CN102609027A - Band-gap reference voltage source circuit - Google Patents

Band-gap reference voltage source circuit Download PDF

Info

Publication number
CN102609027A
CN102609027A CN 201210088717 CN201210088717A CN102609027A CN 102609027 A CN102609027 A CN 102609027A CN 201210088717 CN201210088717 CN 201210088717 CN 201210088717 A CN201210088717 A CN 201210088717A CN 102609027 A CN102609027 A CN 102609027A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
voltage
circuit
pmos
reference
pipe
Prior art date
Application number
CN 201210088717
Other languages
Chinese (zh)
Other versions
CN102609027B (en )
Inventor
王帅旗
贾晓伟
邓龙利
Original Assignee
北京经纬恒润科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

An embodiment of the invention discloses a band-gap reference voltage source circuit which comprises a first p-channel metal oxide semiconductor (PMOS) pipe, a second PMOS pipe, a third PMOS pipe, a fourth PMOS pipe, a first NPN type triode, a second NPN type triode, a first resistor and a second resistor. An error amplifier is not applied to the band-gap reference voltage source circuit, the influence of offset voltage and noise of the error amplifier on a system are omitted, and the power consumption and the area are reduced. In addition, independent generation of a branch circuit is not adopted in an output branch circuit of reference voltage Vref, the influence of the offset voltage caused by current image failure is avoided to some extent, and the area and the power consumption are reduced.

Description

一种带隙基准电压源电路 A tape-gap reference voltage source circuit

技术领域 FIELD

[0001] 本发明属于集成电路供电技术领域,尤其涉及一种带隙基准电压源电路。 [0001] The present invention belongs to the technical field of power integrated circuits, and particularly to a band gap reference voltage source circuit.

背景技术 Background technique

[0002] 在模拟集成电路或混合信号设计领域,基准电压源是一很重要的模块,为系统提供电压基准和电流基准。 [0002] In the analog integrated circuit or mixed signal design, a reference voltage source is a very important module, a voltage reference and current reference system. 随着电路集成度的提高,基准电压源也越来越多的集成到芯片内部,以降低系统成本。 With increased integration of circuits, a reference voltage source more and more integrated into the chip, to reduce system cost.

[0003] 传统的基准电压源通常依靠带隙基准电压源电路产生,如图I所示,该带隙基准电压源电路包含误差放大器、PMOS镜像电流源、PNP管及电阻,而基准电压通常由包含PMOS 管PM3的镜像电流源、电阻R2及PNP管Q3的单独一条支路(在图I中以虚线标出)生成。 [0003] The conventional reference voltage source often rely on a bandgap reference voltage source circuit generates, as shown in FIG. I, the band gap reference voltage source circuit comprises an error amplifier, the PMOS current mirror, and the PNP tube resistance, and generally by a reference voltage mirror current source comprises PMOS transistor PM3, the resistor R2 and a PNP transistor Q3 is a single branch (indicated in phantom in FIG. I) is generated.

[0004] 但是,上述带隙基准电压源电路具有多种缺陷:因其包含误差放大器及相应的偏置电路,因此存在面积较大的问题;误差放大器自身的失调电压及噪声也会加到基准电压输出端Vref,而且,由于基准电压由一支路单独生成,因此,该带隙基准电压源电路中PM3、 PMl和PM2镜像电流源间的镜像失配也会加大基准电压的失调电压。 [0004] However, in the band gap reference voltage source circuit has several drawbacks: includes an error amplifier and its corresponding bias circuit, there is a larger area problems; its error amplifier offset voltage and noise will be added to the reference voltage output Vref, and, since the reference voltage is generated solely by a road, and therefore, the voltage reference circuit with mirrored between PM3, PMl and PM2 current mirror mismatch also increases the offset voltage of the reference voltage.

发明内容 SUMMARY

[0005] 有鉴于此,本发明的目的在于提供一种带隙基准电压源电路,以解决现有技术中存在的面积大、失调电压大的问题。 [0005] In view of this, an object of the present invention is to provide a bandgap reference voltage source circuit, to solve the prior art a large area, a large offset voltage problem.

[0006] 为实现上述目的,本发明提供如下技术方案: [0006] To achieve the above object, the present invention provides the following technical solutions:

[0007] 一种带隙基准电压源电路,包括第一PMOS管、第二PMOS管、第三PMOS管、第四PMOS管、第一NPN型三极管、第二NPN型三极管、第一电阻和第二电阻;其中: [0007] A bandgap voltage reference circuit comprising a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, the fourth PMOS transistor, a first NPN transistor, a second NPN transistor, and a first resistor second resistor; wherein:

[0008] 所述第一PMOS管和第二PMOS管的源极和衬底接入电源电压; [0008] The source and substrate of said first PMOS transistor and a second PMOS transistor access the power source voltage;

[0009] 所述第一PMOS管和第二PMOS管的栅极同时连接至所述第四PMOS管的源极及所述第二PMOS管的漏极; A gate [0009] The first PMOS transistor and a second PMOS transistor while the fourth PMOS transistor is connected to the source and drain of the second PMOS transistor;

[0010] 所述第一PMOS管的漏极连接至所述第三PMOS管的源极; The drain [0010] The first PMOS transistor is connected to the source of the third PMOS transistor;

[0011] 所述第三PMOS管和第四PMOS管的衬底接入电源电压; Substrate [0011] The third PMOS transistor and a fourth PMOS transistor access to a power supply voltage;

[0012] 所述第三PMOS管和第四PMOS管的栅极同时连接至所述第二NPN型三极管的集电极及所述第四PMOS管的漏极; A gate [0012] The third PMOS transistor and the fourth PMOS transistor is simultaneously connected to the second collector of the NPN transistor and the drain of said fourth PMOS transistor;

[0013] 所述第三PMOS管的漏极通过所述第二电阻连接至所述第一NPN三极管的集电极; The drain [0013] The third PMOS transistor is connected to the collector of the first NPN transistor through the second resistor;

[0014] 所述第一NPN型三极管和第二NPN型三极管的基极连接至所述第一NPN型三极管的集电极; [0014] The first NPN transistor and second NPN transistor base connected to the collector of the first NPN transistor;

[0015] 所述第一NPN型三极管的发射极接地; [0015] The first NPN transistor emitter is grounded;

[0016] 所述第二NPN型三极管的发射极通过所述第一电阻接地; [0016] The emitter electrode of the second NPN transistor is grounded via said first resistor;

[0017] 所述第三PMOS管的漏极作为基准电压输出端。 The drain [0017] The third PMOS transistor as a reference voltage output terminal.

[0018] 优选的,所述第一PMOS管和第二PMOS管的器件参数相同;所述第三PMOS管和第四PMOS管的器件参数相同;所述第一NPN型三极管和第二NPN三极管的发射极面积比为 [0018] Preferably, the same device parameters of the first PMOS transistor and the second PMOS transistor; the same device parameters of the third PMOS transistor and a fourth PMOS transistor; the first NPN transistor and second NPN transistor the emitter area ratio

Figure CN102609027AD00041

其中 among them

Figure CN102609027AD00042

表示求导数,Vbel表示第一NPN型三极管的基极-发射极结电压,T表示绝对温度,q表示电子电荷量,K表示波尔兹曼常数,R2表示第二电阻的 Represents the derivative, Vbel denotes a first NPN transistor base - emitter junction voltage, T is the absolute temperature, q an electron charge quantity, K represents the Boltzmann constant group, R2 represents the second resistor

电阻值,Rl表不第一电阻的电阻值。 Resistance value, Rl is not the first sheet resistance value of the resistor.

[0019] 由此可见,本发明的有益效果为:本发明公开的带隙基准电压源电路中没有用到误差放大器,因此省去了误差放大器自身的失调电压电压及噪声对系统的影响,并且节省了功耗和面积;另外,基准电压Vref的输出支路并未采用一个支路单独产生,也在一定程度上避免了电流镜像失陪引起的失调电压的影响,并且节省了面积和功耗。 [0019] Thus, the beneficial effects of the present invention are: a bandgap reference voltage source circuit of the present invention disclosed in the error amplifier is not used, thereby eliminating the influence of the error amplifier own offset and noise voltage of the system, and power savings and area; Further, the reference voltage Vref output branch does not use a separate branch generation, but also to avoid the influence of the offset voltage caused by the current mirror excuse to some extent, and saves area and power consumption.

附图说明 BRIEF DESCRIPTION

[0020] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。 [0020] In order to more clearly illustrate the technical solutions in the embodiments or the prior art embodiment of the present invention, briefly introduced hereinafter, embodiments are described below in the accompanying drawings or described in the prior art needed to be used in describing the embodiments figures some embodiments of the present invention, those of ordinary skill in the art is concerned, without creative efforts, can derive from these drawings other drawings.

[0021] 图I为现有的带隙基准电压源电路的结构图; [0021] Figure I is a conventional bandgap reference voltage source circuit configuration diagram;

[0022] 图2为本发明公开的一种带隙基准电压源电路的结构图; [0022] FIG 2 is a configuration diagram of a bandgap reference discloses a voltage source circuit of the present invention;

[0023] 图3为图2所示带隙基准电压源电路的基准电压Vref随温度变化的Tcm曲线图。 Tcm graph [0023] FIG. 3 is a bandgap reference voltage source circuit shown in FIG. 2 the reference voltage Vref varies with temperature.

具体实施方式 detailed description

[0024] 为了引用和清楚起见,下文中使用的技术名词的说明、简写或缩写总结如下: [0024] For reference and clarity, the description of the technical terms used hereinafter, abbreviations or acronyms are summarized as follows:

[0025] PMOS, positive channel Metal Oxide Semiconductor, PMOS 管指n 型衬底、p 沟道,靠空穴的流动运送电流的MOS管。 [0025] PMOS, positive channel Metal Oxide Semiconductor, PMOS tube means n-type substrate, p-channel, MOS tube by the flow of the hole current transport.

[0026] 本发明公开了一种带隙基准电压源电路,用以解决现有技术中存在的面积大、失调电压大的问题。 [0026] The present invention discloses a bandgap voltage reference circuit for a tape to solve the prior art a large area, a large offset voltage problem. 其基本思路为:利用处于放大区的NPN管间基极-发射极电压差的正温度系数、基极-发射极电压的负温度系数,设计出一种低功耗、低面积、低失调电压、低噪声、 结构简洁的带隙基准电压源电路。 The basic idea is: the use of an enlarged region in the NPN transistor between the base - emitter voltage difference between the positive temperature coefficient, the base - emitter voltage of negative temperature coefficient, the design of a low-power, low-area, low offset voltage , low noise, simple structure of the bandgap reference voltage source circuit.

[0027] 为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。 [0027] In order that the invention object, technical solutions, and advantages of the embodiments more clearly, the following the present invention in the accompanying drawings, technical solutions of embodiments of the present invention are clearly and completely described, obviously, the described the embodiment is an embodiment of the present invention is a part, but not all embodiments. 基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。 Based on the embodiments of the present invention, all other embodiments of ordinary skill in the art without any creative effort shall fall within the scope of the present invention.

[0028] 参见图2,图2为本发明公开的一种带隙基准电压源电路的结构图。 [0028] Referring to Figure 2, a structural diagram of FIG. 2 discloses a bandgap reference circuit of the present invention. 包括第一PMOS 管PM1、第二PMOS管PM2、第三PMOS管PM3、第四PMOS管PM4、第一NPN型三极管Q1、第二NPN型三极管Q2、第一电阻Rl和第二电阻R2。 Comprising a first PMOS transistor PM1, a second PMOS transistor PM2, a third PMOS transistor PM3, a fourth PMOS transistor PM4, a first NPN transistor Q1, the second NPN transistor Q2, a first resistor Rl and the second resistor R2. 其中: among them:

[0029] 第一PMOS管PMl和第二PMOS管PM2的源极和衬底接入电源电压VDDA。 [0029] The first PMOS transistor and a second PMOS transistor PMl PM2 of the access source and substrate supply voltage VDDA. 第一PMOS 管PMl和第二PMOS管PM2的栅极同时连接至第四PMOS管PM4的源极及第二PMOS管PM2 的漏极。 Gate of the first PMOS transistor and a second PMOS transistor PMl PM2 while a source connected to a drain of the fourth PMOS transistor PM4 and PM2 of the second PMOS transistor. 第一PMOS管PMl的漏极连接至第三PMOS管PM3的源极。 Drain of the first PMOS transistor PMl is connected to a third source of PMOS transistor PM3. 第三PMOS管PM3和第四PMOS管PM4的衬底接入电源电压VDDA。 A third PMOS transistor PM3 and the fourth PMOS transistor PM4 substrate access to the power supply voltage VDDA. 第三PMOS管PM3和第四PMOS管PM4的栅极同时连接至第二NPN型三极管Q2的集电极及第四PMOS管PM4的漏极。 Gate of the third PMOS transistor PM3 and PM4 while the fourth PMOS transistor is connected to the second NPN transistor Q2 and the collector of the drain of the fourth PMOS transistor PM4. 第三PMOS管PM3的漏极通过第二电阻R2连接至第一NPN三极管Ql的集电极。 Drain of the third PMOS transistor PM3 is connected to the collector of the first NPN transistor Ql via a second resistor R2. 第一NPN型三极管Ql和第二NPN型三极管Q2的基极连接至第一NPN型三极管Ql的集电极。 A first NPN transistor Ql and NPN transistor Q2 is a second base connected to the collector of a first NPN transistor Ql. 第一NPN型三极管Ql的发射极接地。 Transmitting a first NPN transistor Ql is grounded. 第二NPN型三极管Q2的发射极通过第一电阻Rl接地。 Transmitting a second NPN transistor Q2 is grounded electrode through a first resistor Rl. 第三PMOS管PM3的漏极作为基准电压Vref输出端。 The drain of the third PMOS transistor PM3 output terminal as the reference voltage Vref.

[0030] 在实施过程中,可通过设计使第一PMOS管PMl和第二PMOS管PM2的器件参数相同,使第三PMOS管PM3和第四PMOS管PM4的器件参数相同,并令第一NPN三极管Ql和第二NPN三极管Q2的发射极面积比为I : η。 [0030] In the process embodiment, may be designed so that the device parameters via the first PMOS transistor and a second PMOS transistor PMl PM2 is the same, so the same device parameter of the third PMOS transistor PM3 and PM4 of the fourth PMOS transistor, and so that the first NPN emitter area of ​​transistor Ql and NPN transistor Q2 is a second ratio of I: η.

[0031] 上述带隙基准电压源电路的工作原理如下: [0031] The band gap reference voltage source circuit works as follows:

[0032] 当带隙基准电压源电路正常工作时,所有PMOS管、NPN型三极管处于饱和区及放大区,ΡΜ1、ΡΜ2及ΡΜ3、ΡΜ4组成共源共栅镜像电流源。 [0032] When the band gap reference voltage source circuit is working properly, all the PMOS transistor, the NPN type transistor in the saturation region and the enlarged area, ΡΜ1, ΡΜ2 and ΡΜ3, ΡΜ4 composition cascode cascode current mirror.

[0033] 由于电流镜像的作用,PMl所在支路的支路电流Idl与ΡΜ2所在支路的支路电流Id2相等,且Idl = Id2 = Id,其中,Id为PMl及PM3的沟道电流。 [0033] Since the current mirror action, the branch current Idl ΡΜ2 PMl branch where the branch where the branch is equal to current Id2 and Idl = Id2 = Id, wherein, Id is the current channel PML and PM3. 由于Ql和Q2的电流放大倍数β(β = Ic/Ib)较大,因此流过Ql的集电极电流Icl和流过Q2的集电极电流Ic2 近似相等,Icl ^ Ic2 = Id。 Since Ql and Q2 of the current amplification factor β (β = Ic / Ib) large, the collector current flowing through Ql Icl and collector current Ic2 flowing through Q2 are approximately equal, Icl ^ Ic2 = Id.

[0034] 因此,Q2、Ql的基极-发射极电压差dVbe为: [0034] Therefore, Q2, Ql base - emitter voltage difference is dVbe:

[0035] dVbe = Vbe2-Vbel = (KT/q)*ln(Ic2/Is2)-(KT/q)*ln (Icl/Isl) [0035] dVbe = Vbe2-Vbel = (KT / q) * ln (Ic2 / Is2) - (KT / q) * ln (Icl / Isl)

[0036] = (KT/q)*ln(Isl/Is2) (公式I) [0036] = (KT / q) * ln (Isl / Is2) (Formula I)

[0037] 其中,Vbel为Ql的基极-发射极结电压,Vbe2为Q2的基极-发射极结电压,K表示波尔兹曼常数,T为绝对温度,q表示电子电荷量,Isl为Ql的反向饱和电流,Is2为Q2 的反向饱和电流,Icl为Ql的集电极电流,Ic2为Q2的集电极电流。 [0037] wherein, Vbel Ql is a base - emitter junction voltage, Vbe2 of Q2 to the base - emitter junction voltage, K represents the Boltzmann constant, T is the absolute temperature, q an electron charge quantity, Isl of Ql reverse saturation current, Is2 of the reverse saturation current of Q2, Icl is the collector current of Ql, Ic2 is the collector current of Q2.

[0038] 由于Q1、Q2的发射极面积比为η : 1,所以Isl/Is2 = η/1,故公式I可简化为: [0039] dVbe = Vbe2-Vbel = (KT/q)*ln(n) (公式2)[0040] 上述dVbe即为电阻Rl的电压差,因此流过电阻Rl的电流IRl满足下述公式: [0041] IRl = IQl = IQ2 = Id = (KT/q) *ln (n)/Rl (公式3)[0042] 因此电阻R2两端的电压差VR2满足下述公式: [0043] VR2 = Id*R2 = (KT/q)*ln(n)*R2/Rl (公式4)[0044] 基准电压源Vref满足下述公式: [0045] Vref = Vbel+VR2 = Vbel+(KT/q)*ln(n)*R2/R1 (公式5)[0046] 对公式5对温度T求导数,为: [0047] ^ Vref/^T=S Vbel/^T+ ( K/q ) *ln(n)*R2/Rl (公式6) [0048] 因为上述3 VbeOPT为正温度系数,(K/q)为负温度系数,因此根据公式6适当设 [0038] Since Q1, Q2 emitter area ratio η: 1, so Isl / Is2 = η / 1, it can be simplified to formula I: [0039] dVbe = Vbe2-Vbel = (KT / q) * ln ( n) (equation 2) [0040] the voltage of the resistor Rl dVbe is the difference, so the current flowing through the resistor Rl IR1 satisfy the following equation: [0041] IRl = IQl = IQ2 = Id = (KT / q) * ln (n) / Rl (equation 3) [0042] the voltage difference VR2 across the resistor R2 satisfy the following equation: [0043] VR2 = Id * R2 = (KT / q) * ln (n) * R2 / Rl (formula 4) [0044] The reference voltage source Vref satisfy the following equation: [0045] Vref = Vbel + VR2 = Vbel + (KT / q) * ln (n) * R2 / R1 (equation 5) [0046] of equation 5 temperature T the derivative, is: [0047] ^ Vref / ^ T = S Vbel / ^ T + (K / q) * ln (n) * R2 / Rl (equation 6) [0048] since the above 3 VbeOPT a positive temperature coefficient, (K / q) is a negative temperature coefficient, according to equation 6 provided suitable

置η的数值以及电阻Rl、R2的电阻值,可使Vref在常温时令公式6为零,从而保证在工作温度范围内具有最小的基准电压变化率。 Η values ​​and the resistance opposed Rl, the resistance value R2 of Formula 6 can Vref seasonal zero at room temperature, so as to ensure a reference voltage having the minimum rate of change in the operating temperature range.

SVbeL q ^Rl SVbeL q ^ Rl

[0049] 在电阻Rl和电阻R2的阻值一定时,令J1 = q~^TK R2,从而使公式6为零。 [0049] In the resistance of the resistor Rl and the resistor R2 of the time constant, so J1 = q ~ ^ TK R2, so that the Equation 6 is zero.

[0050] 图2所示带隙基准电压源电路本身具有单级误差放大器的功能。 [0050] The band gap reference voltage source circuit shown in FIG. 2 itself has a function of a single stage of the error amplifier. 因为PM4结成二极管形式,因此可以认为PM4的源极和漏极为误差放大输出端,将PM4的源极与PM1、PM2的栅极相连,同时将PM4的漏极与PM3、PM4的栅极相连,以形成负反馈环路,将误差放大的电压信号转化为电流信号,从而维持公式(5)和公式(6)的成立。 Because diode PM4 form, it can be considered PM4 source and drain is the output of the error amplifier, a source electrode connected to the PM4 PMl, PM2, the gate while the drain connected to the gate PM4 and PM3, PM4 of , to form a negative feedback loop, the error amplified voltage signal into a current signal, thereby maintaining the equation (5) and (6) is satisfied.

5[0051] 综上,在图2所示带隙基准电压源电路中没有用到误差放大器,因此省去了误差放大器自身的失调电压电压及噪声对系统的影响,并且节省了功耗和面积;另外,基准电压Vref的输出支路并未如图I所示,由一个支路(PM3支路)单独产生,也在一定程度上避免了电流镜像失陪引起的失调电压的影响,并且节省了面积和功耗。 5 [0051] In summary, not used in the bandgap reference voltage source circuit shown in Figure 2 the error amplifier, thus eliminating the influence of the error amplifier own offset and noise voltage of the system, and the power savings and area ; Further, the reference voltage Vref output branch not shown in FIG I, a separately generated by the branch (PM3 leg), but also to avoid the influence of the offset voltage caused by the current mirror excuse to some extent, and saves area and power consumption.

[0052] 图2所示带隙基准电压源电路的基准电压Vref随温度变化的Tcm曲线可参见图 [0052] As shown in FIG. 2 the reference voltage Vref bandgap reference voltage source circuit versus temperature curve can be see FIG Tcm

3。 3. 可见,在一般情况下,本发明基准电压Vref的电源电压抑制比、温度系数Tcm和图I所示采用误差放大器及PMOS镜像电流源的常规带隙基准源相近。 It is seen, in general, the reference voltage Vref PSRR the present invention, the temperature coefficient of I below Tcm and error amplifier uses PMOS current mirror and a conventional bandgap reference similar.

[0053] 本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。 [0053] In the present specification, the various embodiments described in a progressive manner, differences from the embodiment and the other embodiments each of which emphasizes embodiment, the same or similar portions between the various embodiments refer to each other. 对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。 For the disclosed embodiment of the apparatus embodiment, since it corresponds to the method disclosed embodiments, the description is relatively simple, see Methods of the correlation can be described.

[0054] 对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。 [0054] The above description of the disclosed embodiments enables those skilled in the art to make or use the present invention. 对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。 Various modifications to these professionals skilled in the art of the present embodiments will be apparent, and the generic principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the invention. 因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。 Accordingly, the present invention will not be limited to the embodiments shown herein but is to be accorded herein consistent with the principles and novel features disclosed widest scope.

Claims (2)

  1. 1. 一种带隙基准电压源电路,其特征在于,包括第一PMOS管、第二PMOS管、第三PMOS 管、第四PMOS管、第一NPN型三极管、第二NPN型三极管、第一电阻和第二电阻;其中:所述第一PMOS管和第二PMOS管的源极和衬底接入电源电压;所述第一PMOS管和第二PMOS管的栅极同时连接至所述第四PMOS管的源极及所述第二PMOS管的漏极;所述第一PMOS管的漏极连接至所述第三PMOS管的源极;所述第三PMOS管和第四PMOS管的衬底接入电源电压;所述第三PMOS管和第四PMOS管的栅极同时连接至所述第二NPN型三极管的集电极及所述第四PMOS管的漏极;所述第三PMOS管的漏极通过所述第二电阻连接至所述第一NPN三极管的集电极;所述第一NPN型三极管和第二NPN型三极管的基极连接至所述第一NPN型三极管的集电极;所述第一NPN型三极管的发射极接地;所述第二NPN型三极管的发射极通过所述第一电阻接 A bandgap voltage reference circuit comprising a first PMOS transistor, a second PMOS transistor, a third PMOS transistor, the fourth PMOS transistor, a first NPN transistor, a second NPN transistor, the first and second resistors; wherein: said source and substrate of the first PMOS transistor and a second PMOS transistor access a power supply voltage; a gate of the first PMOS transistor and a second PMOS transistor connected to the first simultaneous four PMOS transistor source electrode and a drain of the second PMOS transistor; drain of the first PMOS transistor is connected to the source electrode of the third PMOS transistor; the third PMOS transistor and a fourth PMOS transistor access to a power supply voltage of the substrate; a gate of the third PMOS transistor and a fourth PMOS transistor connected to the drain while the collector of the second NPN transistor and the fourth PMOS transistor; the third PMOS the collector of the first NPN transistor and second NPN transistor connected to the base of the first NPN transistor; the drain pipe is connected to the collector of the first NPN transistor through the second resistor ; transmitting said first NPN transistor is grounded; transmitting said second NPN transistor is connected via a first resistor connected 地;所述第三PMOS管的漏极作为基准电压输出端。 Ground; drain of the third PMOS transistor as a reference voltage output terminal.
  2. 2.根据权利要求I所述的电路,其特征在于:所述第一 PMOS管和第二PMOS管的器件参数相同;所述第三PMOS管和第四PMOS管的器件参数相同;所述第一NPN型三极管和第二NPN三极管的发射极面积比为η : The circuit according to claim I, wherein: the same device parameters of the first PMOS transistor and the second PMOS transistor; the same device parameters of the third PMOS transistor and a fourth PMOS transistor; the first a second NPN transistor and the NPN transistor emitter area ratio η:
    Figure CN102609027AC00021
    其中, among them,
    Figure CN102609027AC00022
    表示求导数,Vbel表示第一NPN型三极管的基极-发射极结电压,T表不绝对温度,q表不电子电荷量,K表不波尔兹曼常数,R2表示所述第二电阻的电阻值,Rl表示所述第一电阻的电阻值。 Represents the derivative, Vbel denotes a first NPN transistor base - emitter junction voltage, T the absolute temperature of the table is not, q the electron charge table does not amount, K table is not the Boltzmann constant group, R2 represents the second resistor resistance value, Rl represents the resistance value of the first resistor.
CN 201210088717 2012-03-29 2012-03-29 Band-gap reference voltage source circuit CN102609027B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210088717 CN102609027B (en) 2012-03-29 2012-03-29 Band-gap reference voltage source circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210088717 CN102609027B (en) 2012-03-29 2012-03-29 Band-gap reference voltage source circuit

Publications (2)

Publication Number Publication Date
CN102609027A true true CN102609027A (en) 2012-07-25
CN102609027B CN102609027B (en) 2013-10-02

Family

ID=46526477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210088717 CN102609027B (en) 2012-03-29 2012-03-29 Band-gap reference voltage source circuit

Country Status (1)

Country Link
CN (1) CN102609027B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399612A (en) * 2013-07-16 2013-11-20 江苏芯创意电子科技有限公司 Resistance-less bandgap reference source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083079A (en) * 1989-05-09 1992-01-21 Advanced Micro Devices, Inc. Current regulator, threshold voltage generator
US5155394A (en) * 1991-02-12 1992-10-13 National Semiconductor Corporation Bias distribution circuit and method using FET and bipolar
CN102033564A (en) * 2009-09-25 2011-04-27 精工电子有限公司 Reference voltage circuit
CN102200797A (en) * 2010-03-23 2011-09-28 精工电子有限公司 Reference voltage circuit
CN202502430U (en) * 2012-03-29 2012-10-24 北京经纬恒润科技有限公司 Bandgap reference voltage source circuit

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083079A (en) * 1989-05-09 1992-01-21 Advanced Micro Devices, Inc. Current regulator, threshold voltage generator
US5155394A (en) * 1991-02-12 1992-10-13 National Semiconductor Corporation Bias distribution circuit and method using FET and bipolar
CN102033564A (en) * 2009-09-25 2011-04-27 精工电子有限公司 Reference voltage circuit
CN102200797A (en) * 2010-03-23 2011-09-28 精工电子有限公司 Reference voltage circuit
CN202502430U (en) * 2012-03-29 2012-10-24 北京经纬恒润科技有限公司 Bandgap reference voltage source circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103399612A (en) * 2013-07-16 2013-11-20 江苏芯创意电子科技有限公司 Resistance-less bandgap reference source
CN103399612B (en) * 2013-07-16 2015-04-15 江苏芯创意电子科技有限公司 Resistance-less bandgap reference source

Also Published As

Publication number Publication date Type
CN102609027B (en) 2013-10-02 grant

Similar Documents

Publication Publication Date Title
US7224210B2 (en) Voltage reference generator circuit subtracting CTAT current from PTAT current
US6518737B1 (en) Low dropout voltage regulator with non-miller frequency compensation
US6677808B1 (en) CMOS adjustable bandgap reference with low power and low voltage performance
US6265929B1 (en) Circuits and methods for providing rail-to-rail output with highly linear transconductance performance
US8080984B1 (en) Replica transistor voltage regulator
CN1987713A (en) Reference voltage source for low temperature coefficient with gap
US6900689B2 (en) CMOS reference voltage circuit
CN102147632A (en) Resistance-free bandgap voltage reference source
CN1529216A (en) Reference current source of low-temp. coefficient and low power-supply-voltage coefficient
CN101853040A (en) High mains rejection ratio low dropout voltage linear voltage regulator with feedforward transconductance
US8305068B2 (en) Voltage reference circuit
CN101030085A (en) Reference voltage module and its temperature compensating method
CN101183273A (en) Band-gap reference source produce device
US8558530B2 (en) Low power regulator
CN102193574A (en) Band-gap reference voltage source with high-order curvature compensation
CN102012715A (en) Band-gap reference voltage source compensated by using high-order curvature
CN102053645A (en) Wide-input voltage high-power supply rejection ratio reference voltage source
CN102103388A (en) Bandgap voltage reference circuit with start-up circuit
CN101271346A (en) Band-gap voltage reference circuit with low-power consumption and high electric power rejection ratio
CN102279610A (en) One kind of low power consumption, wide temperature range of the reference voltage source subthreshold
CN102495659A (en) Exponential temperature compensation low-temperature drift complementary metal oxide semiconductor (CMOS) band-gap reference voltage source
CN104950971A (en) Low-power-consumption sub-threshold type CMOS band gap reference voltage circuit
CN102393786A (en) High-order temperature compensation CMOS band-gap reference voltage source
CN101329586A (en) Reference voltage generator and method for providing multiple reference voltages
CN1508643A (en) Voltage source using second-order temperature compensating energy gap reference voltage and method thereof

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model