New! View global litigation for patent families

CN102644574B - Method for processing variable section channel of hall thruster - Google Patents

Method for processing variable section channel of hall thruster Download PDF

Info

Publication number
CN102644574B
CN102644574B CN 201210152828 CN201210152828A CN102644574B CN 102644574 B CN102644574 B CN 102644574B CN 201210152828 CN201210152828 CN 201210152828 CN 201210152828 A CN201210152828 A CN 201210152828A CN 102644574 B CN102644574 B CN 102644574B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
method
processing
variable
thruster
section
Prior art date
Application number
CN 201210152828
Other languages
Chinese (zh)
Other versions
CN102644574A (en )
Inventor
宁中喜
江晓龙
于达仁
李鸿
刘辉
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

霍尔推力器的变截面通道的加工方法,涉及霍尔推力器的设计方法,它为了解决延长现有霍尔推力器工作寿命的问题。 The method of processing variable cross-section passages Hall thruster, relates to a design method of a Hall thruster, to solve the problem that conventional Hall thruster extended working life. 它包括具体步骤为:步骤一、对霍尔推力器进行点火运行,测量从发动机点火开始到发动机不能再次点火运行的时间段内,霍尔推力器放电通道的壁面法向侵蚀速度c随时间变化的曲线;步骤二、模拟计算得到不同时刻的壁面法向侵蚀速度c,并建立由法向侵蚀速度c与壁面形貌的一一对应数据关系;步骤三、由步骤获得的壁面法向侵蚀速度c随时间变化的曲线和步骤二获得的法向侵蚀速度c与壁面形貌的一一对应数据关系,得到霍尔推力器的变截面通道的形貌参数;步骤四、根据获得的形貌参数加工霍尔推力器的通道壁截面形状。 It includes specific steps: Step one, the Hall thruster ignition operation, measured from the ignition to start the engine ignition engine can not run again period, a Hall thruster discharge channel wall erosion normal velocity c changes with time curve; two step, obtained at different time simulation of the normal wall erosion rate c, and the data-one correspondence relationship with the wall surface by the method c to the rate of erosion topography; step three, the wall surface of the process step of obtaining the erosion rate method c versus time curves obtained in the two step-one correspondence relationship between the data rate of erosion and the wall surface topography c to give cross-sectional morphology of the channel parameter variations Hall thruster; step 4 the morphology of the obtained parameters processing the Hall thruster sectional shape of the channel walls. 用于设计霍尔推力器。 Design for the Hall thruster.

Description

霍尔推力器的变截面通道的加工方法 The method of processing variable cross-section passages Hall thrusters

技术领域 FIELD

[0001] 本发明涉及霍尔推力器的设计方法。 [0001] The present invention relates to a method for the design of the Hall thruster.

背景技术 Background technique

[0002] Hall推力器是电推进装置的最基本的类型。 [0002] Hall thruster is the most basic type of electric propulsion device. 利用电能加热、离解和加速工质,使其形成高速射流而产生推力的技术。 Heating by electric energy, accelerating dissociation and working fluid to form a high velocity jet thrust generated in the art. 与化学推进相比,具有比冲高、推力小、能重复启动、重量轻和寿命长等特点,因而可以用作航天器的姿态控制、轨道转移和提升、轨道修正、阻力补偿、位置保持、重新定位、离轨处理、宇宙探测和星际航行等任务。 Compared to chemical propulsion, having a high specific impulse, the thrust is small, can be repeatedly activated, light weight and long life characteristics, and thus can be used as the attitude control of a spacecraft, the transfer rail and lift, trajectory correction, compensation resistance, holding position, repositioned away from the track processing, space exploration and interplanetary navigation and other tasks. 随着通信卫星向着长寿命、大质量、高功率方向发展,对推进器的功率密度及寿命要求就更为苛刻。 With the communications satellite toward long life, high quality, high power direction, power density and lifetime requirements propeller is even more demanding. 对于一颗任务期限为15年的卫星来说,推进器的理想工作寿命预计要求超过15000小时,同样对于深空探测任务而言,也要求具有较长的寿命。 For a 15-year mandate for the satellite, the ideal work life propulsion requirements are expected to more than 15,000 hours, also for deep space exploration mission, it also requires a longer life. 为满足长寿命卫星平台需求,急需提高现有霍尔推力器工作寿命。 To meet the needs of long-lived satellite platform, urgent need to improve the existing Hall thruster working life.

发明内容 SUMMARY

[0003] 本发明的目的是为了解决延长现有霍尔推力器工作寿命的问题,提供霍尔推力器的变截面通道的加工方法。 [0003] The object of the present invention is to solve the Hall thruster extend the working life of the conventional problems and to provide a method and processing section of the channel becomes a Hall thruster.

[0004] 霍尔推力器的变截面通道的加工方法,它包括具体步骤如下: [0004] Process variant processing section of the passage of the Hall thruster, which comprises the following steps:

[0005] 步骤一、对霍尔推力器进行点火运行,测量从发动机点火开始到发动机不能再次点火运行的时间段内,霍尔推力器放电通道的壁面法向侵蚀速度c随时间变化的曲线; [0005] Step a, the Hall thruster ignition operation, measured from the ignition to start the engine ignition engine can not run again period, Hall thruster discharge channel wall method versus time curve c to the rate of erosion;

[0006] 步骤二、模拟计算得到不同时刻的壁面法向侵蚀速度C,并建立由法向侵蚀速度c与壁面形貌的对应数据关系; [0006] Step two, obtained at different time simulation of the normal wall erosion rate C, and establishing a correspondence relationship between the normal data rate of erosion c wall surface topography;

[0007] 步骤三、由步骤一获得的壁面法向侵蚀速度c随时间变化的曲线和步骤二获得的法向侵蚀速度c与壁面形貌的一一对应数据关系,得到霍尔推力器的变截面通道的形貌参数; [0007] Step three, a method step wall obtained by the method of time-varying curve c and the erosion rate obtained in the two step-one correspondence relationship between the data rate of erosion and the wall surface topography c, to give variable Hall thrusters morphology parameters section of the passage;

[0008] 步骤四、根据获得的形貌参数加工霍尔推力器的通道壁截面形状。 [0008] Step 4 The sectional shape of the channel wall topography of the Hall thruster processing parameters obtained.

[0009] 本发明通过把如图4传统等截面壁面的形状改变为如图1的缓变截面壁面形貌,由于临近出口的弯曲变截面具有对带电粒子的避让机制,就能使推力器在采用相同厚度的陶瓷壁面的条件下,被腐蚀条件改善,寿命更长。 [0009] The present invention, by changing the cross-sectional shape of the wall surface as shown in FIG. 4 and other conventional slow a variable cross-section wall morphology, since the curved near the outlet having a variable cross-section of the escape mechanism of the charged particles, can be thrust in ceramic wall under the same thickness, the etching conditions are improved, longer life. 这样就会减小带电粒子对推力器的溅射腐蚀作用,使得推力器的溅射腐蚀速率跳过初始正常腐蚀区域,直接进入减速腐蚀区,有效的延长了推力器的工作寿命30%以上。 This will reduce the corrosive effect of the sputtering of the charged particles of the thruster, so that the thruster sputter etching rate of etching of normal skip the initial region, directly into the reduction zone of corrosion, effectively extending the working life of more than 30% of the thruster.

附图说明 BRIEF DESCRIPTION

[0010] 图1为本发明的缓变截面壁面形貌的霍尔推力器的局部剖面示意图,I为外壁,2为内壁,3为内磁极,4为外磁极;图2为现有的霍尔推力器壁面侵蚀示意图,图3为霍尔推力器壁面腐蚀速率随时间变化曲线图,♦为型号T-220的霍尔推力器,▲为型号SPT-100的霍尔推力器,•为型号NA SA-400M的霍尔推力器,*为型号NASA-120Mvl的霍尔推力器;图4为现有霍尔推力器的局部剖面示意图,图5为型号SPT-1OO的霍尔推力器O至4000小时陶瓷壁面材质被离子溅射侵蚀剥落的壁面形貌数据的示意图,图中横坐标代表侵蚀长度,单位为_,纵坐标代表陶瓷壁面的壁面形貌,单位为_,引出线标出对应的时间,单位为小时;图6为陶瓷壁面在离子轰击下的溅射侵蚀速率示意图。 A partial schematic cross-sectional view [0010] FIG 1 a cross-sectional wall surface topography ramping Hall thruster of the present invention, I is an outer wall, the inner wall 2, 3 of the inner magnetic pole, an outer magnetic pole 4; FIG. 2 is a conventional Hall Seoul thruster wall erosion schematic, FIG. 3 is a Hall thruster wall corrosion rate versus time graph, ♦ model T-220 is a Hall thruster, a Hall thruster ▲ model SPT-100, • the model for the NA SA-400M Hall thruster * is a model NASA-120Mvl Hall thruster; FIG. 4 is a partial cross-sectional schematic view of conventional Hall thruster, FIG. 5 is a model SPT-1OO Hall thrusters to O 4000 hours schematic ceramic wall material peeled ion sputtering erosion topography data wall, erosion FIG abscissa represents a length, in units of _ the ordinate representative of the wall surface morphology of the ceramic wall, _ units, corresponding to the lead marked time in hours; FIG. 6 is a schematic view of the ceramic wall under the sputtering erosion rate of ion bombardment.

具体实施方式 detailed description

[0011] 具体实施方式一:结合图1和图6说明本实施方式,本实施方式所述霍尔推力器的变截面通道的加工方法,它包括具体步骤如下: [0011] In a specific embodiment: FIG. 1 and FIG. 6 illustrates an embodiment according to the present embodiment, the processing method of the variable section of the passage of the Hall thruster embodiment according to the present embodiment, it comprises the following steps:

[0012] 步骤一、对霍尔推力器进行点火运行,测量从发动机点火开始到发动机不能再次点火运行的时间段内,霍尔推力器放电通道的壁面法向侵蚀速度c随时间变化的曲线; [0012] Step a, the Hall thruster ignition operation, measured from the ignition to start the engine ignition engine can not run again period, Hall thruster discharge channel wall method versus time curve c to the rate of erosion;

[0013] 步骤二、模拟计算得到不同时刻的壁面法向侵蚀速度C,并建立由法向侵蚀速度c与壁面形貌的对应数据关系; [0013] Step two, obtained at different time simulation of the normal wall erosion rate C, and establishing a correspondence relationship between the normal data rate of erosion c wall surface topography;

[0014] 步骤三、由步骤一获得的壁面法向侵蚀速度c随时间变化的曲线和步骤二获得的法向侵蚀速度c与壁面形貌的一一对应数据关系,得到霍尔推力器的变截面通道的形貌参数; [0014] Step three, a method step wall obtained by the method of time-varying curve c and the erosion rate obtained in the two step-one correspondence relationship between the data rate of erosion and the wall surface topography c, to give variable Hall thrusters morphology parameters section of the passage;

[0015] 步骤四、根据获得的形貌参数加工霍尔推力器的通道壁截面形状。 [0015] Step 4 The sectional shape of the channel wall topography of the Hall thruster processing parameters obtained.

[0016] 具体实施方式二:本实施方式是对实施方式一所述霍尔推力器的变截面通道的加工方法的进一步限定,所述建立由法向侵蚀速度c与壁面形貌一一对应数据的过程为: [0016] DETAILED Embodiment 2: The present embodiment is further defined embodiment of the method of processing a variable passage cross section of the Hall thruster, the establishment of the wall surface topography and c correspond to the erosion rate data from the law the process is:

[0017] 霍尔推力器放电通道的壁面材料在离子溅射侵蚀的作用下表面材质不断被剥落,表面形貌在侵蚀过程中不断演化,如图6所示。 [0017] The action of the wall member of the Hall thruster ion sputtering discharge channels in constantly eroded surface material is peeled, the surface topography evolving during erosion, as shown in FIG.

[0018] Θ = arccos(n •n/ )是离子入射方向和表面法线方向所成的角度,η表示表面法向的单位向量,Y表示指向离子束入射方向的单位向量;表面的法向侵蚀速度c表示为: [0018] Θ = arccos (n • n /) is the incident direction of ions and the surface normal direction of the angle, η represents the surface normal unit vector, Y represents a unit vector pointing to the ion beam incident direction; surface normal c erosion rate is expressed as:

[0019] c = qn (I) [0019] c = qn (I)

[0020] 其中q是溅射侵蚀速率,它表示为: [0020] wherein q is sputter erosion rate, which is expressed as:

[0021] q = —^---(2) [0021] q = - ^ --- (2)

[0022] 其中Ji是离子流的密度,N是陶瓷壁面的原子密度,Y为溅射产额,Υ(Ε,Θ )为当入射能量为E的一个离子以入射角度Θ入射至陶瓷壁面时获得的溅射产额,离子入射能量E和入射角度Θ对溅射产额Y的影响相互独立。 [0022] where Ji is the ion flux density, N is the density of the ceramic wall atom, Y is the sputtering yield, Υ (Ε, Θ) that when the incident ion energy E incident on a ceramic wall angle of incidence [Theta] is sputtering yield obtained, the incident ion energy E and the impact on the angle of incidence Θ sputtering yield Y independently of each other.

[0023] 具体实施方式三:本实施方式是对实施方式二所述霍尔推力器的变截面通道的加工方法的进一步限定,所述溅射产额Y (Ε,Θ)为: [0023] DETAILED Embodiment 3: The present embodiment is further defined section of the channel machining process variant embodiment the two Hall thrusters, said sputtering yield Y (Ε, Θ) is:

[0024] Υ(Ε,Θ)=Υ, (Θ).Υ, (E) (3) [0024] Υ (Ε, Θ) = Υ, (Θ) .Υ, (E) (3)

[0025] 公式中,Y' (E)为能量溅射产额,Y' (Θ)为角度溅射产额; [0025] In the formula, Y '(E) is the energy of the sputtering yield, Y' (Θ) is the angle of the sputtering yield;

[0026]此时, [0026] At this time,

I V'(/'I I V '(/' I

[0027] ? =I1-Al1.T(^)-COS(4) ? [0027] = I1-Al1.T (^) - COS (4)

N N

[0028] 进而获得: [0028] Furthermore obtained:

/.Yi(F) /.Yi(F)

[0029] c = qn = ”二1-J~~~^Y"(0)^cos0 (S) [0029] c = qn = "two 1-J ~~~ ^ Y" (0) ^ cos0 (S)

N.[0030] 其中,离子流的密度J1、陶瓷壁面的原子密度N、表面法向的单位向量η是和离子入射方向和表面法线方向所成的角度Θ由步骤一通过探针仪器测量为已知。 N. [0030] wherein the ion flux density J1, the ceramic wall surface atomic density N, a unit vector η is the surface normal and the ion incident direction and the surface normal direction of the angle Θ from the instrument measurement probe by a step It is known.

[0031] 具体实施方式四:本实施方式是对实施方式三所述霍尔推力器的变截面通道的加工方法的进一步限定,所述V (E)由基于LCC理论的半经验溅射计算方程计算获得: [0031] DETAILED DESCRIPTION 4: The embodiment of the working method is further defined variable cross-section of the three-channel embodiment of the Hall thruster, the V (E) is calculated by a semiempirical equation based on a sputtering LCC Theory calculated to obtain:

Figure CN102644574BD00071

[0033] 公式中α为经验系数,该系数取决于陶瓷壁面的原子序数Ζ2,α表示为:Q(Z2).a,Q(Z2)为无量纲常量,代入公式(6)得到: [0033] [alpha] is an empirical formula coefficient, which depends on the atomic number Ζ2 ceramic wall, [alpha] is expressed as: .a, Q (Z2) is a dimensionless constant amount Q (Z2), into the formula (6) to give:

Figure CN102644574BD00072

[0035] 其中M1是入射离子的质量,M2是陶瓷壁面原子的质量,Y' n(E)是核阻止截面,E是离子能量,I' 6(ε)是电子阻止截面,Eth是溅射阈值能。 [0035] wherein M1 is the mass of the incident ions, M2 is the mass of the ceramic wall atoms, Y 'n (E) is a nuclear stopping cross section, E is the ion energy, I' 6 (ε) is a cross-sectional electron blocking, Eth sputtering the thresholds.

[0036] 具体实施方式五:本实施方式是对实施方式四所述霍尔推力器的变截面通道的加工方法的进一步限定,所述核阻止截面V n(E)约化形式的核阻止截面: [0036] DETAILED DESCRIPTION five: the present embodiment is further defined section of the channel machining process variants the four Hall thruster embodiment, the core cross-section to prevent nuclear stopping cross section V n (E) form of about :

Figure CN102644574BD00073

[0038] 其中Z1是入射离子的原子序数,e是基本电荷,a12是屏蔽半径: [0038] wherein Z1 is incident ion atomic number, e is the elementary charge, a12 shielding radius:

Figure CN102644574BD00074

[0040]其中 a0 为Bohr 半径:£/„ = 0.529 A:则有: [0040] where a0 is the Bohr radius: £ / "= 0.529 A: there are:

[0041] [0041]

Figure CN102644574BD00075

[0042] 具体实施方式六:本实施方式是对实施方式四所述霍尔推力器的变截面通道的加工方法的进一步限定,所述约化核阻止截面I' η( ε )为: [0042] DETAILED DESCRIPTION VI: The present embodiment is further defined section of the channel machining process variant embodiment of the Hall thruster of four, the nuclear stopping cross section of about I 'η (ε) is:

Figure CN102644574BD00076

[0044] 其中离子能量E以eV为单位条件下的约化能ε为: [0044] wherein the ion energy E in eV units under the reduced energy conditions as ε:

Figure CN102644574BD00077

[0046] 式(J)中的约化电子阻止截面Y' 6(ε)表示为: The [0046] formula (J) the reduced cross-sectional electron blocking Y '6 (ε) is expressed as:

[0047] y' e ( ε ) = k ε 1/2 (13) [0047] y 'e (ε) = k ε 1/2 (13)

[0048] 其中参数k为: [0048] where k is a parameter:

Figure CN102644574BD00078

[0050] 式(7)中的A为:[0051] A = 0.35U0 (15) The [0050] Formula (7) A is: [0051] A = 0.35U0 (15)

[0052] 式(7)中的参数S取为2.5,且a*为以下形式: [0052] Formula (7) is taken as the parameter S 2.5, and a * in the following form:

Figure CN102644574BD00081

[0054] 具体实施方式七:本实施方式是对实施方式四所述霍尔推力器的变截面通道的加 [0054] Seventh Embodiment: This embodiment is a section of the channel becomes added to the embodiments described four Hall thrusters

工方法的进步限定,所述溅射阈值能Eth为: Defining progress processing method, the sputtering threshold energy Eth of:

Figure CN102644574BD00082

[0056] 其中Y为弹性碰撞过程中的能量转输因子: [0056] wherein Y is the elastic energy during the collision transfusion factors:

[0057] [0057]

Figure CN102644574BD00083

[0058] Xe+轰击陶瓷壁面条件下能量溅射半经验计算方程(7)中Q的形式: [0058] Xe + sputtering bombardment energy calculated semiempirical equation (7) the ceramic wall under the condition of Q form:

Figure CN102644574BD00084

[0061] 其中r为平均原子间距,由下式给出: [0061] wherein r is the average atomic spacing, is given by the following formula:

Figure CN102644574BD00085

[0063] 其中P为陶瓷壁面密度g.cm_3, Na为常数; [0063] where P is the density of the ceramic wall g.cm_3, Na is a constant;

[0064] 确定材料的物理性质后就能利用半经验公式(7)计算陶瓷壁面在Xe+轰击下的能量溅射产额V (E)。 After determining the physical properties of the material [0064] able to use semi-empirical equation (7) is calculated in the ceramic wall Xe + bombardment energy at the sputtering yield V (E).

[0065] 具体实施方式八:本实施方式是对实施方式三所述霍尔推力器的变截面通道的加工方法的进步限定,所述V (Θ)通过经验公式拟合得到: [0065] DETAILED DESCRIPTION eight: the present embodiment is a progressive processing method of variable cross-section of the passage of three embodiments of the Hall thruster defining a V (Θ) obtained by fitting the empirical formula:

[0066] V ( Θ ) = xfexp [- Σ (χ-1) ] (21) [0066] V (Θ) = xfexp [- Σ (χ-1)] (21)

[0067]其中,X = 1/cos θ,Σ和f 满足关系: [0067] where, X = 1 / cos θ, Σ and f satisfy the relation:

Figure CN102644574BD00086

[0068] 霍尔推力器器壁侵蚀实验如图2表明,I为通道外壁,2为通道内壁,3为内磁极,4为外磁极;图5为壁面形貌变化的示意图,图中横坐标代表侵蚀长度,单位为_,纵坐标代表陶瓷壁面的壁面形貌,单位为mm,引出线标出对应的时引间,单位为小时;侵蚀速率表现为随时间的减速衰减过程:侵蚀初期侵蚀速率高且衰减迅速,随着时间的增加,衰减速率降低,在侵蚀后期侵蚀速率相对稳定在一个较低的水平上,见图3的腐蚀速率随时间的变化曲线,图3中给出了型号T-220的霍尔推力器♦、型号SPT-100的霍尔推力器▲、型号NASA-400M的霍尔推力器•和型号NASA-120Mvl的霍尔推力器*的腐蚀速率随时间的变化曲线。 [0068] Hall thruster wall erosion experiment 2 show, I is an outer wall of the channel, the channel inner wall 2, 3 of the magnetic poles, the outer magnetic poles is 4; FIG. 5 is a schematic view of a wall surface topography changes, the abscissa in FIG. Representative erosion length in _, the ordinate represents the wall surface morphology of the ceramic wall, the unit is mm, lead labeled primers corresponding to the time, in hours; erosion rate performance decay over time the deceleration process: initial erosion erosion high and rapid rate of decay, as time increases, the decay rate is reduced, in the late erosion erosion rate is relatively stable at a low level, the corrosion rate is shown in Figure 3 over time curve, the model is given in Figure 3 T-220 Hall thrusters ♦, Hall thruster ▲ model SPT-100, model NASA-400M Hall thruster • model and NASA-120Mvl Hall thruster * corrosion rate curve over time . [0069] 因此,如果采用变截面的方法使得推力器从运行的开始就进入较低的腐蚀速度,那么其寿命将会延长许多。 [0069] Thus, if a variable cross-section so that the thrust of the method of operation from the start to enter the lower corrosion rate, then it will extend the life of many.

[0070] 另一方面,推力器壁面形貌变化期间其放电特性和工作性能会发生显著的变化。 [0070] On the other hand, the discharge characteristics and performance vary significantly during the wall surface of the morphological changes thruster. 放电特性是随着推力器壁面面容比的变化而变化的。 Discharge characteristics change with a thrust wall surface to volume ratio varies. 如果采用变截面推力器,将会使得其面容比的变化相对减小,将有利于减小推力器放电特性的变化与增加推力器的稳定性。 If a thruster variable cross-section, so that it will face the relative change ratio is reduced, the discharge characteristic tends to reduce the variation of thrust with increased stability of the thruster.

[0071] 本发明通过把如图4传统等截面壁面的形状改变为如图1的缓变截面壁面形貌,由于临近出口的弯曲变截面具有对带电粒子的避让机制。 [0071] The present invention, by changing the cross-sectional shape of the wall surface as shown in FIG. 4 and other conventional slow a variable cross-section wall morphology, since the curved near the outlet having a variable cross-section for the charged particles of the escape mechanism. 就能使推力器在采用相同厚度的陶瓷壁面的条件下,被腐蚀条件改善,寿命更长。 Can make the thruster at the same ceramic wall thickness, etching conditions is improved, longer life. 这样就会减小带电粒子对推力器的溅射腐蚀作用,使得推力器的溅射腐蚀速率跳过初始正常腐蚀区域,直接进入减速腐蚀区,有效的延长了推力器的工作寿命30%以上。 This will reduce the corrosive effect of the sputtering of the charged particles of the thruster, so that the thruster sputter etching rate of etching of normal skip the initial region, directly into the reduction zone of corrosion, effectively extending the working life of more than 30% of the thruster.

Claims (4)

  1. 1.霍尔推力器的变截面通道的加工方法,它包括具体步骤如下: 步骤一、对霍尔推力器进行点火运行,测量从发动机点火开始到发动机不能再次点火运行的时间段内,霍尔推力器放电通道的壁面法向侵蚀速度C随时间变化的曲线; 步骤二、模拟计算得到不同时刻的壁面法向侵蚀速度C,并建立由法向侵蚀速度c与壁面形貌的对应数据关系; 步骤三、由步骤一获得的壁面法向侵蚀速度C随时间变化的曲线和步骤二获得的法向侵蚀速度C与壁面形貌的一一对应数据关系,得到霍尔推力器的变截面通道的形貌参数;步骤四、根据获得的形貌参数加工霍尔推力器的通道壁截面形状; 步骤二中,所述建立由法向侵蚀速度C与壁面形貌一一对应数据的过程为: Θ =arccos(n.n')是离子入射方向和表面法线方向所成的角度,η表示表面法向的单位向量,η'表示指向离子束入射方 1. The method of processing variable cross-section passages Hall thrusters, comprising the following steps: a step for operating the Hall thruster ignition, measured from the ignition to start the engine ignition engine can not run again period, Hall thruster wall of the discharge channel to the method of time-varying curve of the erosion rate C; step two, the simulation method to obtain the wall time to the different etching speed C, and establishing a correspondence relationship between the normal data rate of erosion c wall surface topography; step three, the process time by the method step of a wall obtained with the rate of erosion profile and C obtained in step two to one correspondence relationship between the data rate of erosion and the wall surface topography C, to give the Hall thruster variable section of the passage morphology parameters; step 4 the sectional shape of the channel wall morphology processing parameters obtained Hall thruster; second step, the process of establishing a normal rate of erosion C-one correspondence with the wall surface topography data is: Θ = arccos (n.n ') is an ion incident direction and the surface normal direction of the angle, η represents the surface normal unit vector, η' represents the point of the ion beam incident direction 的单位向量; 壁面法向侵蚀速度c为: c=qn (I) 其中q是溅射侵蚀速率,为: Unit vector; normal wall erosion rate c is: c = qn (I) wherein q is sputter erosion rate, as follows:
    Figure CN102644574BC00021
    其中Ji是离子流的密度,N是陶瓷壁面的原子密度,Y为溅射产额,Υ(Ε, Θ)为当入射能量为E的一个离子以入射角度Θ入射至陶瓷壁面时获得的溅射产额,离子入射能量E和入射角度Θ对溅射产额Y的影响相互独立; 所述溅射产额Y (Ε,Θ)为: Y (E, Θ ) =Y' ( Θ ).Y' (E) (3) 公式中,V (E)为能量溅射产额,Y'( Θ )为角度溅射产额; 此时, Where Ji is the ion flux density, N is the density of the ceramic wall atom, Y is the sputtering yield, Υ (Ε, Θ) when the incident energy of ions to a sputtering incident angle [Theta] to E obtained when the wall surface is incident to the ceramic yield shot, the incident ion energy and incident angle [Theta] E Effect of sputtering yield Y are independent; the sputtering yield Y (Ε, Θ) as: Y (E, Θ) = Y '(Θ). Y '(E) (3) in the formula, V (E) is the energy of the sputtering yield, Y' (Θ) is the angle of the sputtering yield; At this time,
    Figure CN102644574BC00022
    进而获得: Then get:
    Figure CN102644574BC00023
    Y' (E)由基于LCC理论的半经验溅射计算方程计算获得: Y '(E) is calculated from the obtained sputtering calculated semiempirical equation based on LCC Theory:
    Figure CN102644574BC00024
    公式中α为经验系数,该系数取决于陶瓷壁面的原子序数Z2,表示为:Q(Z2).α*,Q(Z2)为无量纲常量,代入公式(6)得到: Formula α are empirical coefficients, the coefficient depending on the atomic number Z2 ceramic wall, is expressed as: Q (Z2) .α *, Q (Z2) is a dimensionless constant quantity into the formula (6) to give:
    Figure CN102644574BC00025
    其中M1是入射离子的质量,M2是陶瓷壁面原子的质量,Y'η(Ε)是核阻止截面,E是离子能量,y'6(ε)是电子阻止截面,Eth是溅射阈值能; 其特征在于,所述核阻止截面Y'η(Ε)约化形式的核阻止截面: Wherein M1 is the mass of the incident ions, M2 is the mass of the ceramic wall atoms, Y'η (Ε) is a nuclear stopping cross section, E is the ion energy, y'6 (ε) is a cross-sectional electron blocking, Eth sputtering threshold energy; wherein the core cross-section to prevent nuclear stopping sectional Y'η (Ε) the reduced form:
    Figure CN102644574BC00031
    其中Z1是入射离子的原子序数,e是基本电荷,a12是屏蔽半径: Wherein Z1 is incident ion atomic number, e is the elementary charge, a12 shielding radius:
    Figure CN102644574BC00032
    其中aQ为Bohr半径: Is the Bohr radius aQ wherein:
    Figure CN102644574BC00033
    ;则有: ; There are:
    Figure CN102644574BC00034
    其中y'n(e)是约化核阻止截面。 Wherein y'n (e) is a cross section approximately of the nuclear stopping.
  2. 2.根据权利要求1所述的霍尔推力器的变截面通道的加工方法,其特征在于,所述约化核阻止截面y'n(e)为: The processing method of varying the section of the passage of a Hall thruster of claim 1, characterized in that the cross section of the core to prevent the reduced y'n (e) of:
    Figure CN102644574BC00035
    其中离子能量E以eV为单位条件下的约化能ε为: Wherein the ion energy E in eV units under the reduced energy conditions as ε:
    Figure CN102644574BC00036
    式(7)中的约化电子阻止截面y' ε( ε )表示为: y'e(e)=ke1/2 (13) 其中参数k为: About electronic type (7) to prevent cross-section y 'ε (ε) is expressed as: y'e (e) = ke1 / 2 (13) where k is a parameter:
    Figure CN102644574BC00037
    式(7)中的A为: A=0.35U0 (15) 式(7)中的参数S取为2.5,且α *为以下形式: In (7) the formula A: in A = 0.35U0 (15) of formula (7) is taken as the parameter S 2.5, and α * the following form:
    Figure CN102644574BC00038
  3. 3.根据权利要求1所述的霍尔推力器的变截面通道的加工方法,其特征在于,所述溅射阈值能Eth为: The processing method of varying the section of the passage of a Hall thruster of claim 1, characterized in that the sputtering threshold energy Eth of:
    Figure CN102644574BC00039
    I Y '其中Y为弹性碰撞过程中的能量转输因子: I Y 'where Y is the elastic energy during the collision transfusion factors:
    Figure CN102644574BC00041
    Xe+轰击陶瓷壁面条件下能量溅射半经验计算方程(7)中Q的形式: Sputtering bombardment energy Xe + calculated semiempirical equation (7) the ceramic wall under the condition of Q form:
    Figure CN102644574BC00042
    其中r为平均原子间距,由下式给出: Wherein r is an average atomic spacing, is given by the following formula:
    Figure CN102644574BC00043
    其中P为陶瓷壁面密度g.cm_3, Na为常数; 确定材料的物理性质后就能利用半经验公式(7)计算陶瓷壁面在Xe+轰击下的能量溅射产额Y' (E)。 Where P is the density of the ceramic wall g.cm_3, Na constants; determining the physical properties of the material (7) is calculated in the ceramic wall Xe + bombardment energy of the sputtering yield of Y '(E) able to use semi-empirical formula.
  4. 4.根据权利要求1所述的霍尔推力器的变截面通道的加工方法,其特征在于,所述Y'( Θ )通过经验公式拟合得到: Variable section of the channel processing method according to claim Hall thruster of claim 1, wherein said Y '(Θ) obtained by fitting the empirical formula:
    Figure CN102644574BC00044
    其中,x=l/cos θ,Σ和f满足关系:导=COS Θ 。 Wherein, x = l / cos θ, Σ and f satisfy the relation: guiding = COS Θ. / /
CN 201210152828 2012-05-17 2012-05-17 Method for processing variable section channel of hall thruster CN102644574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210152828 CN102644574B (en) 2012-05-17 2012-05-17 Method for processing variable section channel of hall thruster

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210152828 CN102644574B (en) 2012-05-17 2012-05-17 Method for processing variable section channel of hall thruster

Publications (2)

Publication Number Publication Date
CN102644574A true CN102644574A (en) 2012-08-22
CN102644574B true CN102644574B (en) 2014-03-12

Family

ID=46657609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210152828 CN102644574B (en) 2012-05-17 2012-05-17 Method for processing variable section channel of hall thruster

Country Status (1)

Country Link
CN (1) CN102644574B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778415A1 (en) 1995-12-09 1997-06-11 Matra Marconi Space France S.A. Steerable hall effect thruster
US7500350B1 (en) 2005-01-28 2009-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Elimination of lifetime limiting mechanism of hall thrusters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7784838B2 (en) * 2007-06-21 2010-08-31 Petro Technologies, Inc. High pressure energizable tube connector for a well
FR2950114B1 (en) * 2009-09-17 2012-07-06 Snecma Motor hall effect with cooling of the internal ceramic

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778415A1 (en) 1995-12-09 1997-06-11 Matra Marconi Space France S.A. Steerable hall effect thruster
US7500350B1 (en) 2005-01-28 2009-03-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Elimination of lifetime limiting mechanism of hall thrusters

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Shannon Yun-Ming Cheng.Modeling of Hall Thruster lifetime and erosion mechanisms.《麻省理工学院博士论文》.2007,
于达仁等.霍尔推力器运行参数对通道腐蚀影响的数值分析.《第十三届全国等离子体科学技术会议论文集》.2007,
武海峰.变截面通道霍尔推力器的理论及实验研究.《中国优秀硕士学位论文全文数据库工程科技II辑》.2011,(第S2期),

Also Published As

Publication number Publication date Type
CN102644574A (en) 2012-08-22 application

Similar Documents

Publication Publication Date Title
Lipschultz et al. Plasma–surface interaction, scrape-off layer and divertor physics: implications for ITER
Hughes et al. Chromate conversion coatings on 2024 Al alloy
Bell et al. Plasma response to lithium-coated plasma-facing components in the National Spherical Torus Experiment
Boxman et al. Macroparticle contamination in cathodic arc coatings: generation, transport and control
Smirnov et al. Modelling of dynamics and transport of carbon dust particles in tokamaks
Milosavljević et al. Guiding of low-energy electrons by highly ordered Al 2 O 3 nanocapillaries
Krasheninnikov et al. Dust in magnetic fusion devices
Habazaki et al. The importance of surface treatment to the anodic oxidation behaviour of Al Cu alloys
Kaminsky Plasma contamination and wall erosion in thermonuclear reactors
Amemiya et al. The collection of positive ions by spherical and cylindrical probes in an electronegative plasma
Frost et al. Surface engineering with ion beams: from self-organized nanostructures to ultra-smooth surfaces
Antill et al. The effect of surface implantation of yttrium and cerium upon the oxidation behaviour of stainless steels and aluminized coatings at high temperatures
Federici et al. Effects of ELMs and disruptions on ITER divertor armour materials
Mukai On the charge distribution of interplanetary grains
Poolcharuansin et al. Short-and long-term plasma phenomena in a HiPIMS discharge
Kaminsky et al. Particle release from niobium irradiated with 14-MeV neutrons
Molvik et al. Gas desorption and electron emission from 1 MeV potassium ion bombardment of stainless steel
Garcia-Rosales Erosion processes in plasma-wall interactions
Patil et al. Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis
Schenkel et al. Charge state dependent energy loss of slow heavy ions in solids
Fontell et al. Direct collection of some metal ions in an electromagnetic isotope separator and related surface effects
Williams et al. Differential Sputtering Behavior of Pyrolytic Graphite and Carbon-Carbon Composite Under Xenon Bombardment
Bhattacharya et al. Positive charge fractions of H, D, and He backscattered from solid surfaces
Bostick Hall currents and vortices in the coaxial plasma accelerator
Stangeby The Chodura sheath for angles of a few degrees between the magnetic field and the surface of divertor targets and limiters

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance