New! View global litigation for patent families

CN102603005B - Method for preparing nanometer molybdenum trioxide - Google Patents

Method for preparing nanometer molybdenum trioxide Download PDF

Info

Publication number
CN102603005B
CN102603005B CN 201210057610 CN201210057610A CN102603005B CN 102603005 B CN102603005 B CN 102603005B CN 201210057610 CN201210057610 CN 201210057610 CN 201210057610 A CN201210057610 A CN 201210057610A CN 102603005 B CN102603005 B CN 102603005B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
method
preparing
nanometer
molybdenum
trioxide
Prior art date
Application number
CN 201210057610
Other languages
Chinese (zh)
Other versions
CN102603005A (en )
Inventor
赵龙飞
赵维保
赵维根
Original Assignee
洛阳开拓者投资管理有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明涉及有色金属冶金技术领域,尤其是涉及一种以纯三氧化钼为原料制备纳米三氧化钼的方法。 The present invention relates to non-ferrous metallurgy, and more particularly to a method of pure molybdenum trioxide as a raw material for preparing nano molybdenum trioxide. 以纯三氧化钼为原料,通过等离子体升华制备纳米三氧化钼,将纯三氧化钼粉末通过加料装置送入等离子体升华炉中,在等离子体流中进行升华,操作时间10~100ms,获得的气态三氧化钼采用骤冷介质骤冷,收料装置收集,得到纳米三氧化钼,MoO3>99.80%。 As raw material pure molybdenum trioxide, molybdenum trioxide by plasma sublimation nano prepared, pure molybdenum trioxide powder into a plasma by sublimation furnace charging device, in the plasma stream by sublimation, operating time 10 ~ 100ms, obtained molybdenum trioxide using gaseous quench quench medium, receiving means for collecting obtain nano molybdenum trioxide, MoO3> 99.80%. 本发明采用等离子体升华法制备三氧化钼,可以在超短时间内得到粒度在80nm以内的高纯纳米三氧化钼,并且真正实现了自动化、连续化生产。 The present invention is prepared by plasma sublimed molybdenum trioxide, can be obtained in a short time ultra high purity molybdenum trioxide particle size less than 80nm nanometers, and truly automated, continuous production.

Description

一种制备纳米三氧化钼的方法 A process for preparing a method of nano molybdenum trioxide

技术领域 FIELD

[0001] 本发明涉及有色金属冶金技术领域,尤其是涉及一种以纯三氧化钥为原料制备纳米三氧化钥的方法。 [0001] The present invention relates to non-ferrous metallurgy, and more particularly to a method of key pure oxide starting material to prepare nano trioxide keys.

背景技术 Background technique

[0002] 三氧化钥是钥冶金中最重要的中间体,大多数钥的化合物都是直接或间接以它为原料制得的,三氧化钥在催化剂、显示装置、传感器、电机电池等领域都有广泛的应用。 [0002] trioxide key is a key intermediate metallurgical most important, most of the compounds are key to it directly or indirectly for raw materials, the key trioxide catalyst, a display field devices, sensors, motors and other cells are there are a wide range of applications.

[0003] 工业上一般用锻烧钥酸铵的方法制取三氧化钥,随着材料科学与应用技术的不断发展,该方法制得的三氧化钥由于颗粒粗、呈团聚状态而不能满足特殊使用要求,如郭光华等在CN102198958中公开了一种石油加氢精制催化剂用高纯三氧化钥的制备方法,将四钥酸铵干燥、过筛后送入回转管电炉进行焙烧,一次成品率达98.5%。 [0003] Industry has generally a calcined ammonium key preparing method key trioxide, with the development of materials science and technology application, produced by this method since the key trioxide coarse, agglomerated state was unable to meet the special requirements, and other such Guo Guanghua discloses a hydrorefining catalyst in oil CN102198958 trioxide of high purity by preparing keys, the four keys ammonium sulfate, after sieving into the rotary tube furnace for firing, a yield 98.5%.

[0004] 由于三氧化钥在较低的温度下即具有显著的蒸汽压,所以可以用升华法对三氧化钥进行净化,在升华的操作条件下,通常与之共生的杂质或不具有挥发性(如硅酸盐等)或不能冷凝而被除去。 [0004] Since the key trioxide i.e. having a significant vapor pressure at lower temperatures, it may be purified by sublimation trioxide key method, sublimation under operating conditions, typically symbiosis contaminant or volatile (such as silicates, etc.), or condensation can be removed.

[0005] 目前,工业上升华法生产纯三氧化钥的主要原料为工业氧化钥即钥焙砂,根据钥焙砂中氧化钥熔点、沸点低,在温度低于其熔点795°C时开始升华,以三聚合氧化钥的形态进入气相,三氧化钥蒸气连同空气一同进入收尘风罩中并在抽力作用下进入布袋收集,而大多数杂质化合物因熔点、沸点高很多留在固相中,升华在旋转电炉中进行,升华温度一般控制在900〜1100°C,制取的三氧化钥一般纯度可达到Mo0399.8% (张启修,赵秦生主编,《钨钥冶金》,2005年9月);南韩研究人员发明一种新型升华炉,该炉比带旋转炉底的升华炉生产能力大,能耗低(张文钲,氧化钥研发进展,《中国钥业》,2006年第I期);US4551313公开了一种含成渣成分(硅、铝及重金属)的三氧化钥的快速升华方法,第一步:通过气动悬浮流输送的氧化钥颗粒、通过喷嘴输送的燃料和含氧气体混 [0005] At present, industrial production of the main raw material sublimed pure trioxide key for key industrial oxide calcine i.e., key, key according to the key oxide calcine melting point, a low boiling point, at a temperature below its melting point of 795 ° C sublimated , in the form of three keys into the gas phase oxidative polymerization, key trioxide vapor together with air into the dust collection hood and collected into the bag under the action of the pumping power, while most of the impurities due to melting point compounds, high boiling point remain in the solid phase much , in a rotary electric furnace sublimation, the sublimation temperature is controlled at 900~1100 ° C, the preparation of key trioxide purity generally reached Mo0399.8% (Zhang Qi repair, Zhao Qinsheng eds., "tungsten key metallurgy", September 2005) ; South Korean researchers invented a new kind of sublimation furnace which is larger than the sublimation furnace production capacity with rotary hearth, low energy consumption (Zhang Zheng, research and development progress oxidative key, "key industry in China", 2006 stage I); US4551313 discloses a method for the rapid sublimation keys oxide containing slag-forming components (silicon, aluminum and heavy metals) the first step: the pneumatic suspension of particulate by oxidation of the key stream delivered through the fuel delivery nozzle and oxygen-containing gas mixture 流进入一个封闭炉腔内,燃料气体混合物点燃产生温度在1600 士200°C〜1800°C的足以使三氧化钥升华、融化成渣成分的火焰,收集炉腔内的液态渣,第二步:将产生的包括升华的三氧化钥在内的气体和悬浮固体通过上述炉腔进入一冷凝室,冷凝室的温度(850〜950°C)高于升华的三氧化钥的冷凝温度、低于挥发性金属杂质的挥发温度,然后冷凝(150〜500°C)、收集固态三氧化钥,分离废气,从而实现三氧化钥和杂质的分离,结果显示,混入渣中的钥低于1%,得到产品三氧化钥纯度达Mo0399.95%。 Stream enters a closed furnace chamber, the fuel gas mixture is ignited at a temperature 1600 Disabled 200 ° C~1800 ° C is sufficient for the key trioxide sublimation, melting into the slag component flame, collecting liquid slag in the furnace chamber, the second step : including the generated key sublimated oxide including a gas and suspended solids entering the condensation chamber through said cavity, the temperature of the condensation chambers (850~950 ° C) higher than the sublimation key trioxide condensation temperature, below volatilization temperature of the volatile metallic impurities, and then condensed (150~500 ° C), the solid was collected trioxide key, separating the exhaust gas, in order to achieve the separation of impurities trioxide key and showed that the key into the slag to less than 1%, key trioxide to give the product purity Mo0399.95%.

[0006] 尽管采用上述这些方法可以获得较高纯度的三氧化钥,但仍然存在下述几个问题:1、钥回收率明显低于75%,抵消了产品纯度提高带来的优势;2、由于往炉内通入大量空气流,大部分热量不是用来升华产品,而是被用来提高引入空气的温度;3、制得的产品三氧化钥平均粒度在微米级,不能满足材料科学等领域的特定要求。 [0006] Despite the availability of key high-purity oxide using these methods, but there are still the following questions: 1, key recovery was significantly less than 75%, offset by the advantages brought by the purity increase; 2, Since a lot of air to flow into the furnace, most of the heat is not used for the sublimation products, but is used to increase the temperature of the incoming air; 3, the product obtained trioxide key micron average particle size, materials science can not meet the specific requirements of the field.

[0007] 已有研究发现,具有各向异性的纳米三氧化钥,更显示出其特殊的催化性能,可广泛用作催化剂,常规升华法采用收尘风罩及布袋收集三氧化钥,因粒子聚凝仅得到微米级产品,为了制取纳米三氧化钥,必须将升华的三氧化钥气体急骤冷却,防止三氧化钥粒子聚凝或团聚,从而得到纳米级产品。 [0007] It has been found that a key anisotropic nano-oxide, shows its special catalytic properties can be widely used as a catalyst, a conventional method using the sublimation and dust collection hood trioxide key collection bag, because the particles polybrene micron obtained only products, for the preparation of nano oxide key must be sublimated key trioxide gas flash cooling, to prevent the key trioxide flocculating particles or agglomerates, thereby obtaining nano-products.

[0008] US6468497公开了一种纳米三氧化钥的生产方法,将工业氧化钥采用升华_骤冷法生产出纳米三氧化钥,生产工艺如下:将粒度大约24〜260 μ m的工业氧化钥粉体(通常由三氧化钥和二氧化钥组成)经可控螺旋运输机送入升华炉中,经入口鼓入空气使二氧化钥氧化为三氧化钥,升华炉用电力加热,用热电偶检测炉内温度,当炉温达到1100°C时,三氧化钥开始升华并沉积在似膜状进料管中;已升华的纳米三氧化钥用液氮流骤冷,进入料斗,然后流入过滤器,经风机吸出冷气,纳米三氧化钥产品经漏斗排出,反应升华温度为1093〜1260°C,升华炉的作业时间为120min,可产出约长lOOnm、宽25nm、高20nm的呈条状纳米级三氧化钥。 [0008] US6468497 discloses a method of producing a nano-oxide keys, key industrial oxide sublimation _ quenching method in producing nanometer trioxide key, the production process is as follows: the particle size of about 24~260 μ m key industrial oxide powder body (usually by a key and key trioxide dioxide composition) via a controllable sublimation furnace into a screw conveyor, so that the air bubbled through the key inlet dioxide trioxide oxidation of the key, the power heating sublimation furnace, furnace thermocouple detection temperature, when the furnace temperature reached 1100 ° C, and trioxide key starts to sublime deposited like a film feed conduit; nano-sublimated oxide key stream with a quench liquid nitrogen, into the hopper, and then flows into the filter, a cold air through the suction fan, nano key trioxide product is discharged through the funnel, the reaction sublimation temperature 1093~1260 ° C, sublimation furnace operating time 120min, can produce about lOOnm length, width of 25 nm, 20nm of high stripe shape nanoscale trioxide key.

[0009] 上述方法虽然可以制得纳米级产品,但存在的问题在于:升华时间长,一般在120min以上,不能进行连续化生产。 [0009] While the above process may be prepared nano products, but the problem is that: the sublimation time is long, generally more than 120min, continuous production can not be performed.

[0010] 赵秦生等提出一种氧化钥等离子物理气相沉积法制取高纯三氧化钥的方法,以空气等离子处理工业纯的氧化钥(即钥焙砂),利用三氧化钥沸点比大多数杂质低的特点,令其在空气等离子焰中迅速挥发,然后在等离子焰外引入大量冷空气使气态三氧化钥骤冷,获得超细高纯三氧化钥粉末。 [0010] Zhao Qinsheng oxide, etc. to provide a key plasma physical vapor deposition method of high purity trioxide key approach to air plasma treatment of industrial pure oxygenated key (i.e., key calcine), using the key trioxide boiling point lower than most of the impurities characteristics, so that it evaporates rapidly in the plasma flame in air, and then introduced into the plasma flame outside like a large number of key cool the gaseous oxide quenched to obtain high-purity ultrafine powder trioxide key. 因为采用等离子方法,预计生产时间可大大缩短,但该方法: Because the use of a plasma method, estimated production time can be greatly shortened, but the method:

1、为保证在等离子体条件下三氧化钥的迅速挥发,等离子焰必须保持较高温度(2000°C以上),致使原料钥焙砂中的大多数杂质也挥发进入气相,最终冷凝并伴随三氧化钥进入产品中,影响产品纯度;2、该方法仅仅只是一个设想,无工业应用,甚至无实验装置(张启修,赵秦生主编,《钨钥冶金》,2005年9月)。 1, in order to ensure rapid volatilization trioxide keys under plasma conditions, plasma flame must be kept relatively high temperatures (above 2000 ° C), resulting in the key raw material in the calcine most volatile impurities into the gas phase, condense and ultimately accompanied by three oxidation keyless entry product, the impact of product purity; 2, which is just an idea, no industrial applications, even without experimental device (Zhang Qi Xiu, Zhao Qinsheng editor, "tungsten metallurgy key," September 2005).

发明内容 SUMMARY

[0011] 在现有技术的基础上,本发明的目的在于提供一种以纯三氧化钥为原料采用等离子体升华制备纳米三氧化钥的方法,超短时间,可以实现自动化、连续化生产。 [0011] On the basis of prior art, the object of the present invention is to provide a key for the pure oxide material sublimation process using plasma oxide Nano keys, short time, it can be automated, continuous production.

[0012] 一种制备纳米三氧化钥的方法,以纯三氧化钥为原料,通过等离子体升华制备纳米三氧化钥,其特征在于: [0012] A preparation method of nano oxide keys, key pure trioxide as a raw material, prepared by sublimation plasma oxide nano key, wherein:

[0013] 将纯三氧化钥粉末通过加料装置送入等离子体升华炉中,在等离子体流中进行升华,操作时间10〜100ms,获得的气态三氧化钥采用骤冷介质骤冷,收料装置收集,得到纳米三氧化钥,MoO3 > 99.80%ο [0013] Pure key trioxide powder into a plasma by sublimation furnace charging device, in the plasma stream by sublimation, operating time 10~100ms, gaseous trioxide key obtained using quench quench medium, receiving means collected to give nano key trioxide, MoO3> 99.80% ο

[0014] 升华条件为:温度2000〜10000°C、真空度为IO3〜IO5Pa的微负压。 [0014] Sublimation conditions: Temperature 2000~10000 ° C, vacuum degree of vacuum micro IO3~IO5Pa.

[0015] 进一步地,所述骤冷介质为水、空气或者液氮。 [0015] Further, the quench medium is water, air or nitrogen.

[0016] 进一步地,所述纳米三氧化钥粒度< 80nm。 [0016] Further, the nano-size keys trioxide <80nm.

[0017] 进一步地,产生所述等离子体流的等离子气体为氩气、氮气、空气、氧气或其他合适气体。 [0017] Further, the plasma generation, plasma gas flow is argon, nitrogen, air, oxygen or other suitable gas.

[0018] 本发明所称纯三氧化钥,指采用钥酸铵热解或其他方法制得的纯三氧化钥,其化学组成符合相应行业标准。 [0018] The present invention is referred to the pure key trioxide, ammonium key refers to the use of pure fumed oxide or other key obtained by the process, the chemical composition of which comply with the appropriate industry standards.

[0019] 采用如上所述的技术方案,本发明至少具有如下有益效果: [0019] With the technical scheme described above, the present invention has at least the following advantages:

[0020] 1、超高温带来超短时间 [0020] 1, bring ultra-high temperature short time

[0021] 本发明中,由于等离子体的超高温加热,当三氧化钥粉料进入等离子体升华炉时,在极短的时间内即完成热量的传递及对粉料的充分加热,升华操作可瞬间完成(< 100ms),超高温带来超短时间,明显优于现有的升华或升华-骤冷技术; [0021] In the present invention, since the ultra-high temperature heating of the plasma, when the key trioxide powder into the plasma sublimation furnace, in a very short period of time that is sufficient to complete the transfer of heat and heating of the powder, sublimation operation may instantaneous (<100ms), caused short time ultra-high temperature, much better than the conventional sublimation or sublimation - quenching technique;

[0022] 2、实现自动化、连续化生产 [0022] 2, automated, continuous production

[0023] 由于本发明用等离子体升华炉取代现有的旋转电炉或新型升华炉,能够一次、快速完成三氧化钥的挥发升华,形成不断加料、不断收集成品的连续化生产过程,与现有各种升华方法制取三氧化钥操作时间长、不能连续化生产相比,本方法真正实现了自动化、连续化生产,年产纳米三氧化钥400吨以上; [0023] Since the present invention is to replace the existing sublimation furnace rotary electric furnace or a plasma furnace novel sublimate can once, quickly volatilize sublimation keys trioxide formed continuously feeding, continue to collect the finished continuous production process, the conventional Preparation methods of various oxide sublimation key operation for a long time, can not be compared to continuous production, the method truly automated, continuous production, more than 400 tons annual nanometers trioxide key;

[0024] 3、产品粒度细 [0024] 3, a fine granularity

[0025] 本发明采用骤冷收集制备三氧化钥,避免了三氧化钥粒子的聚凝或团聚,从而获得纳米级产品,产品粒度可控制在80nm以内,与现有技术相比,可以满足材料科学领域的特定要求。 [0025] The present invention was prepared using the quench collector trioxide key, key trioxide avoid flocculating particles or agglomeration, to obtain a nano-products, the product can be controlled within 80nm particle size, compared with the prior art, to meet the material specific requirements of science.

附图说明 BRIEF DESCRIPTION

[0026] 图1:本发明的制备纳米三氧化钥的工艺设备示意图。 [0026] Figure 1: a schematic view of process equipment Nano keys oxide of the present invention.

[0027] 图中主要编号说明:1等离子体升华炉;2收杂装置;3水冷收集装置;4真空系统;5等离子气体;6冷却系统;7电源接口;8加料装置;9收料装置;10反吹气体。 [0027] FIG Main Number Description: 1 plasma sublimation furnace; 2 receiving heteroaryl means; 3 cooled collecting means; 4 vacuum system; 5 plasma gas; 6 cooling system; 7 power connector; 8 feeding means; 9 receipt means; 10 blowback gas.

具体实施方式 detailed description

[0028] 以下结合附图1及实施例详细说明本发明的技术方案,但本发明的保护范围包括但是不限于此: [0028] The following detailed description of the technical solutions of the present invention in conjunction with the accompanying drawings 1 and embodiment examples, but the scope of the present invention include, but are not limited to:

[0029] 本发明的制备纳米三氧化钥的工艺设备布置如图1所示,升华在等离子体升华炉I中进行,生产设备还包括加料装置8、收料装置9、收杂装置2、真空系统4、冷却系统6及水冷收集装置3等;将纯三氧化钥原料粉末通过加料装置8送入等离子体升华炉I中,在等离子气体5喷焰产生的2000-10000°C等离子体流中进行升华,操作时间10-100ms ;将升华产生的三氧化钥引入水冷收集装置3,用水作骤冷剂骤冷,收料装置9收集,得到纳米三氧化钥;真空系统4控制系统真空度在103-105Pa,冷却系统6设有进水口和出水口;水冷收集装置3采用水冷脉冲反吹过滤器,工作状态下不断通入反吹气体10实现气固分离。 [0029] Nano technology equipment trioxide key arrangement of the present invention shown in Figure 1, the plasma sublimation in a sublimation furnace I, the production equipment further comprises charging means 8, 9 rewinding means, receiving means 2 hetero vacuo 4 system, the cooling system 6 and the collection device 3, a water-cooled; pure trioxide key raw material powder is fed by the feeding device 8 sublimation furnace I in plasma, 2000-10000 ° C the plasma stream of the plasma gas in the torch 5 and the like generated by sublimation, operating time 10-100 ms; key trioxide is introduced into the water-cooling sublimed collecting device 3, as quench water quench, rewinding device 9 collected to give nano trioxide key; vacuum system vacuum level in the control system 4 103-105Pa, the cooling system 6 is provided with a water inlet and a water outlet; cooled using water collecting device 3 blows anti pulse filter, the operating state of the cleaning gas 10 is continuously achieved through gas-solid separation.

[0030] 本发明中,真空度控制在103-105Pa的微负压,能够取得非常好的升华效果;在升华三氧化钥的过程中,由于等离子体产生的超高温度,升华速度很快,在超短时间即毫秒级的时间内完成。 [0030] In the present invention, the degree of vacuum in the negative pressure micro 103-105Pa, it is possible to obtain very good results sublimation; key during sublimation trioxide, since the ultra-high temperature plasma generated, sublimation fast, completed within short time, i.e. the time in milliseconds.

[0031] 具体操作实施过程如下: [0031] In particular embodiments the operating process is as follows:

[0032] 1、打开供水系统6的冷却水; [0032] 1, open cooling water supply system 6;

[0033] 2、关闭进料阀,将原料三氧化钥加入加料装置8 ; [0033] 2, the feed valve closed, the raw material charging device trioxide was added key 8;

[0034] 3、真空系统4抽真空到设定真空度; [0034] 3, 4 the vacuum system was evacuated to a vacuum degree is set;

[0035] 4、通入等离子气体5,由电源接口7接入等离子电源产生设定温度的等离子体流; [0035] 4, 5 into the plasma gas, the plasma stream produced by the set temperature power interface access to the plasma power supply 7;

[0036] 5、向水冷收集装置3通入脉冲气体10 ; [0036] 5, collecting the water-cooling unit 3 into a gas pulse 10;

[0037] 6、打开进料阀,持续将加料装置8中的料粉加入等离子体升华炉I中进行升华操作; [0037] 6, the feed valve is opened for the charging device material powder was added in 8 I of plasma sublimation sublimation furnace operation;

[0038] 7、从收料装置9收取产品三氧化钥,从收杂装置2收取杂质。 [0038] 7, the product collected from receipts trioxide key means 9, heteroaryl charged impurities from the receiving apparatus 2.

[0039] 实践中还可以用空气或液氮作骤冷介质。 [0039] In practice air or liquid nitrogen may also be used as quenching medium. [0040] 实施例1: [0040] Example 1:

[0041] 原料:纯三氧化钥粉末,其化学组成见表I。 [0041] Starting material: pure key trioxide powder having the chemical composition shown in Table I.

[0042] 实施过程:将纯三氧化钥原料送入等离子体升华炉中,控制等离子体流的温度为2000〜10000°C、真空度为IO3〜IO5Pa,用水作骤冷剂,骤冷收集,得到三氧化钥,取样检测。 [0042] The procedure: Pure oxide materials into a plasma keyhole sublimation furnace, the temperature of the plasma flow control 2000~10000 ° C, degree of vacuum IO3~IO5Pa, water as a quench, the quench collector, key obtained trioxide, sample testing.

[0043] 实施参数与结果列于表2。 [0043] The parameters and results are shown in Table 2.

[0044] 从表2可以看出: [0044] As can be seen from Table 2:

[0045] 1、以Mo0399.82%的纯三氧化钥为原料,采用等离子体升华法可以在IOOms以内的超短时间制得纯度在99.80%以上、粒度在SOnm以下的高纯纳米三氧化钥; [0045] 1 to Mo0399.82% pure key trioxide as a raw material, a sublimation method using a plasma can be produced in a purity of more than 99.80% within short time IOOms, high-purity nano particle size less trioxide key SOnm ;

[0046] 2、随着等离子体升华温度的升高,升华速度加快,真空度降低,产能提高。 [0046] 2, with the increase of plasma temperature of the sublimation, the sublimation speed, the vacuum is reduced, productivity can be improved.

[0047] 最后所应说明的是:以上说明仅用以说明本发明而非限制,尽管参照较佳实施方式对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围,其均应涵盖在本发明的保护范围当中。 [0047] Finally, it should be noted that: the above description are intended to illustrate and not limit the present invention, although the invention has been described in detail with reference to preferred embodiments, those of ordinary skill will appreciate that the present invention may be modified or equivalents, without departing from the spirit and scope of the present invention, which should fall in the protection scope of the present invention.

[0048] 表I原料化学组成 [0048] Table I Chemical composition of feed

[0049] [0049]

Figure CN102603005BD00061

[0050] 表2实施例1参数与结果 [0050] TABLE 2 Parameter Example 1 with the results

[0051] [0051]

Figure CN102603005BD00062

Claims (3)

1.一种制备纳米三氧化钥的方法,以纯三氧化钥为原料,通过等离子体升华制备纳米三氧化钥,该方法通过以下设备实现:等离子体升华炉(I),收杂装置(2);水冷收集装置(3);真空系统⑷;等离子气体(5);冷却系统(6);电源接口(7);加料装置⑶;收料装置(9);反吹气体(10); 将纯三氧化钥原料粉末通过加料装置(8)送入等离子体升华炉(I)中,在等离子气体(5)喷焰产生的2000〜10000°C等离子体流中进行升华,操作时间10〜IOOms ;将升华产生的三氧化钥引入水冷收集装置(3),用水作骤冷剂骤冷,收料装置(9)收集,得到纳米三氧化钥;其中,真空系统⑷控制系统真空度在IO3〜IO5Pa,冷却系统(6)设有进水口和出水口;水冷收集装置(3)采用水冷脉冲反吹过滤器,工作状态下不断通入反吹气体(10)实现气固分离。 1. A method for preparing nano oxide keys, key pure trioxide as a raw material, prepared by sublimation plasma oxide nano key, the method is implemented by the following equipment: a plasma sublimation furnace (the I), heteroaryl receiving means (2) ; cooled collecting means (3); vacuum system ⑷; plasma gas (5); cooling system (6); a power supply connector (7); feeding means ⑶; receipt means (9); blowback gas (10); pure key trioxide powder into the plasma sublimation furnace material (I) by the charging device (8), a plasma gas (5) or the like in the sublimation 2000~10000 ° C plume plasma stream generated, the operation time 10~IOOms; the sublimed trioxide introducing cooled key collection means (3) water as the quench quenched rewinding means (9) was collected, to give key nano oxide; wherein the vacuum system vacuum level in the control system ⑷ IO3~IO5Pa , a cooling system (6) is provided with a water inlet and a water outlet; cooled collecting means (3) water-cooled blowing anti-pulse filter, the operating state continues into backflush gas (10) to achieve gas-solid separation.
2.根据权利要求1所述的制备纳米三氧化钥的方法,其特征在于:进一步地,产生所述等离子体流的等离子气体为氩气、氮气、空气或者氧气。 2. Preparation of nano oxide key method according to claim 1, characterized in that: Furthermore, the plasma flow generated plasma gas is argon, nitrogen, air or oxygen.
3.根据权利要求1所述的制备纳米三氧化钥的方法,其特征在于:进一步地,所述纳米三氧化钥粒度< 80nm。 3. Preparation of oxide nano key method according to claim 1, characterized in that: Furthermore, the nano-size keys trioxide <80nm. . .
CN 201210057610 2012-03-07 2012-03-07 Method for preparing nanometer molybdenum trioxide CN102603005B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210057610 CN102603005B (en) 2012-03-07 2012-03-07 Method for preparing nanometer molybdenum trioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210057610 CN102603005B (en) 2012-03-07 2012-03-07 Method for preparing nanometer molybdenum trioxide

Publications (2)

Publication Number Publication Date
CN102603005A true CN102603005A (en) 2012-07-25
CN102603005B true CN102603005B (en) 2013-12-04

Family

ID=46520874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210057610 CN102603005B (en) 2012-03-07 2012-03-07 Method for preparing nanometer molybdenum trioxide

Country Status (1)

Country Link
CN (1) CN102603005B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495934B (en) * 2014-12-12 2016-02-03 江西省鼎力金属有限公司 Quenching the gasifier state molybdenum oxide nanoparticles, collecting means
CN105347400B (en) * 2015-12-04 2016-11-09 湖北中澳纳米材料技术有限公司 An apparatus and method of production of high-purity molybdenum trioxide nano
CN105758176B (en) * 2016-05-04 2017-12-29 湖北中澳纳米材料技术有限公司 Apparatus for preparing high-purity molybdenum trioxide nano

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468497B1 (en) 2000-11-09 2002-10-22 Cyprus Amax Minerals Company Method for producing nano-particles of molybdenum oxide
CN101092249A (en) 2007-04-27 2007-12-26 中山大学 Method for preparing Nano structure and thin film of molybdenum trioxide by using infrared sintering furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468497B1 (en) 2000-11-09 2002-10-22 Cyprus Amax Minerals Company Method for producing nano-particles of molybdenum oxide
CN101092249A (en) 2007-04-27 2007-12-26 中山大学 Method for preparing Nano structure and thin film of molybdenum trioxide by using infrared sintering furnace

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A.H.泽列克曼等.《稀有金属冶金学》.《稀有金属冶金学》.冶金工业出版社,1982,(第1版),第109-112页.
阎建伟等.《钼化学品导论》.《钼化学品导论》.冶金工业出版社,2008,(第1版),第184-185页.
马兵等."高频等离子体固相分解仲钼酸铵制备MoO3、MoO2超微细粉".《化工冶金》.1996,第17卷(第2期),第168-172页.

Also Published As

Publication number Publication date Type
CN102603005A (en) 2012-07-25 application

Similar Documents

Publication Publication Date Title
Wang et al. Grain growth during the early stage of sintering of nanosized WC–Co powder
Zhang et al. Fabrication of bulk nanocrystalline Fe–C alloy by spark plasma sintering of mechanically milled powder
US5788738A (en) Method of producing nanoscale powders by quenching of vapors
US7601294B2 (en) High volume production of nanostructured materials
Kanari et al. Thermal decomposition of zinc carbonate hydroxide
US7572315B2 (en) Process for the synthesis, separation and purification of powder materials
Tang et al. Synthetic routes and formation mechanisms of spherical boron nitride nanoparticles
US20070163385A1 (en) Process for producing microparticles and apparatus therefor
US7157073B2 (en) Production of high-purity niobium monoxide and capacitor production therefrom
CN103212710A (en) Manufacturing method of NdFeB rare earth permanent magnetic material
JP2012041588A (en) Separation method and separation system for rare earth element by chloride volatilization method
Li et al. A simple purification for single-walled carbon nanotubes
CN1406693A (en) Preparation for fine-superfines under normal pressure and its apparatus
CN101015861A (en) Continuous production apparatus for nano metal powder
Ryu et al. Chemical vapor synthesis (CVS) of tungsten nanopowder in a thermal plasma reactor
Moshtaghioun et al. Rapid carbothermic synthesis of silicon carbide nano powders by using microwave heating
Bardakhanov et al. Nanopowder production based on technology of solid raw substances evaporation by electron beam accelerator
US20110070426A1 (en) Sintering aids for boron carbide ultrafine particles
CN101264936A (en) Method for preparing alpha-ferroso-ferric oxide nano-tube by non-template process
Omurzak et al. Synthesis method of nanomaterials by pulsed plasma in liquid
Gui et al. Synthesis and characterization of ZnO nanostructures by two-step oxidation of Zn nano-and microparticles
US20050179175A1 (en) Method and apparatus for producing nano-particles of silver
CN101665253A (en) Polysilicon purification method and crucible and purification device used for polysilicon purification
Tiechui et al. Effects of mechanical activation on physicochemical properties and alkaline leaching of hemimorphite
Khanna et al. Synthesis of indium phosphide nanoparticles via catalytic cleavage of phosphorus carbon bond in n-trioctylphosphine by indium

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model
LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model