CN102636567B - 筒形锻件斜入射超声波探伤方法 - Google Patents

筒形锻件斜入射超声波探伤方法 Download PDF

Info

Publication number
CN102636567B
CN102636567B CN201210125435.XA CN201210125435A CN102636567B CN 102636567 B CN102636567 B CN 102636567B CN 201210125435 A CN201210125435 A CN 201210125435A CN 102636567 B CN102636567 B CN 102636567B
Authority
CN
China
Prior art keywords
degree
reference blocks
incident angle
wave reference
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201210125435.XA
Other languages
English (en)
Other versions
CN102636567A (zh
Inventor
张利
陈昌华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NANJING DEVELOP HIGH-END MANUFACTURING Co Ltd
Original Assignee
NANJING DEVELOP HIGH-END MANUFACTURING Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANJING DEVELOP HIGH-END MANUFACTURING Co Ltd filed Critical NANJING DEVELOP HIGH-END MANUFACTURING Co Ltd
Priority to CN201210125435.XA priority Critical patent/CN102636567B/zh
Publication of CN102636567A publication Critical patent/CN102636567A/zh
Application granted granted Critical
Publication of CN102636567B publication Critical patent/CN102636567B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明公开了一种筒形锻件斜入射超声波探伤方法,使用超声波探伤装置对筒形锻件的内部不同方向缺陷进行探测。本发明的超声波探伤方法采用入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块、折射角45度横波对比试块的组合,采用了小角度纵波探伤方法,拓宽了筒形锻件外内径之比的探伤范围,可以探测外径与内径之比大于等于2且小于等于4的筒形锻件,同时由于对比试块的内径与外径比例科学合理,使筒形锻件的探伤缺陷漏检率降到最低,更有利于筒形锻件内部质量的保证。

Description

筒形锻件斜入射超声波探伤方法
技术领域
本发明涉及一种筒形锻件斜入射超声波探伤方法,应用于外径与内径之比大于等于2且小于等于4的筒形锻件内部径向缺陷的超声波探伤,所述筒形锻件的轴向长度大于50mm。
背景技术
外内径之比小于2比1的空心(或筒形)锻件,国际上采用的探伤方法主要是纯横波斜入射检测手段,但对于外内径之比大于等于2比1的锻件,便没有斜入射的检测方法,致使大量的径向缺陷漏检。众所周知,对筒形、环形及管材纯横波探伤的限制条件是必须保证折射横波的声轴线能够达到内壁面,故有壁厚t与外径D之比为:t/D≤0.5[1-(CS/CL)],式中CS和CL分别为被检工件中的横波速度与纵波速度,对于钢质工件近似有:t/D≤0.3,也可以换成内径d与外径D之比的形式为:d/D≥0.6。按该规范的要求,显然大大限制了在环形和筒形锻件上应用超声波探伤的范围,没有充分发挥探伤检测的潜力与优势,我们采用小角度纵波探头周向检测探测曲面锻件,能更有效地发现径向方向的危害性缺陷。
关于外内径之比的限制,在许多标准中也都是从保证折射纯横波声轴线到达内壁面的角度来考虑的,例如日本的JIS G0582《钢管的超声波检测方法》、JISG0584《钢管电弧焊缝的超声波探伤检验方法》、JIS Z3081《铝管焊缝超声波斜角探伤方法及检验结果的等级分类方法》,美国的ASTM E164-81《焊缝超声接触法检测标准实施方法》、ASTM E213《金属管超声检测的标准实施方法》,我国的JB/T4730.3-2005《承压设备无损检测超声检测》、GB/T 5777《无缝钢管超声波探伤检验方法》以及GB 4163《不锈钢管超声波探伤方法》等等,都有此要求,尽管它们都是管材类工件,但就周面弦向纯横波检测而言与筒形件都是属于同一类型的情况。
常规超声波检测无法探测出外径与内径之比大于等于2∶1的空心锻件内孔近表面缺陷,是因为A超技术的声场波无法达到内孔表面,也是全世界为何执行外径与内径之比小于2的空心锻件才可进行超声检测的理由。理论依据:常规A超斜探头有机玻璃楔块的声速为2720m/s,第一临界角α=arcsin(2720/5900)=27.5度,对应的横波最小折射角β=arcsin(3230/5900)=33.2度;特殊A超斜探头有机玻璃楔块的声速可以为2350m/s,第一临界角α=sin(2350/5900)=23.5度,但对应的横波最小折射角还是β=arcsin(3230/5900)=33.2度。即横波最小折射角β=arcsin(钢横波声速/钢纵波声速),因此有机玻璃楔块的声速改变无法减小横波最小折射角,也就是说接触法横波斜探头无法检测外径与内径之比大于等于2的空心锻件。同时现有的超声波探伤方法都会有一定程度的漏检存在。
因此,需要一种新的超声波探测方法以解决上述问题。
发明内容
发明目的:本发明的目的针对现有技术无法探测出外径与内径之比大于等于2的筒形锻件内孔近表面缺陷的不足,提供一种超声波探测方法以探测出外径与内径之比大于等于2小于等于4的筒形锻件的内部缺陷,同时能更好的降低超声波探伤的漏检率。
技术方案:为实现上述发明目的,本发明可采用如下技术方案:
一种筒形锻件斜入射超声波探伤方法,使用超声波探伤装置对筒形锻件进行探测,采用以下装置:入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块均为圆筒形,所述入射角6度纵波对比试块的内径与外径之比为0.23±0.01,所述入射角10度纵波对比试块的内径与外径之比为0.38±0.01,所述折射角34度横波对比试块的内径与外径之比为0.56±0.01,所述折射角45度横波对比试块的内径与外径之比为0.71±0.01,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的内壁表面上均具有至少一个人工伤,所述人工伤为矩形槽或V形槽,所述矩形槽或V形槽沿对比试块的周向设置并平行于对比试块的轴线,
包括以下步骤:
a、从所述入射角6度纵波对比试块中选择探伤灵敏度最高的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线的第一点,并进行探伤灵敏度标定;
b、从所述入射角10度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第二点;
c、从所述折射角34度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第三点;
d、从所述折射角45度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波探头放置在选出的对比试块上制作DAC振幅参考线第四点;
e、穿过上述DAC振幅参考线的四点,建立DAC振幅参考线;
f、在筒形锻件上,使用入射角6度小角度纵波探头对所述筒形锻件进行探伤扫查,提高探伤灵敏度作为探伤扫查灵敏度,使用所述DAC振幅参考线,记录单个缺陷回波超过DAC振幅参考线或者两个以上缺陷回波超过DAC振幅参考线的50%的指示;
g对缺陷回波达到步骤e记录的缺陷信号的工件判定为不合格。
发明原理:与现有技术相比,本发明的超声波探伤方法采用入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块以及折射角45度横波对比试块的组合,所述对比试块的组合科学合理,相互配合可以有效降低超声波探伤的漏检率,采用了小角度纵波探伤方法,拓宽了筒形锻件外内径之比的探伤范围。
有益效果:本发明的筒形锻件斜入射超声波探伤方法显著降低了筒形锻件的探伤缺陷漏检率,有利于筒形锻件内表面质量的保证。拓宽了筒形锻件外内径之比的探伤范围,尤其是在横波检测无法达到内表面,横波的理论也不能满足内壁缺陷检测时,采用这种小角度纵波法有利于缺陷的检测。
附图说明:
图1是入射角6度纵波对比试块的主视图;
图2是入射角6度纵波对比试块的A-A向剖面示意图;
图3是入射角10度纵波对比试块的主视图;
图4是入射角10度纵波对比试块的A-A向剖面示意图;
图5是折射角34度横波对比试块的主视图;
图6是折射角34度横波对比试块的A-A向剖面示意图;
图7是折射角45度横波对比试块的主视图;
图8是折射角45度横波对比试块的A-A向剖面示意图;
图9是本发明具体实施例1的空心筒类锻件的示意图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
请参阅图1、图2所示,本发明的筒形锻件斜入射超声波探伤方法,使用超声波探伤装置对筒形锻件进行探测,筒形锻件的外径与内径之比大于等于2且小于等于4的轴向长度大于50mm。采用以下装置:入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块,上述对比试块均为圆筒形,入射角6度小角度纵波对比试块的内径与外径之比为0.23±0.01;入射角10度小角度纵波对比试块的内径与外径之比为0.38±0.01;折射角34度横波对比试块的内径与外径之比为0.56±0.01;折射角45度横波对比试块的内径与外径之比为0.71±0.01。对比试块内壁表面上具有人工伤,人工伤为矩形槽或V形槽,矩形槽和V形槽沿对比试块的周向设置并平行于对比试块的轴线。入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的外壁表面上具有与内壁表面的人工伤相对应的人工伤,其中外壁表面的人工伤与内壁表面的人工伤大小形状均相同。内外壁表面均具有人工伤,可以以外壁人工伤确定超声波探伤时探头的弧长位置,简单方便。矩形槽和V形槽的切割深度为对比试块壁厚的3%或者6.4mm中的较小者,公差为±0.03mm。矩形槽和V形槽的宽度为深度的两倍且最大宽度为3.2mm。矩形槽和V形槽的槽长为25.4mm±0.38mm。上述对比试块的轴向长度均大于等于50mm,优选为50mm,其人工伤均位于对比试块的轴向中部。
该超声波探伤方法包括以下步骤:
a、从入射角6度纵波对比试块中选择探伤灵敏度最高的对比试块,将入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线的第一点,并进行探伤灵敏度标定;探伤灵敏度是以选出的对比试块缺陷的第一次反射波的80%进行标定。
b、从入射角10度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第二点;DAC曲线是距离-波幅曲线的德文简称!是根据相同大小缺陷以不同声程,反映回波波幅大小的曲线。做DAC曲线是在测量探头前沿,K值、零点后做出的,起作用就是以一个基准来判定缺陷,缺陷分区及定量。实际上是有一组曲线即:评定线、定量线、判废线。
c、从折射角34度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第三点;
d、从折射角45度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将入射角6度小角度纵波探头放置在选出的对比试块上制作DAC振幅参考线第四点;
e、穿过上述DAC振幅参考线的四点,建立DAC振幅参考线;
f、在筒形锻件上,使用入射角6度小角度纵波探头对所述筒形锻件进行探伤扫查,提高探伤灵敏度作为提高探伤扫查灵敏度,使用所述DAC振幅参考线,记录单个缺陷回波超过DAC振幅参考线或者两个以上缺陷回波超过DAC振幅参考线的50%的指示;探伤扫查灵敏度优选在探伤灵敏度的基础上提高4dB;
g、对缺陷回波达到步骤f记录的缺陷信号的工件判定为不合格。
本发明的筒形锻件斜入射超声波探伤方法采用入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的组合。采用上述角度探头及对比试块的组合可以使DAC振幅参考线的取点更加均匀合理。同时通过各个对比试块之间相互配合,显著降低超声波探伤的漏检率。
如上所述,本发明的筒形锻件斜入射超声波探伤方法在不改变超声波探头声波入射变化规律的情况下,对筒形锻件进行斜入射检测优化设计。这种技术采用了小角度纵波探伤方法,拓宽了筒形锻件外内径之比的探伤范围,尤其是在横波检测无法达到内表面,横波的理论也不能满足内壁缺陷检测时,采用这种小角度纵波法有利于缺陷的检测。同时各个对比试块直接相互配合,显著减少了筒形锻件的探伤缺陷漏检率,有利于筒形锻件内部质量的保证。
对比试块制作具体实施例:
请参阅图1、2、3、4、5、6、7、8所示,试块划分为入射角6度纵波对比试块,入射角10度纵波对比试块、折射角34度横波对比试块,折射角45度横波对比试块四套,形状均为圆筒形,每种类型缺口为V形及矩形槽。从内径上的矩形或60度“V”形缺口可获得约80%全屏高的指示振幅。缺口应在轴向方向上并平行于锻件的轴线。内径缺口的切割深度应为标称厚度的3%或6.4mm,取其中较小者,且其长度约为25.4mm。缺口最大宽度应为深度的两倍且最大宽度为3.2mm。
入射角6度纵波对比试块制作参数表1(R1为外半径,R2为内半径,槽长1in(25.4mm)):
表1入射角6度纵波对比试块制作参数
Figure BDA0000157072850000051
Figure BDA0000157072850000061
入射角10度纵波对比试块制作参数表2(R3为外半径,R4为内半径,槽长lin(25.4mm)):
表2入射角10度纵波对比试块制作参数
折射角34度横波对比试块制作参数表3(R5为外半径,R6为内半径,槽长lin(25.4mm)):
表3 34度横波对比试块制作参数
Figure BDA0000157072850000071
折射角45度横波对比试块制作参数表4(R7为外半径,R8为内半径,槽长lin(25.4mm)):
表4 45度横波对比试块制作参数
Figure BDA0000157072850000072
备注:试块型号:
4130代表典型合金标号;R=矩形切槽,V=60°V形切槽
118=11.8″,金属半径,单位00.0″;RR=周向斜探测
前三位:456=外半径456mm;后三位:123=内半径123mm
对比试块材料:对比试块技术指标需符合GB/T 11259及ASTM E428标准要求。
具体实施例:
实施例(工艺号A),具体步骤如下:
请参阅图9所示,4130材料,规格:Φ433×Φ113×814mm,即外径为433mm,内径为113mm,轴向长度为814mm。
仪器型号:CTS-9009,仪器编号:53831010202
探头型号:Φ20 6度R250,探头编号:E118409
试块型号:4130-VR-098070 RR250177(折射角45度对比试块,编号:113557),4130-VR-098055 RR250140(折射角34度对比试块,编号:113559),4130-VR-098037 RR250095(入射角10度对比试块,编号:113550),4130-VR-098022 RR250057(入射角6度对比试块,编号:113558)
仪器、探头及试块,按人工V型内槽80%波高灵敏度标定。
空心筒类锻件小角度纵波斜探头探伤过程:
步骤1:在入射角6度纵波对比试块上,选择RR250057试块制作DAC曲线第一点,调至内径的V型缺口的第一次反射波为80%进行探伤灵敏度(37dB)标定;
步骤2:在入射角10度纵波对比试块上,选择RR250095试块制作DAC曲线第二点,按内径缺口的第一次反射波进行标定;
步骤3:在折射角34度横波对比试块上,选择RR250140试块制作DAC曲线第三点,按内径缺口的第一次反射波进行标定;
步骤4:在折射角45度横波对比试块上,选择RR250177试块制作DAC曲线第四点,按内径缺口的第一次反射波进行标定;
步骤5:在对比试块上,使用小角度纵波探头(型号:Φ20晶片直径,2.5MHz频率,入射角6度纵波,R250圆弧),依次选择相同外径的内径缺口对应的伤,划一条曲线穿过所有内径缺口上反射的峰值,建立DAC振幅参考线;
步骤6:4130材料1-1108-128-007令号工件上,使用DAC振幅参考线,将探伤灵敏度提高4dB作为探伤扫查灵敏度。记录单个或分散缺陷回波等于或超过来自参考线指示50%的指示;
步骤7:对缺陷回波达到步骤6记录的缺陷信号的工件判定为不合格。4130材料经小角度纵波斜探头检测,未发现筒形锻件内部径向缺陷反射波,产品探伤合格。

Claims (7)

1.一种筒形锻件斜入射超声波探伤方法,使用超声波探伤装置对筒形锻件进行探测,其特征在于,采用以下装置:入射角6度小角度纵波斜探头、入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块均为圆筒形,所述入射角6度纵波对比试块的内径与外径之比为0.23±0.01,所述入射角10度纵波对比试块的内径与外径之比为0.38±0.01,所述折射角34度横波对比试块的内径与外径之比为0.56±0.01,所述折射角45度横波对比试块的内径与外径之比为0.71±0.01,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的内壁表面上均具有至少一个人工伤,所述人工伤为矩形槽或V形槽,所述矩形槽或V形槽沿对比试块的周向设置并平行于对比试块的轴线,
包括以下步骤:
a、从所述入射角6度纵波对比试块中选择探伤灵敏度最高的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线的第一点,并进行探伤灵敏度标定;
b、从所述入射角10度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第二点;
c、从所述折射角34度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第三点;
d、从所述折射角45度横波对比试块中选择与步骤a中对比试块外径相同的对比试块,将所述入射角6度小角度纵波斜探头放置在选出的对比试块上制作DAC振幅参考线第四点;
e、穿过上述DAC振幅参考线的四点,建立DAC振幅参考线;
f、在筒形锻件上,使用所述入射角6度小角度纵波斜探头对所述筒形锻件进行探伤扫查,提高所述探伤灵敏度作为探伤扫查灵敏度,使用所述DAC振幅参考线,记录单个缺陷回波超过DAC振幅参考线或者两个以上缺陷回波超过DAC振幅参考线的50%的指示;
g、对缺陷回波达到步骤f记录的缺陷信号的工件判定为不合格。
2.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于:步骤a中所述的探伤灵敏度标定是以选出的对比试块缺陷的第一次反射波的80%进行标定。
3.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于,所述矩形槽和V形槽的切割深度为对比试块壁厚的3%或者6.4mm中的较小者,所述切割深度的公差为±0.03mm,所述矩形槽和V形槽的槽长为25.4mm±0.38mm。
4.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于,所述矩形槽和V形槽的宽度为深度的两倍且最大宽度为3.2mm。
5.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的轴向长度大于等于50mm,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的人工伤均位于对比试块的轴向中部。
6.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于,所述入射角6度纵波对比试块、入射角10度纵波对比试块、折射角34度横波对比试块和折射角45度横波对比试块的外壁表面上具有与内壁表面的人工伤相对应的人工伤,其中外壁表面的人工伤与内壁表面的人工伤大小形状均相同。
7.如权利要求1所述的筒形锻件斜入射超声波探伤方法,其特征在于:步骤f中所述的探伤扫查灵敏度是在所述探伤灵敏度的基础上提高4dB。
CN201210125435.XA 2012-04-01 2012-04-25 筒形锻件斜入射超声波探伤方法 Active CN102636567B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210125435.XA CN102636567B (zh) 2012-04-01 2012-04-25 筒形锻件斜入射超声波探伤方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201210098641 2012-04-01
CN201210098641.6 2012-04-01
CN201210125435.XA CN102636567B (zh) 2012-04-01 2012-04-25 筒形锻件斜入射超声波探伤方法

Publications (2)

Publication Number Publication Date
CN102636567A CN102636567A (zh) 2012-08-15
CN102636567B true CN102636567B (zh) 2014-02-26

Family

ID=46621038

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210125435.XA Active CN102636567B (zh) 2012-04-01 2012-04-25 筒形锻件斜入射超声波探伤方法

Country Status (1)

Country Link
CN (1) CN102636567B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104316598B (zh) * 2014-04-03 2017-07-28 王�锋 用于厚壁管件的周向超声波检查方法和装置
CN104122326B (zh) * 2014-06-26 2017-01-04 中国核电工程有限公司 一种用于主蒸汽系统超级管道接管嘴的超声检测方法
CN109946377A (zh) * 2019-03-21 2019-06-28 西安热工研究院有限公司 一种用于大厚径比钢制热压三通肩部的超声检测方法
CN113125566B (zh) * 2020-01-15 2023-01-31 中国商用飞机有限责任公司 一种孔边径向分层对比试块
CN113884035A (zh) * 2021-09-29 2022-01-04 中国航发动力股份有限公司 一种厚壁管材的超声波检测系统及检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6193952A (ja) * 1984-10-04 1986-05-12 Mitsubishi Electric Corp 厚肉管の超音波斜角探傷法
CN101726541B (zh) * 2009-12-01 2011-05-18 河南电力试验研究院 电站厚壁管道超声导波检测方法
CN101799452A (zh) * 2010-03-30 2010-08-11 天津钢管集团股份有限公司 厚壁钢管纵向内表面缺陷的超声波探伤方法

Also Published As

Publication number Publication date
CN102636567A (zh) 2012-08-15

Similar Documents

Publication Publication Date Title
CN102636566B (zh) 筒形锻件内部径向缺陷的超声波探伤方法
EP3667311B1 (en) Shear wave oblique probe reflected/diffracted/deformed wave detection method
CN108562647B (zh) Pa-tofd结合的聚乙烯管道热熔对接接头超声检测装置及方法
CN102636567B (zh) 筒形锻件斜入射超声波探伤方法
CN109374755B (zh) 不锈钢油管焊缝的超声波检测方法及标准试块
CN111751448B (zh) 一种漏表面波超声合成孔径聚焦成像方法
CN104515810B (zh) 一种激光熔覆再制造零件缺陷类型超声检测分析方法
CN106568843A (zh) 一种用于u肋双侧角焊缝的超声相控阵检测方法
CN201218806Y (zh) 管道对接焊缝超声检测装置
CN101576535A (zh) 插接式管座角焊缝坡口未熔超声检测方法
CN102435674A (zh) 一种检测金属部件母材内壁裂纹及腐蚀缺陷的新方法
JPS61111461A (ja) 電縫管溶接部の超音波探傷方法
CN202661446U (zh) 厚壁联箱及管道超声波探伤装置
US5108693A (en) Non-destructive dimensional and flaw inspection of thin wall tube weldments
CN108459086A (zh) 一种大厚壁异种金属焊缝手动超声波检验方法
CN208224176U (zh) 一种大厚壁异种金属焊缝手动超声波检验测试试块
CN202083676U (zh) 一种钢管超声波探伤对比试样及测量装置
CN113884035A (zh) 一种厚壁管材的超声波检测系统及检测方法
CN102706962A (zh) 厚壁联箱及管道超声波探伤装置及探伤方法
CN116381052B (zh) 一种tofd检测外筒内表面缺陷的探头参数确定方法
CN203117167U (zh) 公路钢桥用超声波检测装置
CN111650282A (zh) 纤维缠绕复合材料三角形管的超声c扫检测方法和装置
CN104062362B (zh) 一种搭接焊缝超声检测组合探头
CN112326798B (zh) 起重机t焊缝区域缺陷的超声波检测方法
CN212134587U (zh) 测量铝合金横波声程与探头入射点误差关系的试块

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C53 Correction of patent for invention or patent application
CB03 Change of inventor or designer information

Inventor after: Chen Changhua

Inventor after: Zhang Li

Inventor before: Zhang Li

Inventor before: Chen Changhua

COR Change of bibliographic data

Free format text: CORRECT: INVENTOR; FROM: ZHANG LI CHEN CHANGHUA TO: CHEN CHANGHUA ZHANG LI