、火灾监测分析仪、云台、激光测距机、视频服务器、监控主机等部分。可同时输出两路视频信号,具有热成像仪超温检测和可见光火灾检测功能,结合可见光和热成像仪双光谱的检测,按照火灾发生时的烟火特征,从开始出现火情开始,对火情分步骤检测,给出了一种统一双视场的测量方法,并根据置信度进行综合分析后,自动给出报警信息,有效提高了报警的准确率。探测设备可根据用户在场景中画出的任意路径自动扫描,并可在运动扫描过程中进行快速烟火检测。通过网络传输并向远程监控主机发送报警信息,报警信息包括:机器ID,云台水平和俯仰角度,超温区域的坐标(左上角和右下角),激光测距机测得的距离值等。同时,根据激光测距机的距离值,能够估算出实际火焰面积大小。远程监控主机根据回传信息,经过分析判断确认报警后产生报警信号、记录报警信息,并提供日志查询和录像等功能,方便用户对火情信息进行处理。
附图说明
图1是本发明具体实施方式的系统框图。
图2是发明具体实施方式中的红外热成像仪系统框图。
图3是发明具体实施方式中的热成像超温检测原理框图。
图4是发明具体实施方式中的成像原理图。
图5是发明具体实施方式中的可见光检测原理框图。
图6是发明具体实施方式中的双光谱探测智能分析算法原理框图。
图7是发明具体实施方式中的火灾区域成像面积计算图。
具体实施方式
为能清楚说明本方案的技术特点,下面通过一个具体实施方式,对本方案进行阐述。
一种基于双光谱的森林防火智能监控系统,如图1所示,包括前端设备、网络传输及后台智能管理系统;前端设备主要由热成像仪、可见光摄像机、激光测距机、云台组成;热成像仪、可见光摄像机、激光测距机架设在云台上,将前端设备安装在监控台上,按照客户设定路径进行巡航扫描,每次扫描水平转动一定角度位置,通常为1度,因为检测需要在云台停止转动情况下进行,所以设这每个扫描点停留一段时间,通常停留10秒进行检测;
在扫描点停留时,根据火灾发生的一般规律,烟雾出现早于明火,检测火焰相对于检测火情烟雾有一定的时间滞后。而热成像检测烟雾通常较难,所以在热成像检测火焰前,因此,首先,在每个扫描点开启烟火检测,步骤如下:先由可见光进行烟雾预检测,得到此时烟雾检测置信度E1;E1与传统烟雾阈值相比较,如果小于阈值,则为误报,不做任何其他检测;如果大于阈值,则启动热成像仪进行超温检测,得到此时热成像仪检测置信度E2,以及疑似火焰区域坐标,E2与传统热成像仪检测阈值相比较,若大于阈值,则根据热成像仪焦距值计算出可见光镜头焦距值,使得可见光摄像机与热成像仪视场一致后,再启动可见光摄像机进行可见光火焰检测,得到可见光检测置信度E3,经过坐标转换,得到可见光火焰区域坐标
Figure 538183DEST_PATH_IMAGE001
和热成像仪在可见光摄像机视场的变换区域坐标
Figure 933392DEST_PATH_IMAGE002
的检测信息并将检测信息通过网络传输到后天智能管理系统;后台智能管理系统根据接收到的从前端设备传回的报警信号、区域坐标、置信度信息,进行疑似火焰区域匹配,如果匹配度高,表明经过热成像仪和可见光摄像机检测区域一致,则输出报警信息,并根据火灾区域成像的靶面尺寸,根据公式
Figure 747764DEST_PATH_IMAGE003
,由可见光摄像机与热成像仪视场两视场一致,即热成像仪视场水平距离与可见光摄像机视场水平距离相等,得HA = HB,已知可见光摄像机靶面水平尺寸hB,可见光摄像机水平视场角2θB,则根据
Figure 712626DEST_PATH_IMAGE005
计算出HB,同理可得VB,根据公式S=HB *VB,求得实际的火灾面积,为监控人员对火情的控制提供必要的信息,其中,fA为热成像仪镜头焦距,已知热成像仪水平靶面尺寸为hA,观察景物距离镜头距离为D,。
图2为红外热成像仪的系统框图。图中,FPGA为微处理器,由热成像机芯输出数字视频差分信号,经过视频图像处理后,输入到微处理器进行视频分析;同时从视频信号中分离出同步信号给字符叠加芯片,将报警箭头等信息通过字符叠加到视频上后,变成模拟视频信号输出到后端。微处理器负责与云台通讯功能,接收云台指令以及回传报警信息;同时负责对热成像镜头控制功能,包括变倍、聚焦等。
图3中展示了热成像超温检测的原理。自然界中任何温度高于绝对零度的物体,都会不停地向周围空间辐射包括红外波段在内的电磁波,物体表面的温度越高,红外辐射能量就越多,因此可以利用红外辐射测量物体表面的热状态。热像仪工作在8~14μm,属于远红外波段。火焰的辐射波长范围为2-20μm,正常森林的辐射波长范围为8.5-12.2μm,都在热成像仪8-14μm的探测范围之内。目标温度越高,从热成像探测器组件输出的数字信号值越大,即数字图像的灰度值越大,根据这个特点,热成像仪超温检测过程如下:热成像仪的图像采集模块将探测器输出的高精度图像数据写入内存,图像处理模块运行超温检测算法,首先根据目标和背景的对比度计算出原始阈值,再结合用户设定的目标温度等级,计算出二值化阈值,将图像进行二值化后进行连通域检测,计算出目标区域面积和坐标,在画面上标识出超温区域并通过串口发出报警信息。
由于探测器接收到的红外辐射能量受监控距离和工作环境的影响,被检测目标的温度范围也各不相同,所以为了达到理想的报警效果,通常需要根据用户的具体使用环境设定被监控目标的温度等级,即目标与背景的温度差别等级,得到置信度E2。
但是,由于红外热成像仪成像清晰度差,且存在一定程度上的误报,因此本系统又引入可见光图像检测。当出现火情时,E1大于阈值启动热成像检测,当热成像检测后,启动可见光火焰检测。
在热成像仪发现目标报警基础上,通过视频图像分析算法,检测出火焰产生二级报警信号。可见光摄像机模拟视频信号接入到图像检测模块,通过图像采集单元的视频解码电路转换为数字信号后,被基于DSP的图像处理单元处理,根据火灾火焰的图像特性,探测出画面中出现火焰,加入火焰识别标记后,再通过视频编码电路转换为模拟视频信号输出。
由于实际现场环境中,存在着树叶抖动、灯光干扰等影响因素,使得可见光在实际检测中的误报率极高。如果此时可见光检测的视场与热成像检测视场一致,热成像识别出火焰发出报警,而可见光检测的画面中也出现了火情并报警,则置信度大大提高,从而减少了误报率的产生。
热成像的视场角小,用于对火焰进行重点检测。可见光视场角调节范围大,可以对大面积场景进行一般性检测,尤其是早期火灾烟雾出现时,更便于及时发现弥漫性的烟雾。所以在正常巡航时,可见光视场角度大,比热成像所观察范围大。因此在热成像检测到火焰后,接着要对可见光摄像机视场进行调节,使可见光摄像机视场与热成像视场一致后,再开启可见光火焰检测。可见光摄像机与热成像仪视场一致是通过如下调节方式实现的,在热成像镜头齿轮处,安装可变电阻器,经过A/D转换,读取变阻器的电阻值,得到热成像镜头焦距fA,已知热成像水平靶面尺寸为hA。通过对激光测距机进行测距,测得观察景物距离镜头距离为D。根据附件图4中的原理,以水平视场为例,计算水平视场角2θHA
Figure 2012102120032100002DEST_PATH_IMAGE006
…………………………………………(1)
由附件图可知,可以求得当前视场中,所观测场景的水平距离H A 。 
… ……………………(2)
根据公式(1)求得HA,保证两视场一致,是指热成像视场水平距离与可见光视场水平距离相等,即HA = HB,已知可见光摄像机靶面水平尺寸hB,则可见光摄像机水平视场角2θHB
Figure DEST_PATH_IMAGE008
……………………………………(3)
根据公式(3)求得可见光镜头焦距 
Figure 455771DEST_PATH_IMAGE009
若以垂直视场为例,原理同上也可计算垂直视场角2θVA
Figure DEST_PATH_IMAGE010
…………………………………………(1')
由附件图可知,可以求得当前视场中,所观测场景的垂直距离V A 。 
Figure 301064DEST_PATH_IMAGE011
… ……………………(2')
根据公式(1')求得H A,保证两视场一致,是指热成像视场水平距离与可见光视场垂直距离相等,即VA = VB,已知可见光摄像机靶面水平尺寸VB,则可见光摄像机水平视场角2θVB
Figure DEST_PATH_IMAGE012
……………………………………(3')
在可见光镜头齿轮处,安装可变电阻器,经过A/D转换,读取变阻器的电阻值
Figure 55393DEST_PATH_IMAGE013
,该电阻值与镜头焦距
Figure DEST_PATH_IMAGE014
存在一定关系,通过插值算法得出一组
Figure 792405DEST_PATH_IMAGE013
Figure 191156DEST_PATH_IMAGE014
的对应关系,读取
Figure 621001DEST_PATH_IMAGE013
的值,查表得到
Figure 862626DEST_PATH_IMAGE014
的值。控制可见光镜头,实时读取焦距值
Figure 137750DEST_PATH_IMAGE014
,当与计算值符合时,停止对可见光镜头的控制,此时可见光的视场与热成像视场一致,可以进行可见光火焰检测。
图5中描述了本系统可见光检测火焰主要通过检测火焰的静态特征(颜色)和形态特征(闪烁性)两个特征进行检测。先利用静态特征从视频图像中提取出与火焰颜色相似的区域,再利用形态特征对上面提取出来的区域进行检测,可以排除与火焰颜色相似的非火焰区域,这样降低了错误报警率,可以增加早期报警的可靠性。由于监测场景不同,火焰所呈现的颜色、状态也会不同。因此,在监测时,可以根据环境要求,调整检测模块的工作状态,通过设置相应参数阈值,如颜色灵敏度、动态灵敏度等,使检测模块可以更准确及时地识别出火焰,得到可见光检测置信度E3。
图6描述了双光谱探测智能分析算法原理图。因为通过前端热成像仪的超温探测产生报警信号,同时伴有疑似火焰区域坐标。由于热成像仪和可见光摄像机靶面尺寸不同,因此,需要对坐标信息重新映射。并通过如下方法计算出目标区域面积和坐标的:由热成像火焰检测出火焰矩形区域为
Figure 781221DEST_PATH_IMAGE015
,由可见光火焰检测出火焰区域为
Figure 116387DEST_PATH_IMAGE001
。根据,
Figure 720675DEST_PATH_IMAGE017
,得到热成像着火区域在可见光靶面上的对应区域
Figure 799489DEST_PATH_IMAGE002
,其中i=1,2;当i=1时,表示矩形左上角坐标,i=2,表示矩形区域右下角坐标;
将报警信号、区域坐标通过网络传输到后台智能控制系统后,智能控制系统根据可见光火焰区域坐标
Figure 297467DEST_PATH_IMAGE001
和热成像仪在可见光视场的变换区域坐标
Figure 69114DEST_PATH_IMAGE002
的检测信息,结合场景分析,进行疑似火焰区域匹配,如果匹配度高,表明经过热成像和可见光检测区域一致,则输出报警信息并通知监控人员,从而做到对火焰早期的预警功能;同时根据火灾区域成像的靶面坐标,由图7得到火灾区域成像的面积大小为
Figure DEST_PATH_IMAGE018
,根据公式(3)和公式(3')可以计算出实际的火灾面积
Figure 895118DEST_PATH_IMAGE019
,为监控人员对火情的控制提供必要的信息。
本发明未经描述的技术特征可以通过或采用现有技术实现,在此不再赘述,当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。

Claims (2)

1.一种基于双光谱的森林防火智能监控系统,其特征是,包括前端设备、网络传输及后台智能管理系统;前端设备主要由热成像仪、可见光摄像机、激光测距机、云台组成;热成像仪、可见光摄像机、激光测距机架设在云台上,将前端设备安装在监控台上,按照客户设定路径进行巡航扫描,每次扫描水平转动一定角度位置,因为检测需要在云台停止转动情况下进行,所以设这每个扫描点停留一段时间进行检测;
首先,在每个扫描点开启烟火检测,步骤如下:先由可见光进行烟雾预检测,得到此时烟雾检测置信度E1;E1与传统烟雾阈值相比较,如果小于阈值,则为误报,不做任何其他检测;如果大于阈值,则启动热成像仪进行超温检测,得到此时热成像仪检测置信度E2,以及疑似火焰区域坐标,E2与传统热成像仪检测阈值相比较,若大于阈值,则根据热成像仪焦距值计算出可见光镜头焦距值,使得可见光摄像机与热成像仪视场一致后,再启动可见光摄像机进行可见光火焰检测,得到可见光检测置信度E3,经过坐标转换,得到可见光火焰区域坐标                                                
Figure 110391DEST_PATH_IMAGE001
和热成像仪在可见光摄像机视场的变换区域坐标
Figure 2012102120032100001DEST_PATH_IMAGE002
的检测信息并将检测信息通过网络传输到后台智能管理系统;后台智能管理系统根据接收到的从前端设备传回的报警信号、区域坐标、置信度信息,进行疑似火焰区域匹配,如果匹配度高,表明经过热成像仪和可见光摄像机检测区域一致,则输出报警信息,并根据火灾区域成像的靶面尺寸,根据公式
Figure 2012102120032100001DEST_PATH_IMAGE003
Figure 2012102120032100001DEST_PATH_IMAGE004
,由可见光摄像机与热成像仪视场两视场一致,即热成像仪视场水平距离与可见光摄像机视场水平距离相等,得H A = H B,已知可见光摄像机靶面水平尺寸h B,可见光摄像机水平视场角2θB,则根据计算出HB,同理可得VB,根据公式S=HB *VB,求得实际的火灾面积,为监控人员对火情的控制提供必要的信息,其中,fA为热成像仪镜头焦距,已知热成像仪水平靶面尺寸为hA,观察景物距离镜头距离为D,2θA为热成像仪的水平视场角;H A为热成像仪视场水平距离;fB为可见光摄像机镜头焦距。
2.根据权利要求1所述的基于双光谱的森林防火智能监控系统,其特征是,所述热成像仪超温检测过程如下:热成像仪的图像采集模块将探测器输出的高精度图像数据写入内存,图像处理模块运行超温检测算法,首先根据目标和背景的对比度计算出原始阈值,再结合用户设定的目标温度等级,计算出二值化阈值,将图像进行二值化后进行连通域检测,计算出目标区域面积和坐标,在画面上标识出超温区域并通过串口发出报警信息。
CN201210212003.2A 2012-06-26 2012-06-26 一种基于双光谱的森林防火智能监控系统 Active CN102693603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210212003.2A CN102693603B (zh) 2012-06-26 2012-06-26 一种基于双光谱的森林防火智能监控系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210212003.2A CN102693603B (zh) 2012-06-26 2012-06-26 一种基于双光谱的森林防火智能监控系统

Publications (2)

Publication Number Publication Date
CN102693603A CN102693603A (zh) 2012-09-26
CN102693603B true CN102693603B (zh) 2014-06-04

Family

ID=46858997

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210212003.2A Active CN102693603B (zh) 2012-06-26 2012-06-26 一种基于双光谱的森林防火智能监控系统

Country Status (1)

Country Link
CN (1) CN102693603B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165457A3 (en) * 2015-11-05 2017-08-02 Lockheed Martin Corporation Methods and systems of applying fire retardant based on onboard sensing and decision making processes

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103759579B (zh) * 2014-01-20 2016-04-13 成都华之芯科技有限公司 一种拒止系统
CN103759580B (zh) * 2014-01-20 2015-08-12 成都华之芯科技有限公司 一种有源拒止系统
CN103871192A (zh) * 2014-03-29 2014-06-18 哈尔滨工业大学 一种高效的智能防火预警系统及其方法
CN104359560A (zh) * 2014-12-04 2015-02-18 山东神戎电子股份有限公司 基于步进电机的双光谱观测仪视场同步控制系统及方法
CN104539914B (zh) * 2015-01-23 2018-11-02 济南和普威视光电技术有限公司 一种带自动同步的多波段监控器及其工作方法
CN104867265B (zh) * 2015-04-22 2018-05-01 深圳市佳信捷技术股份有限公司 摄像装置、火灾检测报警系统及方法
CN105070015A (zh) * 2015-08-10 2015-11-18 中国矿业大学 一种煤田火区参数动态监测的无线传感器装置及方法
CN106887108A (zh) * 2015-12-16 2017-06-23 天维尔信息科技股份有限公司 基于热成像的预警联动方法及系统
CN105488941B (zh) * 2016-01-15 2018-10-30 中林信达(北京)科技信息有限责任公司 基于红外-可见光图像的双光谱森林火情监测方法及装置
CN106448023B (zh) * 2016-12-01 2021-06-08 上海腾盛智能安全科技股份有限公司 一种具有存储功能的火灾烟雾报警器
CN107246913B (zh) * 2017-06-05 2019-11-08 山东神戎电子股份有限公司 基于多次判别机制的森林防火检测方法
CN108108695B (zh) * 2017-12-22 2019-11-19 湖南源信光电科技股份有限公司 基于红外视频图像的火焰检测识别方法
CN108921330A (zh) * 2018-06-08 2018-11-30 新疆林科院森林生态研究所 一种森林管理系统
CN109243135A (zh) * 2018-09-26 2019-01-18 北京环境特性研究所 一种智能火灾检测与定位方法、装置及系统
CN110009862A (zh) * 2019-05-14 2019-07-12 天津芯远控科技有限公司 一种火灾探测器及基于该火灾探测器的火灾灾情检测方法
CN112634577B (zh) * 2019-09-24 2022-07-26 中科智云科技有限公司 用于烟雾报警的方法和设备
CN110942579A (zh) * 2019-12-02 2020-03-31 山东神戎电子股份有限公司 一种无人值守的低功耗多光谱夜视报警系统
CN110726407A (zh) * 2019-12-18 2020-01-24 深圳光启空间技术有限公司 一种定位监控方法及装置
CN112767643A (zh) * 2020-12-23 2021-05-07 青海大唐国际格尔木光伏发电有限责任公司 光伏场站的双光谱火源探测预警装置
CN112562250A (zh) * 2020-12-25 2021-03-26 杭州拓深科技有限公司 一种摄像检测装置与烟雾报警器联动的火灾预警方法
CN113345194B (zh) * 2021-04-29 2022-08-16 浙江大华技术股份有限公司 森林火情预警方法、系统、电子装置和存储介质
CN114359776A (zh) * 2021-11-25 2022-04-15 国网安徽省电力有限公司检修分公司 一种融合光与热成像的火焰检测方法、装置
CN114432636B (zh) * 2021-12-27 2023-04-18 湖南中联重科应急装备有限公司 用于智能消防车进行危险物识别定位的方法及智能消防车
CN114519918A (zh) * 2022-03-01 2022-05-20 华南师范大学 化工石化医药行业极早期热成像火灾报警系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5237308A (en) * 1991-02-18 1993-08-17 Fujitsu Limited Supervisory system using visible ray or infrared ray
US5794889A (en) * 1995-06-06 1998-08-18 Raytheon Company Fire retardant delivery system
CN101329411B (zh) * 2008-07-02 2011-08-17 清华大学 一种高温热源的检测方法和装置
CN101527073B (zh) * 2009-02-17 2010-12-01 丁国锋 火灾探测系统及方法
CN101605248A (zh) * 2009-07-10 2009-12-16 浙江林学院 森林火灾远程视频监控同步跟踪方法
CN201813479U (zh) * 2010-07-13 2011-04-27 山东神戎电子股份有限公司 双光谱成像系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3165457A3 (en) * 2015-11-05 2017-08-02 Lockheed Martin Corporation Methods and systems of applying fire retardant based on onboard sensing and decision making processes

Also Published As

Publication number Publication date
CN102693603A (zh) 2012-09-26

Similar Documents

Publication Publication Date Title
CN102693603B (zh) 一种基于双光谱的森林防火智能监控系统
CN201897853U (zh) 具有超温报警功能的监控装置
CN105512667B (zh) 红外和可见光视频图像融合识别火灾的方法
CN102568146B (zh) 一种基于红外热图像的火灾预警与早期消除系统
CN104751593B (zh) 一种火灾探测、报警、定位、扑灭方法及系统
CN103400463B (zh) 一种基于二维图像的林火定位方法和装置
CN107886670A (zh) 林区初期火灾快速识别与定位方法、存储介质、电子设备
CN106657921A (zh) 一种便携式雷达周界安防系统
CN104754302A (zh) 一种基于枪球联动系统的目标检测跟踪方法
CN112068111A (zh) 一种基于多传感器信息融合的无人机目标侦测方法
CN106385530A (zh) 一种双光谱摄像机
CN202523169U (zh) 一种红外热像型火灾探测报警系统
CN202472850U (zh) 一种红外热像型火灾探测报警系统
CN104537786A (zh) 用于变电站的红外远程影像识别报警装置
CN103929592A (zh) 全方位智能监控设备及方法
JP2019185115A (ja) 侵入検知システムおよび侵入検知方法
CN112257554B (zh) 基于多光谱的森林火灾识别方法、系统、程序及存储介质
CN110244314A (zh) 一种“低慢小”目标探测识别系统与方法
JPWO2019163212A1 (ja) 監視システムおよび監視システムの制御方法
CN112365669A (zh) 双波段远红外融叠成像及火灾预警方法及系统
CN107229108B (zh) 一种被动红外及主动红外全景监控联动系统及方法
CN102291568A (zh) 一种大视场智能化视频监控系统的加速处理方法
CN211506678U (zh) 一种变电站人员多极智能定位系统
TW202207867A (zh) 體溫異常個體快篩系統
CN103986917B (zh) 多视角热像监控系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant