CN102596126A - Optical system for ophthalmic surgical laser - Google Patents

Optical system for ophthalmic surgical laser Download PDF

Info

Publication number
CN102596126A
CN102596126A CN2010800431483A CN201080043148A CN102596126A CN 102596126 A CN102596126 A CN 102596126A CN 2010800431483 A CN2010800431483 A CN 2010800431483A CN 201080043148 A CN201080043148 A CN 201080043148A CN 102596126 A CN102596126 A CN 102596126A
Authority
CN
China
Prior art keywords
scanner
laser
xy
scanning
lens
Prior art date
Application number
CN2010800431483A
Other languages
Chinese (zh)
Other versions
CN102596126B (en
Inventor
F·拉克希
Original Assignee
爱尔康蓝斯克斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/511,979 priority Critical patent/US8500725B2/en
Priority to US12/511,979 priority
Application filed by 爱尔康蓝斯克斯股份有限公司 filed Critical 爱尔康蓝斯克斯股份有限公司
Priority to PCT/US2010/042786 priority patent/WO2011017000A2/en
Publication of CN102596126A publication Critical patent/CN102596126A/en
Application granted granted Critical
Publication of CN102596126B publication Critical patent/CN102596126B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F9/00825Methods or devices for eye surgery using laser for photodisruption
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/0025Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration
    • G02B27/0031Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration for scanning purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/0025Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration
    • G02B27/0068Other optical systems; Other optical apparatus for optical correction, e.g. distorsion, aberration having means for controlling the degree of correction, e.g. using phase modulators, movable elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/0075Other optical systems; Other optical apparatus with means for altering, e.g. increasing, the depth of field or depth of focus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00848Feedback systems based on wavefront
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00855Calibration of the laser system
    • A61F2009/00859Calibration of the laser system considering nomograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/0087Lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00861Methods or devices for eye surgery using laser adapted for treatment at a particular location
    • A61F2009/00872Cornea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00897Scanning mechanisms or algorithms

Abstract

A laser system for ophthalmic surgery includes a laser engine to generate a pulsed laser beam, and an XY scanner, to receive the generated pulsed laser beam, and to output a scanning laser beam, the XY scanner including an X scanner, including two X scanning mirrors, and a Y scanner, including two Y scanning mirrors. The XY scanner can modify essentially independently an angle the outputted scanning laser beam makes with an optical axis, and a position at which the outputted scanning laser beam intersects a subsequent reference plane perpendicular to the optical axis.

Description

用于眼科手术激光的光学系统 An optical system for laser eye surgery

[0001] 相关申请的交叉引用 CROSS [0001] REFERENCE TO RELATED APPLICATIONS

[0002] 本申请要求在2009年7月四日提交的序列号为12/511,979的实用新型申请"Optical System for Ophthalmic Surgical Laser”的利益和优先权,通过引用将该申请的整体并入到本文中。 [0002] This application claims the serial number on the 4th July 2009 filed utility model application "Optical System for Ophthalmic Surgical Laser" benefit of and priority of 12 / 511,979, and incorporated herein by reference in this application as a whole in.

技术领域 FIELD

[0003] 本发明涉及用于利用飞秒激光进行对眼的前段的手术的系统,更具体而言,涉及在扫描并将激光束聚焦到眼中的同时使激光束的光学畸变最小化的实施例。 [0003] The present invention relates to a femtosecond laser eye anterior segment surgical system and, more particularly, relates to a scanning while focusing the laser beam into the eye and the optical distortion of the laser beam is minimized Example .

背景技术 Background technique

[0004] 本申请描述了用于在眼的前段内通过激光脉冲造成的光离解(photodisruption)对晶状体进行激光手术的技术和系统的实例和实施例。 [0004] The present application describes an optical dissociation (photodisruption) Examples of techniques and systems for the lens of the laser surgery and embodiments for the front stage in the eye caused by the laser pulse. 用于去除晶状体的各种晶状体手术过程利用各种技术,以将晶状体破碎为可通过小切口从眼中取出的小碎片。 Various surgical procedures for removing a lens of the lens using various techniques, to break the lens into small pieces can be removed from the eye through a small incision. 这些过程使用人工设备、超声波、加热的流体或激光并倾向于具有显著的缺点,这些缺点包括:需要用探头进入眼中以实现破碎,以及与这样的晶状体破碎技术相关的有限的精度。 These processes use manual devices, ultrasound, or laser heating fluid and tend to have significant drawbacks, these disadvantages include: the need to achieve a probe into the eye broken, and the limited accuracy associated with such technology lens fragmentation.

[0005] 光离解激光技术可将激光脉冲传送到晶状体中以光学地破碎晶状体而无需探头的插入,因而可提供改善的晶状体取出的潜力。 [0005] Laser light dissociation techniques can transmit laser pulses to the lens to the optical lens inserted without fragmentation of the probe, and thus provides the potential for improved lens removed. 激光诱导的光离解已经被广泛用于激光眼科手术,且Nd:YAG激光已经常被用作激光源,包括通过激光诱导的光离解实现的晶状体破碎。 Laser-induced dissociation of light have been widely used in laser eye surgery, and Nd: YAG laser has been frequently used as the laser source, including light from the laser induced by the lens solutions implemented crushing. 一些现有系统利用具有数mj的脉冲能量的纳秒激光(EH Ryan等人,AmericalJournal of Ophthalmology 104 :382_386,1987年10 月;RR Kruger 等人,Ophthalmology108 =2122-2129,2001),以及具有数十μ J 的皮秒激光(A. Gwon 等人,Cataract RefractSurg. 21,282-286,1995)。 Some prior systems use energy pulses having nanosecond laser mj (EH Ryan et al., AmericalJournal of Ophthalmology 104: 382_386, 1987 dated 10 years; RR Kruger et al., Ophthalmology108 = 2122-2129,2001), and having ten μ J picosecond laser (A. Gwon et al., Cataract RefractSurg. 21,282-286,1995). 这些相对长的脉冲将相对大量的能量提供到手术点,导致对精确度和对过程的控制的显著限制,同时产生了相对高程度的不想要的结果的风险。 These relatively long pulses of a relatively large amount of energy supplied to the surgical site, resulting in significant limitations on the accuracy and control of the process while creating the risk of undesired result of a relatively high degree.

[0006] 相似地,在角膜手术的相关领域,认识到:通过使用数百(hundreds of)飞秒持续时间的脉冲替代纳秒和皮秒脉冲,可以实现更短的脉冲持续时间和更佳的聚焦。 [0006] Similarly, in the related art corneal surgery, it is recognized: by using hundreds pulse (hundreds of) the duration of femtosecond and picosecond pulses alternate nanosecond, may be achieved in a shorter pulse duration and better focus. 飞秒脉冲在每脉冲提供更少的能量,显著提高了精确度和过程的安全性。 Femtosecond pulses provide less energy per pulse, significantly improves the accuracy and safety of the process.

[0007] 目前多家公司将用于角膜眼科手术(例如,LASIK瓣(flap)和角膜移植)的飞秒激光技术商业化。 [0007] Currently several companies cornea for ophthalmic surgery (e.g., LASIK flap (FLAP), and corneal transplant) femtosecond laser technology commercialization. 这些公司包括美国htralase Corp. /Advanced Medical Optics、德国20/10Perfect Vision Optische GerMte GmbH、德国Carl Zeiss Meditec,Inc.以及瑞士Ziemer Ophthalmic Systems AG。 These companies include American htralase Corp. / Advanced Medical Optics, Germany 20 / 10Perfect Vision Optische GerMte GmbH, Germany, Carl Zeiss Meditec, Inc. And the Swiss Ziemer Ophthalmic Systems AG.

[0008] 然而,根据角膜手术的要求设计这些系统。 [0008] However, according to the requirements of the design of these systems corneal surgery. 关键地,激光聚焦的深度范围典型地小于约1mm,即,角膜的厚度。 Critically, the depth of focus range of the laser is typically less than about 1mm, i.e., the thickness of the cornea. 因此,这些设计不能提供解决方案以用于在眼的晶状体上进行手术的重大挑战。 Therefore, these designs do not provide solutions to the major challenges for surgery on the lens of the eye.

发明内容 SUMMARY

[0009] 简要地且概括地,一种用于眼科手术的激光系统包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所产生的脉冲激光束并输出扫描激光束,所述XY扫描器包括:X扫描器,其包括两个X扫描反射镜(scanning mirror);以及Y扫描器,其包括两个Y扫描反射镜。 [0009] Briefly and in general terms, for an ophthalmic surgical laser system comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving the pulsed laser beam generated by the laser beam scanning and outputs, the XY scanner comprising: X scanner, which comprises two X-scanning mirror (scanning mirror); and Y scanner, comprising two Y-scanning mirrors.

[0010] 在一些实施方式中,所述X扫描器被配置为使所述X扫描器的支点离开所述X扫描器的反射镜。 [0010] In some embodiments, the X-scanner is configured to pivot away from the X-scanner mirror of the X scanner.

[0011] 在一些实施方式中,所述X扫描器的支点基本上在所述Y扫描器的反射镜上。 [0011] In some embodiments, the X-scanner fulcrum substantially in the Y-scanner mirror.

[0012] 在一些实施方式中,所述Y扫描器被配置为使所述Y扫描器的支点离开所述Y扫描器的反射镜。 [0012] In some embodiments, the Y scanner is configured to pivot away from the scanner of the Y Y scanner mirror.

[0013] 在一些实施方式中,所述X扫描器和所述Y扫描器被配置为使所述X扫描器的支点离开所述X扫描器的反射镜且使所述Y扫描器的支点离开所述Y扫描器的反射镜,并且使所述X扫描器的支点与所述Y扫描器的支点基本上重合(coincide)。 [0013] In some embodiments, the X-Y scanner and the scanner is configured to pivot away from the X-scanner mirror scanner of the X and the Y scanner fulcrum leave the Y scanner mirror, and the pivot fulcrum of said X and said Y-scanner is substantially coincident scanner (coincide).

[0014] 在一些实施方式中,所述X扫描器和所述Y扫描器被配置为使所述X扫描器的支点与所述Y扫描器的支点重合。 [0014] In some embodiments, the X-Y scanner and the scanner is configured such that the fulcrum of the fulcrum X of the scanner coincides with the Y scanner.

[0015] 在一些实施方式中,所述Y扫描器的支点基本上在后续(subsequent)光学元件的进入表面上。 [0015] In some embodiments, the fulcrum of said entering Y scanner upper surface of the subsequent (Subsequent) of the optical element substantially.

[0016] 在一些实施方式中,所述Y扫描器的支点基本上在后续光学元件的入瞳上。 [0016] In some embodiments, the fulcrum of the Y scanner substantially on the entrance pupil of the subsequent optical elements.

[0017] 在一些实施方式中,所述XY扫描器被配置为基本上独立地修改:由所述XY扫描器输出的扫描激光束与光轴所成的角;以及所输出的扫描激光束与垂直于所述光轴的后续参考平面相交的位置。 [0017] In some embodiments, the XY scanner is configured to substantially independently Review: scanning a laser beam from the optical axis of the XY scanner output angle formed; and a scanning laser beam with the output perpendicular to the optical axis intersects the plane of subsequent reference positions.

[0018] 在一些实施方式中,所述XY扫描器被配置为使像差与包括仅具有两个反射镜的XY扫描器的相应激光系统的像差相比减小。 [0018] In some embodiments, the XY scanner is reduced compared to the aberration arranged corresponding XY scanner comprising a laser system having only two mirrors is that the aberrations.

[0019] 在一些实施方式中,所述XY扫描器被配置为使像散与包括仅具有两个反射镜的XY扫描器的相应激光系统的像散相比减小。 [0019] In some embodiments, the XY scanner is configured to image the astigmatism corresponding bulk laser system including two mirrors having only reduced compared to the XY scanner.

[0020] 在一些实施方式中,所述XY扫描器被配置为使彗形像差与包括仅具有两个反射镜的XY扫描器的基本上相同的激光系统的彗形像差相比减小。 [0020] In some embodiments, the XY scanner is configured such that as compared to the coma and coma aberration difference XY scanner comprising only two mirrors having substantially the same laser system is reduced .

[0021] 在一些实施方式中,所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于5毫米且小于15毫米。 [0021] In some embodiments, the XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum 5 mm and less than 15 mm.

[0022] 在一些实施方式中,所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于8毫米且小于13毫米。 [0022] In some embodiments, the XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum value of 8 mm and less than 13 mm.

[0023] 在一些实施方式中,一种用于眼科手术的激光系统包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所产生的脉冲激光束并输出扫描激光束,其中,所述XY扫描器被配置为基本上独立地修改:所输出的扫描激光束与光轴所成的角;以及所输出的扫描激光束与垂直于所述光轴的后续参考平面相交的位置。 Laser System [0023] In some embodiments, a system for ophthalmic surgery comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving the pulsed laser beam generated by the laser beam scanning and outputs, wherein, the XY scanner is configured to substantially independently Review: scanning a laser beam with the optical axis angle formed by the output; and a scanning laser beam output from the vertical to the optical axis subsequent reference plane intersecting position.

[0024] 在一些实施方式中,所述XY扫描器包括:X扫描器,其包括两个X扫描反射镜;以及Y扫描器,其包括两个Y扫描反射镜。 [0024] In some embodiments, the XY scanner comprising: X scanner, which comprises two X-scanning mirror; and Y scanner, comprising two Y-scanning mirrors.

[0025] 在一些实施方式中,X支点离开X扫描反射镜;且Y支点离开Y扫描反射镜。 [0025] In some embodiments, X away from the fulcrum X scanning mirror; Y and Y scanning mirror away from the fulcrum.

[0026] 在一些实施方式中,X支点离开X扫描反射镜;Y支点离开Y扫描反射镜;且所述X支点与所述Y支点基本上重合。 [0026] In some embodiments, X away from the fulcrum X scanning mirror; Y Y scanning mirror away from the fulcrum; the X and Y with the fulcrum pivot substantially coincident.

[0027] 在一些实施方式中,所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于5毫米且小于15毫米。 [0027] In some embodiments, the XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum 5 mm and less than 15 mm.

[0028] 在一些实施方式中,一种用于眼科手术的激光系统包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所述脉冲激光束并输出扫描激光束,其中,所述XY扫描器包括第一快速控制(fast steering) XY扫描反射镜;以及第二快速控制XY扫描反射镜,其中,所述第一和第二快速控制XY反射镜能够围绕两个旋转轴而进行角运动。 Laser System [0028] In some embodiments, a system for ophthalmic surgery comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving said output pulse laser beam and scanning the laser beam, wherein the XY scanner comprises a first flash control (fast steering) XY scanning mirror; a second fast and controls the XY scanning mirror, wherein the first and second flash control XY mirror rotatable about two axes of rotation The angular movement.

[0029] 在一些实施方式中,由所述第一和第二XY快速控制反射镜产生的X支点与由所述第一和第二XY快速控制反射镜产生的Y支点基本上重合。 [0029] In some embodiments, the quick control reflecting mirror fulcrum X generated by the first and second fulcrum Y XY and fast control mirror by the first and second XY generated substantially coincident.

附图说明 BRIEF DESCRIPTION

[0030] 图1示例了手术激光传输系统1 ; [0030] FIG 1 illustrates a surgical laser delivery system;

[0031] 图2示例了高斯波前G和有像差的波前(aberrated wavefront)ff ; [0031] Figure 2 illustrates a Gaussian G before and aberrated wavefront (aberrated wavefront) ff;

[0032] 图3A-B示例了在最优和扫描焦平面处的光线; [0032] Figures 3A-B illustrates the scanning light and the optimum focal plane;

[0033] 图3C示例了焦斑半径的定义; [0033] FIG. 3C illustrates the definition of the focal spot radius;

[0034] 图4示例了Mrehl比率S与RMS波前误差ω之间的关系; [0034] FIG. 4 illustrates the relationship between the ratio S Mrehl the RMS wavefront error [omega];

[0035] 图5示例了眼科手术的参考点; [0035] FIG. 5 illustrates a reference point ophthalmic surgery;

[0036] 图6Α-Β概念性地示例了预补偿器200的操作; [0036] FIG 6Α-Β conceptually illustrates the operation of the pre-compensator 200;

[0037] 图7Α-Β示例了有效Z扫描功能的各种应用; [0037] FIG 7Α-Β Z exemplary scan function effectively in various applications;

[0038] 图8A-D示例了预补偿器200的实施方式; [0038] FIGS. 8A-D illustrates an embodiment 200 of the pre-compensator;

[0039] 图9示例了具有两个Z扫描器的激光传输系统1的实施方式; Laser delivery system [0039] FIG 9 illustrates a scanner having two Z Embodiment 1;

[0040] 图10示例了包含0、1或2个Z深度扫描器和0、1或2个NA修改器的配置的表; [0040] FIG. 10 illustrates the configuration of a table containing 0, 1 or 2 and Z depth scanner, 1 or 2 NA modifier;

[0041] 图IlA-C示例了具有2、3和4个扫描反射镜的XY扫描器; [0041] FIG IlA-C examples 3 and 4 having a scanning mirror XY scanner;

[0042] 图12A-D示例了作为数值孔径的函数的像差以及作为Z焦深(focal depth)的函数的对应光学数值孔径NA。 [0042] FIGS. 12A-D sample as a function of numerical aperture and the aberration as a function of Z corresponding to the optical depth of focus (focal depth) of the numerical aperture NA. pt(z); pt (z);

[0043] 图13A-B示例了第一扩束器块400和可移动扩束器块500的两个设置; [0043] FIGS 13A-B illustrates a first expander block 400 and the movable block is provided two beam expander 500;

[0044] 图14示例了Z扫描器450的中间(intermediate)焦平面; [0044] FIG. 14 illustrates a Z scanner 450 of intermediate (Intermediate) focal plane;

[0045] 图15示例了物镜700的实施方式; [0045] FIG. 15 illustrates an embodiment of the objective lens 700 of the embodiment;

[0046] 图16示例了目标区域中的弯曲焦平面; [0046] FIG. 16 illustrates a curved focal plane of the target area;

[0047] 图17示例了XY扫描器倾斜角的列线图(nomogram); [0047] FIG. 17 illustrates a collinear chart of the inclination angle of the XY scanner (nomogram);

[0048] 图18示例了可移动扩束器位置的列线图;以及 [0048] FIG. 18 illustrates a nomogram can move the position of the beam expander; and

[0049] 图19示例了计算控制方法的步骤。 [0049] FIG. 19 illustrates a step of calculating a control method.

具体实施方式 Detailed ways

[0050] 本发明的一些实施例包括用于利用飞秒激光脉冲在眼的晶状体中进行手术的系统。 [0050] Some embodiments of the present invention comprises means for using a femtosecond laser pulses in the lens of the eye surgery system. 一些整合的(integrated)实施例还能够进行角膜和晶状体手术过程这二者。 Some integrated (Integrated) embodiment can also be performed both cornea and lens surgical procedures. 在眼的晶状体中进行眼科手术与在质上不同于角膜手术过程的要求相关。 In the lens of the eye associated with ophthalmic corneal surgery procedure is different from the requirements in quality.

[0051] 当前描述的晶状体手术激光系统和角膜系统之间的主要区别包括: [0051] The main difference between the lens and corneal surgical laser system presently described system comprises:

[0052] 1.飞秒激光脉冲将被可靠地产生。 [0052] 1. femtosecond laser pulse will be generated reliably. 高重复频率飞秒脉冲允许使用更小的每脉冲能量,这为系统的操作者提供更高的控制和精度。 High repetition rate femtosecond pulses allows the use of less energy per pulse, which provides higher control accuracy and operator of the system. 然而,与在一些现有系统中使用的纳秒或皮秒脉冲相比,可靠地产生飞秒脉冲却是相当大的挑战。 However, compared with nanosecond or picosecond pulses used in some existing systems, reliably generate femtosecond pulses is quite a challenge. [0053] 2.手术激光束在传播穿过最大为5毫米的包括角膜和前房水腔的折射介质而正好到达手术目标(晶状体)时被显著地折射。 Is significantly refracted [0053] 2. Surgical laser beam propagating through the cornea and a maximum refractive medium comprising a water chamber anterior chamber of 5 mm and just reaches the operation target (lens). 相比之下,用于角膜手术的激光束被聚焦在不足一毫米的深度处,因而在从手术系统进入角膜时基本上不被折射。 In contrast, the laser beam is focused for corneal surgery less than one millimeter in depth, and thus is substantially not refracted upon entering the cornea from the surgical system.

[0054] 3.手术激光传输系统被配置为扫描整个手术区域,例如,从典型的5mm深度处的晶状体的前面/前部到在典型的IOmm深度处的晶状体的后面/后部。 [0054] 3. The surgical laser delivery system is configured to scan the entire surgical area, e.g., from the front / front portion of the lens is typically at a depth of 5mm and a typical back lens IOmm depths / rear. 该5mm或更大的深度扫描范围或“Z扫描范围”显著宽于用于对角膜进行的手术的Imm深度的扫描范围。 The depth of 5mm or more scanning range or "Z scanning range" for significantly wider than the depth scanning range Imm surgery of the cornea. 典型地,手术光学装置(optics),特别是这里使用的高数值孔径光学装置,被最优化为将激光束聚焦到特定的操作深度。 Typically, the surgical optical means (Optics), in particular a high numerical aperture optical means used herein, is optimized to focus a laser beam to a specific operating depth. 在角膜手术过程期间,Imm深度的扫描仅仅造成与最优操作深度的中度偏离(departure)。 During the surgical procedure the cornea, the scanning Imm depth caused only moderate and optimal operating depth deviation (departure). 相比之下,在晶状体手术时的从5到IOmm的扫描期间,系统被驱动远离固定的最优操作深度。 In contrast, when the lens surgery from 5 to IOmm during scanning, the system is driven away from the fixed optimum operating depth. 因此,晶状体手术激光传输系统采用更精细化的适应性光学装置以能够扫描晶状体手术所需的宽深度扫描范围。 Thus, the lens surgical laser delivery system with a wide range of scanning depth of finer adaptive optical device capable of scanning lens surgery required.

[0055] 4. 一些实施例被整合,以便被配置为对角膜和晶状体二者进行手术。 [0055] 4. Some embodiments are integrated, so as to be configured to both the cornea and crystalline lens surgery. 在这些整合的实施例中,深度扫描范围最大为IOmm而不是5mm,这提出更难的挑战。 In these embodiments, the integration, the depth scanning range up to IOmm instead of 5mm, this challenge more difficult.

[0056] 5.在诸如许多LASIK变异的角膜手术过程期间,垂直于光轴(“在XY面内”)扫描激光束。 [0056] 5. During corneal procedures, such as LASIK many variations, perpendicular to the optical axis ( "the XY plane") scanning the laser beam. 在典型的过程中,XY扫描范围仅仅覆盖具有IOmm直径的角膜的中心部分。 In a typical process, XY scanning range only covers the central portion of the cornea has IOmm diameter. 然而,在整合的手术系统中,还形成额外的切口。 However, in the integrated surgical system, also form additional cutout. 一种类型的切口为进入切口(entry cut),这为抽吸针和常规手术工具提供到眼内部的入口。 One type of incision into the cutout (entry cut), which provide access to the interior of the eye to aspiration needles and conventional surgical tool. 另一类型的切口为角膜缘松解切口(limbalrelaxing incision, LRI),其包括恰好在血管弓(vascular arcade)前面的角膜缘部处的切口对。 Another type of incision limbal relaxing incisions (limbalrelaxing incision, LRI), which comprises exactly vascular arcades (vascular arcade) incision at the limbus portion of the front. 通过调整这些弓形切口的长度、深度以及位置,可以诱导角膜像散的变化。 By adjusting the arcuate length of the incision, the position and depth, can induce changes in the corneal astigmatism. 进入切口和LRI可以被设置在角膜的周边,典型地具有12mm的直径。 LRI entry incision and may be provided at the periphery of the cornea, typically having a diameter of 12mm. 虽然将XY扫描直径从IOmm增加到12mm与LASIK瓣的常规直径相比仅仅增加了20%,但在这样的直径下将激光传输系统的离轴像差保持在控制之下是重大挑战,这是因为离轴像差与在焦平面处的场直径的更高功率成比例地增长。 While the XY scanning diameter as compared with the conventional 12mm diameter increases IOmm LASIK flap is only increased by 20%, but in the off-axis aberrations such as the diameter of the laser delivery system is kept under control is a major challenge, which is because of the higher power and off-axis aberration at the focal plane field diameter is increased proportionately.

[0057] 6.晶状体激光手术过程需要来自精细成像系统的导引。 [0057] 6. The lens guide laser surgery procedure requires fine from the imaging system. 在一些成像系统中,角膜缘血管被标识以用作眼上的参考标记,以在手术时间期间校准眼的环转(cyclo-rotational)对准,在一些情况下,相对于在眼的外科手术前的诊断期间所标识的参考坐标而进行该校准。 In some imaging systems, limbal vessels were identified to serve as reference marks on the eye, during surgery to the time alignment of the eye ring switch (cyclo-rotational) alignment in some cases, with respect to the eye in the surgical during the identified reference coordinate diagnosis performed prior to the calibration. 在手术区域周边选择的血管最不会受到手术的干扰,因而是最可靠的。 In the area surrounding the selected surgery vascular surgery, most will not be disturbed, so it is the most reliable. 然而,被导引到这样的周边血管的成像系统要求成像光学对具有大于10mm(例如,12mm)的半径的区域成像。 However, such is guided to an imaging system in claim peripheral vascular imaging optical imaging region radius greater than 10mm (e.g., 12mm) of.

[0058] 7.激光束在沿光学路径在眼内传播时会形成各种像差。 [0058] 7. When the laser beam propagating along the optical path within the eye will form various aberrations. 激光传输系统可以通过补偿这些像差而改善精度。 Laser delivery system can be improved by compensating for the accuracy of these aberrations. 这些像差的附加方面为,像差依赖于光的频率,该事实称为“色差”。 Additional aspects of these aberrations, the aberration depends on the frequency of light, the fact is called "color." 补偿这些频率相关的像差增加了对系统的挑战。 Compensate for these frequency-dependent aberrations increased challenges to the system. 补偿这些色差的难度随激光系统的激光束的带宽而增加。 The difficulty of compensating chromatic aberration over the bandwidth of the laser system of the laser beam increases. 应记得:束的光谱带宽与脉宽成反比。 It should be remembered: the spectral bandwidth of the pulse width is inversely proportional to the beam. 因此,飞秒脉冲的带宽通常比皮秒脉冲的带宽大一个量级或更多,这使得在飞秒激光系统中的更好的色度补偿(chromaticcompensation)成为必要。 Thus, the bandwidth of femtosecond pulses is typically an order of magnitude or more than the bandwidth of picosecond pulses, which makes it better chrominance compensation in femtosecond laser system (chromaticcompensation) becomes necessary.

[0059] 8.使用高重复频率的飞秒激光手术系统的手术过程要求在绝对意义上关于目标组织中的目标位置和在相对意义上关于之前的脉冲来定位每个脉冲时的高精度。 [0059] 8. The high repetition rate femtosecond laser surgical system during surgery requires a target position on the target tissue with high accuracy and in a relative sense when the previous pulses on each pulse is positioned in an absolute sense. 例如,要求激光系统在脉冲之间的时间(其可具有微秒量级)内以仅仅数微米(a few microns)来重新导引光束。 For example, the laser system requires the time between pulses (which may have the order of microseconds) to within only a few microns (a few microns) to redirect the beam. 由于两个后续脉冲之间的时间短且脉冲定位(placement)的精确度要求高,因此在现有低重复频率的晶状体手术系统中使用的手动瞄准(targeting)不再是合适的或可行的。 Because of the short time between two subsequent pulses and the pulse position requires high precision (Placement), so that the manual aiming system for use in conventional surgical lens low repetition frequencies (Targeting) is not suitable or possible.

[0060] 9.激光传输系统被配置为通过折射介质将飞秒激光脉冲传输到眼的晶状体的整个手术体积中且保持其时间、光谱以及空间完整性。 [0060] 9. The laser delivery system is configured by volume of the entire surgical refracting medium femtosecond laser pulses transmitted to the lens of the eye and held in its time, spectral and spatial integrity.

[0061] 10.为了确保仅仅在手术区域中的组织接收具有足够高的能量密度的激光束以产生手术效果(例如,组织切除),激光传输系统具有异乎寻常地高的数值孔径(NA)。 [0061] 10. In order to ensure that only tissue in a surgical field receive a sufficiently high energy density of the laser beam to produce the effect of surgery (e.g., tissue ablation), laser delivery system having an unusually high numerical aperture (NA). 该高NA导致小的斑点尺寸(spot size)并为手术过程提供必要的控制和精度。 The high NA results in a small spot size (spot size) and to provide the necessary control and accuracy of the surgical procedure. 数值孔径的典型范围可包括大于0. 3的NA值,这产生3微米或更小的斑点尺寸。 A typical range is greater than the numerical aperture NA may include a value of 0.3, which produces a smaller spot size, or 3 microns.

[0062] 11.给定用于晶状体手术的激光的光学路径的复杂性,激光传输系统通过包括高性能计算机管理的成像系统而实现高精度和控制,而角膜手术系统在没有这样的成像系统或具有低水平的成像系统的情况下就可以实现令人满意的控制。 [0062] 11 to the complexity, the optical path of the laser delivery system for a given laser lens surgery accuracy and control is achieved by the imaging system includes a high performance computer management, and corneal surgery system without such an imaging system, or a case where a low level of the imaging system can achieve satisfactory control. 特别地,该系统的手术和成像功能、以及常规观测光束通常都在不同的谱带中操作。 In particular, the operation and function of the imaging system, and the conventional observation beam usually operate in different spectral bands. 作为实例,手术激光器可在1. 0-1. 1微米的带中的波长处操作、观测光束处在0. 4-0. 7微米的可见带中操作,成像光束在0. 8-0. 9微米的带中操作。 As an example, the surgical laser can be wavelength band at 1. 0-1. 1 micron in operation, visible in the observation beam with 0. 4-0. 7 microns operation, the imaging beam 0. 8-0. 9 micron tape operation. 在公共或共享的光学部件中组合光束路径对激光手术系统的光学装置提出了苛刻的色度要求。 The optical apparatus of a laser surgical system made harsh combined beam chromaticity requirements of the optical paths in common or shared member.

[0063] 差异1-11通过几个实例例证了:⑴对晶状体(ii)利用飞秒脉冲进行的眼科激光手术引入了在质上与仅仅使用纳秒或皮秒激光脉冲的角膜手术和甚至晶状体手术不同的要求。 [0063] Differences 1-11 illustrates a few examples: ⑴ for femtosecond pulse to the lens (ii) ophthalmic laser surgery introduced in the quality and only nanosecond or picosecond laser pulses even lens and corneal surgery different surgical requirements.

[0064] 图1示例了激光传输系统1。 [0064] FIG. 1 illustrates a laser delivery system 1. 在对其进行详细描述之前,我们提及:一些实施例将成像或观测系统与图1的激光传输系统组合。 Before described in detail, we mention: Some embodiments of imaging or observing systems with a combination of laser delivery system of FIG. 在一些诸如LASIK处理的角膜手术过程中,眼跟踪器凭借成像和图像处理算法通过诸如对虹膜的中心的标识的视觉线索来典型地在眼表面上建立眼的位置参考。 In some surgical procedures such as LASIK corneal treatment, the eye-tracking device with imaging and image processing algorithm such as is typically used to build on the ocular surface of the eye to the visual cue identifying a center position of the reference iris. 然而,现有的眼跟踪器识别并分析二维空间中的特征,缺乏深度信息,这是因为对角膜(眼的最外层)进行外科手术。 However, conventional eye tracker feature recognition and analysis of two-dimensional space, the lack of depth information, this is because the cornea (the outermost layer of the eye) surgery. 通常,角膜甚至被弄平以确保该表面真正为二维的。 Normally, the cornea is flattened to ensure that even true for the two-dimensional surface.

[0065] 当将激光束聚焦在深入眼内部的晶状体中时,情况非常不同。 [0065] When the laser beam is focused deeply inside the eye lens, the situation is very different. 不仅在先前的测量与手术之间,而且在手术期间,晶状体都可以在适应性调节(accommodation)期间改变其位置、形状、厚度和直径。 Not only between the previous measurement and surgery but also during surgery, the lens can change its position, shape, thickness and diameter of accommodation (Accommodation) period. 通过机械装置将眼附接到手术设备还会以不明确的方式改变眼的形状。 By mechanical means to an ophthalmic surgical device is attached also to ambiguous way of changing the shape of the eye. 这样附接装置包括用吸环固定眼或者用平面或曲形透镜对眼消球差。 Such attachment means comprises a suction ring secured ophthalmic or planar or curved eye aplanatic lens. 此外,患者在手术期间的移动会引入附加的改变。 Further, patient movement during surgery may introduce additional changes. 这些改变会增加视觉线索在眼内的多达数微米的位移。 These changes will increase the displacement of up to a few microns visual cues in the eye. 因此,当对眼的晶状体或其他内部部分进行精确的激光手术时,机械地参考和固定诸如角膜或缘的前表面的眼表面是不令人满意的。 Thus, when the lens of the eye or other internal portions of precise laser surgery, mechanical ocular surface of the front surface and the fixed reference such as the edge of the cornea or is unsatisfactory.

[0066] 为了解决该问题,激光传输系统1可以与在RM Kurtz, F. Raksi和M. Karavitis的共同待审的申请序列号为12/205,844的美国专利申请中描述的成像系统组合,通过引用将该申请的全部内容并入到本文中。 [0066] In order to solve this problem, a laser delivery system can be combined with the imaging system described in U.S. co-pending patent application RM Kurtz, F. Raksi and M. Karavitis Application Serial No. 12 / 205,844, the incorporated herein by reference the entire contents of the application. 该成像系统被配置为对手术区域的一部分成像以基于眼的内部特征建立三维位置参考。 The imaging system is configured as part of the surgical imaging area based on the feature of the eye internal dimensional position reference. 这些图像可在手术之前产生并与手术过程并行地更新以考虑到个体的差异和改变。 These images may be generated and updated in parallel with the surgical procedure to account for individual differences and changes prior to surgery. 该图像可被用于以高精度和控制将激光束安全地导引到希望的位置。 This image can be used to accurately control the laser beam and safely guided into the desired position.

[0067] 在一些实施方式中,成像系统可以为光学相干断层成像(OCT)系统。 [0067] In some embodiments, the imaging system may coherence tomography (OCT) is an optical system. 该成像系统的成像束可以具有单独的成像光学路径或与手术光束部分地或完全地共享的光学路径。 The imaging beam imaging system may have a single imaging optical path of the light beam or the optical path partially or completely surgery shared. 具有部分地或完全地共享的光学路径的成像系统降低了成本并简化了对成像和手术系统的校准。 The imaging system has an optical path partially or fully sharing reduces the costs and simplifies the calibration of the imaging and surgical systems. 该成像系统还可以使用与激光传输系统1的激光器相同或不同的光源。 The imaging system may also use the same or different from the laser delivery system of a laser light source. 该成像系统还可以具有其自身的光束扫描子系统,或者可以利用激光传输系统1的扫描子系统。 The imaging system may also have its own beam scanning subsystem, the scanning subsystem or may use a laser delivery system. 在所引用的共同待审的申请中描述了这样的OCT系统的几种不同结构。 In the co-pending application cited describes several different configurations of such OCT systems.

[0068] 还可以与视觉观测用光学装置组合来实施激光传输系统1。 [0068] The optical device may also be implemented in a combination of a laser delivery system and visual observation. 观测用光学装置可帮助手术激光的操作者观测手术激光束的效果并响应于观测结果来控制光束。 Observation optics helps the operator to observe the surgical laser beam of surgical laser effect in response to the result of the observation and control of the beam.

[0069] 最后,在使用红外并由此不可见的手术激光束的一些实施例中,可以采用在可见频率下操作的附加的跟踪激光。 [0069] Finally, in some embodiments, and thus invisible infrared laser beam surgery, may be employed to track additional laser operating at visible frequencies. 可见跟踪激光可以被实施为跟踪红外手术激光的路径。 Visible tracking laser may be implemented to track the path of an infrared laser surgery. 跟踪激光可以在足够低的能量下操作以便不会导致对目标组织的任何破坏。 Tracking laser can operate at a low enough energy so as not to cause any damage to the target tissue. 观测用光学装置可以被配置为将从目标组织反射的跟踪激光导引到激光传输系统1的操作者。 Observation optics may be configured reflected from the tracking laser target tissue directed to the operator of the laser delivery system 1.

[0070] 在图1中,与成像系统和视觉观测用光学装置相关的光束可被耦合到激光传输系统1中(例如,通过分束器/分色镜600)。 [0070] In Figure 1, optical device associated with the imaging system and the visual inspection of the laser beam may be coupled to a transmission system (e.g., through the beam splitter / 600 dichroic mirror). 本申请将不再广泛讨论激光传输系统1与成像、观测系统以及跟踪系统的各种组合。 This application will not be discussed extensively in various combinations with the imaging laser delivery system 1, the observation system and the tracking system. 在并入的美国专利申请12/205,844中广泛讨论的大量的这样的组合都在本申请的总范围内。 The total range is incorporated in U.S. Patent Application No. 12 / 205,844 discussed extensively large number of such combinations in the present application.

[0071] 图1示例了激光传输系统1,其包括激光引擎100、预补偿器200、XY扫描器300、第一扩束器块400、可移动扩束器块500、分束器/分色镜600、物镜700以及患者接口800,其中,第一扩束器块400和可移动扩束器块500将合称为Z扫描器450。 [0071] FIG 1 1 illustrates a laser delivery system, which includes a laser engine 100, a pre-compensator 200, XY scanner 300, a first beam expander block 400, the movable block 500 the beam expander, beam splitter / separation mirror 600, the objective lens 700 and patient interface 800, wherein the first expander block 400 and the movable block 500 to the beam expander collectively referred Z scanner 450.

[0072] 在下面的一些实施方式中,使用这样的规定:Z轴为基本上沿激光束的光学路径的方向或沿光学元件的光轴的方向。 [0072] In some embodiments described below, the use of such a provision: to a direction substantially along a direction of the optical path of the laser beam or the optical element along the optical axis of the Z-axis. 横断Z方向的方向称为XY方向。 Direction transverse to the Z-direction is referred to as the XY direction. 在更宽泛的意义上使用术语“横断”以包括以下情况:在一些实施方式中,横断方向和Z方向可以不严格垂直于彼此。 The term "transverse" In a broader sense to include the following: In some embodiments, the transverse direction and the Z direction may not be strictly perpendicular to one another. 在一些实施方式中,可以关于径向坐标更好地描述横断方向。 In some embodiments, the transverse direction can be better described with respect to the radial coordinate. 由此,在所描述的实施方式中,术语“横断”、XY或径向方向表示类似的方向,全都近似(必要时精确地)垂直于Z方向。 Thus, in the embodiment described, the term "transverse", the XY direction or radial direction indicate similar, all similar (if necessary exactly) perpendicular to the Z direction.

[0073] 1.激光引擎100 [0073] 1. The laser engine 100

[0074] 激光引擎100可包括以预定激光参数发送激光脉冲的激光器。 [0074] The laser engine 100 may include a laser to transmit laser pulses of a predetermined laser parameters. 这些激光参数可包括在1飞秒到100皮秒范围内、或在10飞秒到10皮秒范围内、或在一些实施例中在100飞秒到1皮秒范围内的脉冲持续时间。 These parameters may be included in the laser 1 femtosecond to 100 picoseconds, or 10 in the femtosecond range to 10 picoseconds, or in some embodiments, the pulse duration of 100 femtoseconds to 1 picosecond range. 该激光脉冲可具有在0.1微焦到1000微焦范围内、在其他实施例中在1微焦到100微焦范围内的每脉冲能量。 The laser pulses can have a power in the range of 0.1 to 1000 micro-micro-focus range, in other embodiments, the energy per pulse to a micro-focus within the focal range of 100 micro 1. 脉冲可具有在IOkHz到IOOMHz范围内、在其他实施例中在IOOkHz到IMHz范围内的重复频率。 The pulses may have to IOOMHz IOkHz range, in other embodiments within the IOOkHz the repetition frequency range of IMHz. 其他实施例可具有落入这些范围限制的组合内的激光参数,例如,1-1000飞秒的脉冲持续时间的范围。 Other embodiments may have a combination of laser parameters fall within the limits of these ranges, for example, a pulse duration range of 1-1000 femtoseconds. 例如,在预操作过程期间或基于根据患者的诸如其年龄的特定数据的计算,在这些宽范围内选择用于特定过程的激光参数。 For example, during operation or during a pre-calculated based on specific data such as the age of the patient, the particular process selected for the wide range of the laser parameters.

[0075] 激光引擎100的实例可包括Nd:玻璃和Nd:Yag激光器以及各种其他激光器。 [0075] Examples of the laser engine 100 may include an Nd: glass and Nd: Yag laser, and a variety of other lasers. 激光引擎的操作波长可以在红外或可见范围。 Engine operating wavelength of the laser may be in the infrared or visible range. 在一些实施例中,操作波长可以在700nm-2微米范围内。 In some embodiments, the operating wavelength can be in the range 700nm-2 microns. 在一些情况下,例如,在基于%或而的红外激光器中,操作波长可以在1.0-1. 1微米范围内。 In some cases, e.g.,%, or based on the infrared laser, operating wavelength may be within 1.0-1. 1 micron.

[0076] 在一些实施方式中,激光脉冲的激光参数可以是可调整的和可变的。 [0076] In some embodiments, the laser parameters of the laser pulse may be adjustable and variable. 可以以短的切换时间调整激光参数,由此使手术激光传输系统1的操作者可以在复杂的手术期间改变激光参数。 Laser parameters may be adjusted in a short switching times, whereby the operator of the surgical laser delivery system 1 may change the laser parameters during complex procedures. 可以响应于通过激光传输系统1的感测或成像子系统的读数(reading)来启动这样的参数改变。 In response to the laser delivery system by sensing or imaging subsystem reading (reading) 1 to start such parameter changes.

[0077] 可以执行其他参数改变,作为在激光传输系统首先用于第一手术过程且随后用于不同的第二手术过程的多步过程的一部分。 [0077] Other parameters may be performed changes, as in the first laser delivery system for a surgical procedure and subsequently the first portion of the multi-step process for a second different surgical procedures. 实例包括首先在眼的晶状体的区域中进行一个或多个手术步骤(例如,囊切手术步骤),随后在眼的角膜区域中进行第二手术过程。 Examples include one or more first performed surgical procedure in the region of the lens of the eye (e.g., surgical capsulotomy step), followed by a second surgical procedure in the cornea of ​​the eye region. 可以以各种顺序进行这些过程。 These processes may be performed in various orders.

[0078] 可以将以每秒数万到数十万次击发(shot)或更高的脉冲重复频率操作并具有相对低的每脉冲能量的高重复频率脉冲激光用于手术应用以获得特定的有益效果。 High repetition rate pulsed laser [0078] will be tens to hundreds of thousands of times per second firing (SHOT) or higher pulse repetition rate operation and has a relatively low energy per pulse for surgical applications to achieve a particular advantageous effect. 这样的激光使用相对低的每脉冲能量以使由激光诱导的光离解导致的组织影响局域化。 Such a laser using relatively low energy per pulse to allow light from the laser-induced tissue caused by localized impact solutions. 在一些实施例中,例如,可以将离解的组织的范围限制到数微米或数十微米。 In some embodiments, for example, the range may be limited tissue dissociated to several micrometers or several tens micrometers. 该局域化的组织影响可改善激光手术的精度,并且在特定手术过程中是所希望的。 Effects of the localized tissue can improve the accuracy of laser surgery, and is desirable in a particular procedure. 在这样的手术的各种实施方式中,数百、数千或数百万个脉冲可被传输到连续的、近似连续的或通过受控的距离而分隔的斑点的序列。 In various embodiments of such surgery, hundreds, thousands or millions of pulses may be transmitted to a continuous, or nearly continuous sequence of spots are separated by a controlled distance. 这些实施方式可以实现特定的所希望的手术效果,例如,组织切开、分离或破碎。 Such embodiments may achieve a specific desired surgical effect, e.g., tissue incision, separation or breaking.

[0079] 可以通过各种方法选择脉冲参数和扫描图形。 [0079] and the pulse parameters can be selected scan pattern by various methods. 例如,可以基于晶状体的光学或结构特性的术前测量而选择脉冲参数和扫描图形。 For example, the pulse parameters can be selected based on preoperative scanning pattern and the optical or structural characteristics of the lens measured. 同样可基于晶状体的光学或结构特性的术前测量或基于与年龄相关的算法来选择激光能量和斑点分隔。 The same measurement can be selected or separated based on speckle laser energy and age-related algorithms preoperative or structural characteristics of the optical lens based.

[0080] 2.预补偿器200 [0080] 2. Pre-compensator 200

[0081] 图2示例了激光束的波前可以以几种不同方式并由于几个不同的原因而偏离理想特性。 [0081] FIG 2 illustrates a wave front of the laser beam in several different ways and may be due to several different reasons deviates from the ideal characteristic. 这些偏离的大组称为像差。 These large groups called offset aberration. 像差(和其他波前畸变)使实际像点从理想的近轴高斯像点移位。 Aberration (wavefront aberration and other) so that the actual image point is displaced from the ideal Gaussian paraxial image point. 图2示例了通过出瞳(exit pupil)ExP引出的光的波前。 Figure 2 illustrates a light through the exit pupil (exit pupil) ExP drawn wavefront. 未畸变的球面波前G从该瞳孔发射并会聚到波前G的曲面中心处的点PI。 Spherical wave front aberration is not converge to a point G and PI emission surface G at the center of the wavefront from the pupil. G也称为高斯参考球。 Also known as G Gaussian reference sphere. 有像差的波前W偏离G并会聚到不同的P2。 Aberrated wavefront W G deviates and converges to a different P2. 有像差的波前W的在点Ql处的像差AW可由相对于未畸变的参考球G的路径的光程(optical length)表征-AW = TiiQlQl,其中,Iii为在像空间中的介质的折射率,为点Ql与Q2之间的距离。 Aberrated wavefront aberration W AW Ql at the point in the optical path may be with respect to the undistorted reference sphere G path (optical length) characterized -AW = TiiQlQl, wherein, Iii image space as a medium refractive index, between points Ql and Q2 and the distance.

[0082] 通常,像差AW依赖于在出瞳处以及焦平面处的坐标。 [0082] Generally, the aberration depends on the AW and the pupil coordinates on the focal plane. 因此,该像差AW还可被认 Thus, the aberration may also be considered AW

为是相关函数:该函数表示其像会聚到从光轴上的Pl移动r'后的P2的点的集合位于表面 For the correlation function is: This function is expressed at the surface of which the image converges to the set of points Pl and P2 move r 'on the optical axis after

W上,该表面W在出瞳ExP处的径向距离r处从参考球G偏离了AW的量。 On W, W is the surface at a radial ExP pupil deviates from the reference sphere AW amount G at a distance r. 对于旋转对称的 Rotational symmetry

系统,AW可以关于r和r'中的二重幂级数展开而被写为: System, AW may be written on r and r 'in the power series expansion is double:

[0083] [0083]

Figure CN102596126AD00101

[0084] 其中r'为焦平面中的像点P2的径向坐标,r为在瞳孔处的点Ql的径向坐标。 [0084] wherein r 'is the radial coordinate of the focal plane in the image point P2, r is the radial coordinate of the point at the pupil Ql. 由球面角Θ表示角度相关性。 Spherical angle represented by the angle dependence Θ. n = 2p+m为正整数,且21+1^„为有像差的波前W的展开系数。用于参考,参见例如:Virendra N. Mahajan 的Optical Imaging and Aberrations,PartI. Ray Geometrical Optics,SPIE Optical Engineering Press。像差项的阶由i = 21+m+n n = 2p + m is a positive integer, and ^ 21 + 1 "as there are the expansion coefficients of the wavefront aberration W for reference, see for example:.. Virendra N. Mahajan of Optical Imaging and Aberrations, PartI Ray Geometrical Optics, SPIE Optical Engineering Press. order aberration terms by i = 21 + m + n

全α屮 Full α Che

έ 口田O έ Tian O ports

[0085] 直到i = 4的项与初级像差有关:球面像差、彗形像差、像散、场曲以及畸变。 [0085] Until i = 4 items related to the primary aberrations: spherical aberration, coma, astigmatism, curvature of field and distortion. 在该文献中记录了这些初级像差与21+„^ ■像差系数之间的实际关系。对于对点目标成像的系统,可以通过引入无量纲的变量P =r/a而抑制像差项对像半径r'的显式相关性,其中α为出瞳的横向线性程度(例如,其半径):[cose] These records primary aberrations + "^ ■ actual relationship between the aberration coefficient and 21 in this document for a target point on the imaging system, can be suppressed by introducing aberration term dimensionless variable P = r / a explicit relevance to image the radius r ', wherein α is the degree of a transverse linear pupil (e.g., radius): [cose]

Figure CN102596126AD00111

[0087] 其中 [0087] in which

[0088] [0088]

Figure CN102596126AD00112

[0089] 该表示法的益处为像差系数α Μ全都具有长度尺寸并表示在出瞳处的对应像差的最大值。 [0089] The benefit of this representation of the aberration coefficient α Μ represents all having a length dimension corresponding to the maximum and the aberration in the pupil. 在该表示法中,例如,球面像差由像差系数α4(ι表征。 In this notation, e.g., spherical aberration caused by the aberration coefficient (iota characterized α4.

[0090] 虽然在数学上关于像差系数α ■很好地限定了对像差的描述,但这不总是实验上最接近的方法。 [0090] Although mathematically aberration coefficient α ■ on well defined description of the aberration, but this is not always the closest experimental method. 因此,接下来描述三个备选的像差量度。 Thus, the following description of three alternative aberration measure.

[0091] 在实验可接近度禾口可测试度(experimental accessibility and testability)的相同静脉中,注意到光束在诸如眼的生物组织中的特性可能不是最容易测量的。 [0091] In the same intravenous experiment to test the accessibility of the opening degree He (experimental accessibility and testability), the characteristics noted in a biological tissue, such as the beam of the eye may not be the most easily measured. 有帮助地,研究表明:光线在眼中的特性类似于光线在可以定量测量并描述的具有生理适宜的盐浓度的盐水中的特性。 Helpfully, studies show that: the light rays similar characteristics and can be described quantitatively measured physiological saline suitable salt concentration in the characteristics of the eyes. 因此,在整个申请中,当描述激光传输系统的在眼中的特性时,应该理解,该描述是指在所描述的眼组织中的特性或者在对应的盐水中的特性。 Accordingly, throughout the application, when describing the characteristics of the laser transmission system in the eye, it should be understood that the description refers to characteristics in the eye tissue in or characteristic described in the corresponding saline.

[0092] 图3A-C示例了像差的第二量度。 [0092] Figures 3A-C illustrates a second measure aberrations. 被配置为将光束聚焦在深度A处的焦平面210处的激光传输系统1如果替代地被操作为将光束聚焦在位于深度B处的操作焦平面211处,则可造成球面像差。 Configured to focus the beam at the focal plane of the laser delivery system at a depth of 2101 A, if alternatively be operable to focus the beam at a focal plane 211 located at a depth B of the operation, can cause spherical aberration. 当激光束的焦点从焦平面210移动到焦平面211时,这样的情况例如可以发生在三维扫描过程期间。 Moving the focal point of the laser beam from the focal plane 210 to the focal plane 211, such a situation may occur, for example, during the process when the three-dimensional scanning.

[0093] 图3A示例了当激光传输系统1将光线聚焦到其最优焦平面210时的情况。 [0093] Figure 3A illustrates a transmission system 1 when the laser light is focused onto the case 210 of the optimal focal plane. 光线通过在具有极窄的径向长度(radial extent)或半径rf(A)的最优焦平面210处的斑点(“焦斑”)。 Light spot ( "focal spot") 210 having the optimum focal plane in a very narrow radial length (radial extent) or radius rf (A) through. 出于多种原因(例如,光束的折射),该径向长度rf (A)可以大于零。 For various reasons (e.g., the refracted beam), the radial length rf (A) may be greater than zero. 可以以多于一种的方式定义焦斑的半径。 Radius of the focal spot can be defined more than one way. rf(A)的通常定义为当屏幕的位置沿轴或Z方向变化时光斑在屏幕上的最小半径。 rf (A) generally define the minimum radius of the light spot on the screen when the change in the axial or Z direction when the position of the screen. 该Z深度通常称为“最小弥散点(point of least confusion) 关于图3C进一步细化该定义。 The Z-depth commonly referred to as "the minimum dispersion point (point of least confusion) with respect to Figure 3C further refinement of this definition.

[0094] 图;3B示例了当激光传输系统1将焦点从最优焦平面210偏离某个距离(例如,数毫米)而扫描到操作焦平面211时的情况。 [0094] FIG.; 3B illustrates a laser delivery system 1 when the focus shifted from the optimal focal plane 210 by some distance (e.g., several millimeters) in the case where the scanning operation of the focal plane 211. 很明显,光线通过具有大于rf (A)的半径rf(B)的焦斑,造成球面像差。 Obviously, greater than the light through the focal spot rf (A) a radius rf (B), resulting in spherical aberration. 已经发展了各种精度的数学公式以关联像差系数αΜ与焦斑半径rf0在一些情况下,焦斑半径&是用于量化像差的在实验上比α»像差系数更接近的量度。 Mathematical formulas have been developed in various accuracies aberration coefficient associated with focal spot radius rf0 αΜ In some cases, the focal spot radius & aberration is used to quantify experimentally closer than the [alpha] >> aberration coefficient measurements.

[0095] 图3C示例了对焦斑半径rf的更加定量的定义。 [0095] FIG. 3C illustrates the definition of the focal spot radius rf more quantitative. 图3C示例了在从光束的形心(centroid)测量的半径r的点中包含的能量。 FIG 3C illustrates the energy measurement point radius r from the beam centroid (Centroid) included. 焦斑半径rf的被广泛接受的定义为这样的半径,在该半径内,包含光束能量的50 %。 Widely accepted definition of the focal spot radius is such radius rf, within this radius, comprising 50% of the beam energy. 被标记为“A”的曲线示出了在衍射受限的光束(diffraction limited beam)中,当光束被聚焦到其最优焦平面210时(如图3A所示),可以在半径r = 0.8微米的斑点中包含或围入光束能量的50%,这提供了对rf(A)的有用定义。 Labeled as "A" in the graph shows the diffraction-limited beam (diffraction limited beam), when the beam is focused to its optimal focal plane 210 (FIG. 3A), the radius may be r = 0.8 spot microns or comprise around 50% of the beam's energy, which provides a useful definition of rf (a) of.

[0096] 如果激光束的能量被存积在良好且锐利限定的焦斑中,则基于激光诱导的光击穿 [0096] If the energy of the laser beam is accumulated in a sharp and well-defined focal spot, based on laser-induced optical breakdown

(LIOB)的手术过程可具有较高的精度和效率和较小的不希望的影响。 (LIOB in) during surgery may have a higher precision and efficiency and less undesirable effects. LIOB是具有强度(等 LIOB having strength (like

离子体)阈值的高度非线性处理:典型地,暴露到具有高于等离子体阈值的强度的光束的 Plasma) highly nonlinear processing threshold: Typically, the plasma exposed to the light beam having a higher intensity threshold

组织转变为等离子体,而暴露到具有低于等离子体阈值的强度的光束的组织不经历等离子 Organization into a plasma, and tissues are exposed to a light beam having intensity below the threshold plasma is not subjected to the plasma

体转变。 Body transformation. 因此,由像差导致的焦斑的加宽减小了光束的在焦平面处实现高于等离子体阈值的强度的部分,而增加了光束的其强度保持低于阈值的部分。 Thus, the focal spot aberrations caused by the widening portion is reduced to achieve a plasma above the threshold intensity of the light beam at the focal plane, which increases the intensity of the beam portion is kept below a threshold. 光束的该后一部分不会被目标组织有效吸收,并继续传播通过眼组织,在大多数情况下到达视网膜,这会潜在地造成不希望视网膜曝光。 The rear portion of the beam will not be effectively absorbed by the target tissue, and continue to spread through the eye tissue, the retina in most cases, this can potentially cause unwanted exposure of the retina.

[0097] 对于旨在修正角膜的手术过程,典型地沿Z方向(沿光轴)从其最优或额定深度 [0097] intended for the correction of corneal surgical procedure, typically the Z direction (optical axis direction) from the optimal or the desired depth

将焦平面扫描或移动仅仅约0. 6mm,这是因为角膜的厚度基本上为0. 6mm,在罕见的情况下 The focal plane scan or movement of only about 0. 6mm, because the thickness of the cornea is substantially 0. 6mm, in rare cases

会更厚但仍不会超过1mm。 It will be thicker but still no more than 1mm. 被标记为“B”的曲线示例了当光束的焦平面从其最优焦平面210 Is an example of the curve labeled "B" of the light beam when the focal plane 210 from the optimal focal plane

移动Imm(角膜手术过程的上限估计)而到达操作焦平面211时,在rf(B) = 1. 8微米的焦 Imm, movement (limit estimates corneal procedures) and 211 reaches the focal plane during operation, the rf (B) = 1. 8 microns power

斑半径内包含了光束能量的50%。 Containing the spot radius of the beam energy of 50%. 虽然该移动引入了像差,但其测量值是有限的。 While this movement introduces aberrations, but the measurement is limited. 相应地, Correspondingly,

某些现有的角膜激光系统根本不能补偿该像差,而其他系统也仅仅引入某种有限水平的补m Some prior corneal laser systems can not compensate for the aberration, while other systems only a limited capability to introduce some complement m

te ο te ο

[0098] 除了像差系数α»和焦斑半径rf之外,像差的第三量度是所谓的Mrehl比率S。 [0098] [alpha] in addition to the aberration coefficient »and the focal spot radius rf, the third measure is the so-called aberration Mrehl ratio S. 可以以从点光源发射的光束为基准,将系统的Mrehl比率S定义为:在系统的焦平面处的光束的峰值强度除以工作在衍射极限处的等效完美成像系统的理论最大峰值强度。 May be emitted from a point source light beam as a reference, the system Mrehl ratio S is defined as: dividing the work equivalent theoretical maximum peak intensity of a perfect imaging system at the limit of diffraction peak intensity of the beam at the focal plane of the system. 等价定义同样从文献可知且在Mrehl比率S的定义的范围内。 Also known from the literature equivalents define the scope and definition of the ratio S Mrehl.

[0099] 对应于该定义,S的值越小,像差越大。 [0099] corresponding to this definition, the smaller the value of S is, the larger the aberration. 没有像差的光束具有S = 1,并且通常当S> 0. 8时,将成像系统称为衍射受限。 The light beams having no aberration S = 1, and generally when S> 0.8 when the imaging system is called diffraction limited.

[0100] 像差的第四定义为均方根ω或波前误差RMS,其表示对在出瞳ExP处的整个波前求平均的图2的有像差的波前W从未畸变的波前G的偏离AW。 [0100] Fourth defined or ω aberration rms wavefront error RMS, which is expressed prior to averaging the entire pupil of the wave of FIG. 2 ExP wavefront aberration W never distorted wave AW G is offset from the front. 以光束的波长为单位表示ω,以使其为无量纲的量。 The wavelength of the light beam is expressed in units of ω, so that it is a dimensionless quantity.

[0101] 图4示例了对于相对小的像差,ω和S通过下列经验公式关联: [0101] Figure 4 illustrates the relative small aberrations, ω S and linked by the following empirical formula:

[0102] s ^ β~(2πω)2 (4) [0102] s ^ β ~ (2πω) 2 (4)

[0103] 而不考虑像差的类型,其中e为自然对数的底。 [0103] regardless of the type of aberration, where e is a natural logarithm.

[0104] 像差的所有上述四种量度对于诊断问题并最优化激光传输系统1的设计是有用的。 [0104] All of the above four kinds of aberration measurements for diagnosing problems and optimize design a laser delivery system is useful. 相应地,上位术语“像差量度”可以表示这些量度中的任一种或其等价物。 Accordingly, the generic term "aberration measure" can represent any one of these measures or the equivalents thereof. 显然地,通过像差系数0„、焦斑半径&和冊5波前误差ω的增加以及Mrehl比率S的减小,可以获知(capture)增加的像差。 Obviously, by "increasing the focal spot radius & volumes and forward error ω 5 and to reduce the wave aberration coefficient Mrehl ratio S 0, can be known (Capture) increased aberration.

[0105] 在特定的实例中通过示出球面像差系数α 40与对应的Mrehl比率S而验证这些像差量度之间的关系。 [0105] showing spherical aberration coefficient α 40 corresponding to the ratio S Mrehl verify the relationship between these aberration measure by specific examples. 在该实例中,手术激光系统将激光束聚焦在眼组织的表面下的不同深度处的眼组织中。 In this example, the surgical laser system focuses the laser beam in the eye tissue at different depths below the surface of the eye tissue. 激光束为衍射受限的,具有1微米的波长和NA = 0. 3的数值孔径,并以法向入射角聚焦在组织的表面处。 Is a diffraction limited laser beam having a wavelength of 1 micron and a numerical aperture NA = 0. 3, and the method to focus incident angle at the surface of the tissue. 该实例的数目类似于在系统的焦平面附近增加厚度与扫描深度相等的平面平行板并执行针对盐水的计算的效果。 Examples similar to the increased number of plane-parallel plate with a thickness equal to the depth of the scanning system near the focal plane and for implementation of the results of calculation of brine.

[0106] 组织的表面在光束中引入了由式(2)和(3)表征的像差。 [0106] surface of the tissue introduced by formula (2) and (3) characterization of aberrations in the beam. 由像差系数α 4Q表征的球面像差在表面处为零,由其非常结构导致的Mrehl比率为S = 1。 characterized by the aberration coefficient α 4Q spherical aberration is zero at the surface, Mrehl its very structure results in a ratio of S = 1.

[0107] LASIK手术典型地形成0. Imm深度的瓣(flap)。 [0107] LASIK surgery is typically formed of a depth of 0. Imm flap (flap). 在这些深度处,Strehl比率S被减小到约0. 996,仅仅是小的减小。 In these depths, the Strehl ratio S is reduced to about 0.996, is only a small decrease. 即使在0. 6mm深度处,即,近似在角膜的后表面处,S为约0. 85。 Even 0. 6mm in depth, i.e., approximately at the rear surface of the cornea, S is about 0.85. 虽然这是峰值强度的不可忽略的降低,但仍可以通过调整激光束强度来补偿。 Although this is not negligible reduce peak intensity, but it still can be compensated for by adjusting the laser beam intensity.

[0108] 另一方面,在5mm深度处,表征眼中的晶状体的前表面,Strehl比率减小到S =0. 054。 [0108] On the other hand, 5mm in depth, characterized by the front surface of the lens of the eye, the Strehl ratio is reduced to S = 0. 054. 在该深度和Mrehl比率下,光束强度被显著地减小到等离子体阈值之下,由此该光束不能产生LI0B。 In this Mrehl depth ratio, the beam intensity is significantly reduced plasma below the threshold value, whereby the light beam can not produce LI0B. 峰值强度的该急剧损失不能在不具有诸如视网膜的严重过曝光或过度增加的气泡尺寸的不希望的影响的情况下通过增加激光功率补偿。 Compensated for by increasing the laser power in the case of the sharp loss peak intensity can not affect the retina does not have, such as bubble size is excessively increased or serious overexposure of undesirable.

[0109] 表1示例了与上述Mrehl比率对应的球面像差α 4(1。显然,球面像差随组织深度而近似线性地增加,而Mrehl比率S以非线性方式变化: . [0109] Table 1 illustrates the ratio corresponding to the above-described spherical aberration Mrehl α 4 (1 Obviously, the spherical aberration with tissue depth increases approximately linearly, and Mrehl ratio S varies in a nonlinear manner:

[0110] [0110]

Figure CN102596126AD00131

[0111]表 1 [0111] TABLE 1

[0112] 在旨在进行晶状体松解(lens lysis)、囊切开术的手术过程或其他对晶状体的手术过程中,通常跨晶状体的整个深度(可多达5mm)扫描焦平面。 [0112] intended to be in the focal plane scan lens release (lens lysis), a capsulotomy procedure or other procedure on the lens, generally across the entire depth of the lens (up to 5mm). 此外,在整合的角膜-晶状体系统中,总扫描深度可从角膜延伸到晶状体的后表面,为约10mm。 Further, the integration of the cornea - lens systems, the total scanning depth may extend to the rear surface of the lens from the cornea, it is about 10mm. 图3C中被标示为“C”的曲线表明:在这些情况下,焦斑半径最大增长到1>(0 = 18微米,该值太大以致甚至没有出现在与&(幻和&©)相同的图中。在一些实施例中,最优焦平面可以被选择为位于深度扫描范围的中途,且可以以+/-5mm深度范围来扫描激光束。在该情况下,rf(C)可被减小到10微米。 FIG. 3C is designated as "C" curve shows that: in these cases, to increase the maximum radius of the focal spot 1> (0 = 18 m, which value does not appear too large even in the same & (and Magic & ©) in FIG. in some embodiments, the optimal focal plane may be selected to be located midway of the depth scanning range, and may be in the range of +/- 5mm depth scanning the laser beam. in this case, rf (C) may be is reduced to 10 microns.

[0113] 这些大rf(C)值转换为其他三种像差量度a4Q、S和ω中的大量像差。 [0113] These large rf (C) metric value conversion a4Q, S and ω in the other three large aberration aberrations. 显然,与仅仅扫描数十毫米的角膜手术过程相反,晶状体手术的这些大像差为设计激光传输系统1以补偿或管理其不希望的后果提出了巨大挑战。 Obviously, with corneal procedures only scan tens of millimeters as opposed to lens surgery for the design of these large aberrations laser delivery system 1 to compensate for or manage its undesirable consequences presented a huge challenge.

[0114] 为了解决与晶状体手术相关的大像差量度的问题,一些实施例包括预补偿器200以预补偿球面像差并改善像差量度。 [0114] In order to solve the problems associated with large aberration lens surgery measure, some embodiments include a pre-compensator 200 to pre-compensate the spherical aberration and improve the aberration measurement. 这些像差在目标组织中发展或在激光传输系统1内沿光学路径的一部分发展、或沿整个光学路径发展。 These aberrations development or development along a portion of the optical path within the laser delivery system 1, or along the entire development of the optical path in the target tissue.

[0115] 图5示例了(未按比例):由于像差量度rf(C)、a4Q、S以及ω依赖于焦斑的深度ζ和其与光轴的径向距离r,在下文中当描述像差量度呈现一值时,其是指像差量度在某些选定的参考点处呈现所述值。 [0115] FIG. 5 illustrates (not to scale): Since the aberration measure rf (C), a4Q, S and ω depends on the depth of the focal spot and the optical axis thereof and ζ radial distance r, as described hereinafter when when rendering a difference metric value, which means that aberration measure the value presented at a certain reference point selected. 相关的参考点的集合可以通过其柱坐标(z,r)描述:P1 =(0,0), P2 = (2,6)、P3= (5,0), P4 = (8,0)、P5= (8,3),全都以毫米为单位。 Related to the set reference point can be described by its cylindrical coordinate (z, r): P1 = (0,0), P2 = (2,6), P3 = (5,0), P4 = (8,0), P5 = (8,3), all in millimeters. 由于眼的主要结构呈现近似柱对称,这些P参考点可位于任何方位角炉··因此,这些P点将仅由其三个柱坐标中的两个表示,方位角炉被省略。 Since the primary structure of the eye exhibits approximately cylindrically symmetric, the reference point P may be located at any azimuth furnace ·· Thus, these points P only by the three column represents two coordinates, azimuth furnace is omitted. Pl为用于中心定位的角膜手术过程的典型点,P2典型地用于周边角膜手术过程,P3涉及晶状体的前区域,P4涉及晶状体的后部,P5为周边晶状体参考点。 Pl is a typical process for corneal surgery point centrally located, P2 typically used for peripheral corneal surgical procedure, P3 directed to the lens front region, P4 directed to the rear of the lens, P5 is the reference point of the lens periphery. 也可以采用其他参考点来表征激光传输系统的像差。 It can also be characterized aberration of the laser delivery system using other reference points. 在一些情况下,像差量度可以指对操作波前或被照射的区域平均化的像差量度。 In some cases, it can measure the aberration refers to a region of the average wavefront aberration measurement or the operation of irradiation.

[0116] 可以以几种不同的方式确定像差量度。 [0116] aberration measure can be determined in several different ways. 可以通过计算机辅助设计(CAD)方法通过光学路径的选定的部分(例如,目标组织的模型)或激光传输系统1的一部分来跟踪激光束的波前。 By computer-aided design (CAD) method selected portion of the optical path (e.g., the model of the target tissue), or a portion of a laser delivery system to track the wave front of the laser beam. 或者,可以在实际激光传输系统或这两个过程的组合中测量激光束的像差。 Alternatively, the aberration of the laser beam may be measured in the actual combination of the two laser delivery system or process.

[0117] 相应地,在一些实施方式中,通过沿光学路径的选定的部分(其可包括目标组织自身)来确定、计算或测量像差量度,然后确定对该确定/计算/测量的像差的预先选定的部分进行补偿所需要的预补偿的量,来选择通过预补偿器200引入的预补偿。 [0117] Accordingly, in some embodiments, the portion is determined by the optical path along a selected (which may include a target tissue itself), calculated or measured aberration measure, then OK / calculated / measured as the preselected portion difference is the amount of pre-compensation required to compensate, by pre-selecting the compensator 200 precompensation introduced.

[0118] 预补偿器200可以有效地修正或预补偿球面像差,这是因为球面像差主要影响轴光线。 [0118] Pre-compensator 200 may effectively correct the spherical aberration or precompensation, because the spherical aberration primarily affects the light axis. 诸如横向像差、像散和慧形像差的其他类型的像差影响非零角度光线以及场射线(包括从光轴偏离的光线)。 Such lateral aberration, astigmatism and coma aberrations affect other types of light and a non-zero angle field rays (including light from an optical axis deviation). 当由激光引擎100产生的激光束为基本上轴向光束时,光学路径中的各种块(最显著地XY扫描器300)将该轴向光束转变为非零角度光束(具有场射线)。 When the laser beam generated by the laser engine 100 is substantially axial beam, the various blocks (most notably the XY scanner 300) in the axial direction of the optical path of the light beam into a non-zero angle of the beam (having a field rays).

[0119] 因此,在其中预补偿器位于XY扫描器300之后的设计中,光束的场射线可以发展几种不同的像差。 [0119] Accordingly, the design in which the pre-compensator 300 is located after the XY scanner, the beam of radiation field can develop several different aberrations. 该不同像差的出现带来了极大的设计挑战,这是因为:(1)光束的最优化需要补偿几种像差,以及(ii)不同类型的像差不是彼此独立的。 The emergence of various aberrations brought great design challenge because: (1) the need to optimize the beam several aberration compensation, and (ii) different types of aberrations are not independent of each other. 由此,补偿一种类型的像差典型地会诱导不希望的其他类型的像差。 Thus, one type of aberration compensation is typically induces other types of undesirable aberrations.

[0120] 因此,在补偿器位于XY扫描器之后的结构中,典型地,仅以有限的程度补偿了球面像差,并以引入了其他不希望的像差为代价。 [0120] Thus, in the structure of the compensator positioned after the XY scanner, typically, only a limited degree of compensation for spherical aberration, and to introduce the additional expense of undesirable aberrations.

[0121] 相比之下,本激光传输系统1的实施例可具有在XY扫描器300之前的预补偿器200。 [0121] In contrast, embodiments of the laser delivery system 1 may have a pre-compensator 200 before the XY scanner 300. 该设计允许预补偿器200对球面像差进行预补偿而不会引入其他类型的不想要的像差。 This design allows the pre-compensator 200 pre-compensated spherical aberration without introducing undesired aberrations other types.

[0122] 一些实施方式甚至可以通过由预补偿器200引入轴上预补偿来预补偿离轴像差(由激光传输系统或目标组织的后续区段引起)而利用上述轴上像差和离轴像差的相互依赖性。 [0122] Some embodiments may even be pre-compensated by the off-axis aberrations introduced by the pre-pre-compensation axis compensator 200 (caused by the laser delivery system or a subsequent segment of the target tissue) and using the off-axis aberration and interdependence aberration.

[0123] 图6A-B示意性示例了预补偿器200的理想化操作。 [0123] Figures 6A-B schematically illustrates the idealized operation of the pre-compensator 200.

[0124] 图6A示例了不具有预补偿器的激光传输系统1。 Laser delivery system [0124] FIG. 6A illustrates that does not have a pre-compensator. 通常,光学路径区段301可引入某种水平的球面像差。 Typically, the optical path of the horizontal section 301 may introduce some spherical aberration. 这由进入光学路径区段301的未畸变的波前和离开光学路径区段301的具有像差的波前示出。 This wave entering the optical path away from the undistorted section 301 and a front section having an optical path shown wavefront aberration 301. 该区段可以为光学路径的任何区段,例如,目标组织的一部分或整个目标组织、或在激光传输系统1内的路径的一部分。 This section may be any section of the optical path, e.g., a portion or the entire target tissue of the target tissue, or a portion of the laser path within the transmission system.

[0125] 图6B示例了预补偿器200可以引入波前的补偿(或互补)畸变。 [0125] FIG 6B illustrates a pre-compensator 200 may compensate for the introduction (or complementary to) the wavefront aberration. 该经预补偿的波前然后进入光学路径区段301,使其输出具有减小的畸变或甚至不具有畸变的波前。 The precompensated wave front section then enters the optical path 301, so that the output with reduced distortion or even having no wavefront aberration.

[0126] 某些现有系统根本没有专用补偿器。 [0126] Some prior systems do not have dedicated compensator. 其他系统仅仅通过透镜组中的透镜以分布方式补偿球面像差,该透镜组还具有其他功能并位于XY扫描器之后。 Other systems simply by the lens in the lens group in a distributed manner to compensate the spherical aberration, the lens group also has other functions and located after the XY scanner. 在这些现有系统中,作为在不同功能之间进行折衷的结果来选择透镜的参数,这导致对其性能的限制。 In these prior systems, as a result of a compromise between different functional parameters of the selected lens, which result in a restriction on its properties.

[0127] 相比之下,激光传输系统1的实施例可以具有设置在XY扫描器300之前的专用预补偿器200。 [0127] In contrast, embodiments of the laser delivery system 1 may be provided with a dedicated pre-compensator 300 before the XY scanner 200. 在一些实施例中,预补偿器200为第一光学单元或透镜组,其从激光引擎100接收激光束。 In some embodiments, the pre-compensator 200 is a first optical element or a lens group that receives the laser beam from the laser engine 100. 由于预补偿器200的位置,激光束到达预补偿器200而没有发展出非零角度光线或场射线(可由XY扫描器300造成),因此这些实施例可实现高水平的预补偿。 Since the position of the pre-compensator 200, the laser beam reaches the pre-compensator 200 did not develop non-zero angle or field of light rays (caused by the XY scanner 300), these embodiments may achieve a high level of pre-compensation. 该预补偿也是高效的,这是因为预补偿是预补偿器200的主要功能,因此与利用具有附加功能的透镜进行补偿的现有系统相反,可以将设计折衷保持为非常有限。 The pre-compensation are also efficient, because the primary function of pre-compensation is pre-compensator 200, and thus the use of a lens having the additional function will be compensation of conventional contrast system, design compromises can be kept very limited.

[0128] 出于这些原因,在这些实施方式中,可以高程度地校正球面像差,而不会影响或引入其他类型的像差。 [0128] For these reasons, in these embodiments, the spherical aberration can be corrected to a high degree, without affecting or introducing other types of aberrations. [0129] 已知这样的像差理论:复合透镜系统的球面像差近似为各组件的球面像差的总和。 [0129] Such known aberration theory: spherical aberration of the composite system is approximately the sum of lens spherical aberration of the components. 因此,在激光传输系统1的一些实施例中,可通过设计预补偿器200以引入等量但具有相反符号的像差来预补偿不希望的量的像差。 Thus, in some embodiments, the laser delivery system 1, may be introduced into 200 equal but having a sign opposite to the aberration is not pre-compensated desired amount of aberration by designing a pre-compensator.

[0130] 作为实例,当焦斑在眼组织内的深度从其最优焦平面移动5mm时,球面像差α4(ι(根据表1)为-2.0微米。相应地,在一些实施例中,预补偿器200可引入α4(ι = +2.0微米的像差量度。在一级近似中,该预补偿基本上消除了由焦斑的5mm移动导致的球面像差并相应地将Mrehl比率从S = 0.0¾增加回到S= 1。(该简单实例忽略了其他像差源。) [0130] As an example, when the focal spot in the eye tissue depth from the optimum focal plane moves 5mm, the spherical aberration α4 (ι (Table 1) -2.0 microns. Accordingly, in some embodiments, pre-compensator 200 may be incorporated α4 (ι = aberration measure +2.0 microns. in a first approximation, the precompensation substantially eliminate spherical aberration by the movement of the focal spot 5mm lead and correspondingly from the ratio S Mrehl = 0.0¾ increased back to S = 1. (example simply ignores the other aberrations sources.)

[0131] 将通过比较“非预补偿的”激光传输系统1(即,已经去除了预补偿器200的激光传输系统)与“经预补偿的”激光传输系统1(即,未去除预补偿器200的系统)表征下面的一些实施方式。 [0131] A comparison "non-pre-compensated" laser delivery system 1 (i.e., has been removed Precompensator laser delivery system 200) and the "pre-compensated" laser delivery system 1 (i.e., not removed precompensator system 200) is characterized by some of the following embodiments.

[0132] 在一些实施方式中,安装预补偿器200可以将Mrehl比率从非预补偿的激光传输系统1的值S < S(precomp)增加到经预补偿的激光传输系统1的值S > S(precomp)。 [0132] In some embodiments, the compensator 200 may pre-install the non Mrehl ratio from the laser delivery system precompensated value of S 1 <S (precomp) increased precompensated laser delivery system value S 1 is> S (precomp). 在一些实施方式中,S(precomp)可以为例如0. 6,0. 7,0. 8或0. 9。 In some embodiments, S (precomp) may, for example, 0. 6,0. 7,0. 8 or 0.9.

[0133] 如上所述,这里和下面的该Mrehl比率S可以指在上述五个参考点P1-P5处的Strehl比率S(Pl),. . .S(P5)中的任一个,或者指在某些其他预定参考点处的Mrehl比率S,或者指对这五个参考点的^rehl比率S的平均值,或者指对操作波前的平均值。 [0133] As described above, here and below may refer to the ratio S Mrehl any one of the Strehl ratio S five reference points P1-P5 at (Pl) ,.. .S (P5) one or means Mrehl ratio S at some other predetermined reference point, or an average value of these five reference points S ^ rehl ratio, or an average value of the operation of the wavefront.

[0134] 同样,Strehl比率可以适用于整个激光传输系统1,该系统1从激光引擎100接收激光束,终结于物镜700并在眼目标组织中形成焦斑。 [0134] Similarly, the Strehl ratio may be applied to the entire laser delivery system 1, the system 1 receiving the laser beam from the laser engine 100, terminating at the objective lens 700 and the focal spot formed on the target ocular tissue. 在某些其他情况下,该术语可适用于其他目标(包括空气)。 In certain other cases, the term can be applied to other targets (including air). 在一些实施方式中,该术语可以适用于激光传输系统1的子系统。 In some embodiments, the term can be applied to a subsystem of the laser delivery system.

[0135] 在一些实施方式中,对于具有比具有皮秒或更长的持续时间的激光脉冲的变换受限的带宽大出至少一个量级的相关带宽的脉冲,将预补偿器200添加到非预补偿的激光传输系统1可将Mrehl比率从低于S = S(precomp)的非预补偿的值增加到高于S =S(precomp)的经预补偿的值。 [0135] In some embodiments, for at least one order of magnitude with a large coherence bandwidth of the pulse transform limited bandwidth than a laser having a picosecond or longer pulse durations, the pre-compensator 200 added to the non laser delivery system 1 may be pre-compensated Mrehl ratio from the value to the non-precompensated S (precomp) above is less than S = S = precompensated value S (precomp) a. 如上所述,S(precomp)可以为例如0. 6,0. 7,0. 8或0. 9。 As described above, S (precomp) may, for example, 0. 6,0. 7,0. 8 or 0.9.

[0136] 在一些实施方式中,向激光传输系统1添加预补偿器200可以在0. 4微米到1. 1微米的波长范围内将Mrehl比率从低于S = S (precomp)的非预补偿的值增加到高于S =S(precomp)的经预补偿的值。 [0136] In some embodiments, the addition of the pre compensator 1200 to the laser delivery system may be in the wavelength range 0.4 microns to 1.1 microns below the Mrehl ratio from the S = S (precomp) non precompensation increases above the value of S = precompensated value S (precomp) a. 如上所述,S(precomp)可以为例如0. 6,0. 7,0. 8或0. 9。 As described above, S (precomp) may, for example, 0. 6,0. 7,0. 8 or 0.9.

[0137] 在一些实施方式中,预补偿器200的添加可以将系统数值孔径从对应于不具有预补偿器200的激光传输系统1的低于NA = NA (precomp)的非预补偿的值增加到具有预补偿器200时的高于NA = NA(precomp)的经预补偿的值。 [0137] In some embodiments, the added pre-compensation system 200 may be increased from the numerical aperture NA of the non-pre-compensation corresponding to having no Precompensator laser delivery system 200 is less than 1 = NA (precomp) of when precompensator having NA = value higher than 200 precompensated NA (precomp) a. 在一些实施方式中,NA(precomp)的值可以为例如0. 2,0. 25,0. 3或0. 35。 In some embodiments, the value of NA (precomp) may be, for example, 0. 2,0. 25,0. 3 or 0.35.

[0138] 在一些实施方式中,向不具有预补偿器的激光传输系统1添加预补偿器200可以将目标组织中的焦斑半径rf从大于rf (precomp)的非预补偿的值减小到对应于具有预补偿器200的激光传输系统1的低于rf (precomp)的经预补偿的值。 [0138] In some embodiments, the compensator is added to the pre-laser delivery system does not have a pre-compensator 1200 can be focal spot radius rf target tissue is decreased from a value greater than the non-pre-compensated rf (precomp) to corresponds to a value below the pre-compensator rf (precomp) is precompensated 200 laser delivery system 1. 在一些实施方式中,rf (precomp)可以为2、3或4微米。 In some embodiments, rf (precomp) can be 2, 3 or 4 microns.

[0139] 在一些实施方式中,安装预补偿器20可以将RMS波前误差从非预补偿的激光传输系统1的值ω > ω (precomp)增加到预补偿的激光传输系统1的值ω < ω (precomp)。 [0139] In some embodiments, the mounting device 20 may be pre-compensated RMS wavefront error from a value of [omega] non-precompensated laser delivery system 1> ω (precomp) increased laser delivery system precompensation value of [omega] 1 < ω (precomp). 在一些实施方式中,例如,ω (precomp)可以为0. 06、0. 07、0. 08或0· 09,全都以激光束的波长为单位。 In some embodiments, e.g., ω (precomp) may be 0. 06,0. 07,0. 08 or 0 · 09, the wavelength of the laser beam to all units. [0140] 在一些实施方式中,将安装预补偿器20可以将球面像差系数从非预补偿的激光传输系统1的值α4(1 > a40(precomp)增加到预补偿的激光传输系统1的值α 4(1< α 40(precomp)0在一些实施方式中,例如,α 4(1 (precomp)可以为2、3或4微米。 [0140] In some embodiments, the mounting device 20 may be pre-compensated values ​​from the non-precompensated laser delivery system 1 of the spherical aberration coefficient α4 (1> laser delivery system a40 (precomp) is added to a precompensation value α 4 (1 <α 40 (precomp) 0 in some embodiments, for example, α 4 (1 (precomp) can be 2, 3 or 4 microns.

[0141] 在一些实施方式中,将预补偿器200安装到非预补偿的激光传输系统1中可以使以下像差量度中的至少一种从非预补偿的值至少减小预补偿百分比P(Precomp) =RMS波前误差ω、球面像差量度Ci4tl以及焦斑半径rf,或者HMrehl比率S至少增加预补偿百分比P (precomp) „在一些实施例中,例如,P (precomp)可以为10%或20%或30%或40%。 [0141] In some embodiments, the pre-compensator 200 is mounted to a non-pre-compensation of the laser delivery system 1 can measure the aberration of at least one non-pre-compensation is reduced from the value of at least a percentage of pre-compensated P ( precomp) = RMS wavefront error [omega], a measure of the spherical aberration and the focal spot radius Ci4tl rf, or HMrehl ratio S increases by at least a pre-compensating percentage P (precomp) "in some embodiments, for example, P (precomp) can be 10% or 20% or 30% or 40%.

[0142] 如上所述,这些像差量度中的任一种可属于参考点Pl,...P5中的任一个或属于某些其他预定参考点,或属于参考点处的值的平均,或可以为对波前的平均。 [0142] As described above, any of these aberrations metrics may belong to a reference point Pl is, ... P5 to any one or some other predetermined reference point belongs, or belong to the average value at the reference point, or can the average wavefront right.

[0143] 在一些实施方式中,预补偿器200还可以补偿非球面像差,例如,一级或更高级像差。 [0143] In some embodiments, the pre-compensator 200 may compensate for the non-spherical aberrations also, e.g., one or more high-order aberrations. 在一些情况下,预补偿器200也可以进行对离轴光线的预补偿。 In some cases, pre-compensator 200 may pre-compensate for off-axis light.

[0144] 在一些实施方式中,预补偿器200补偿其他类型的像差,同时不会使RMS波前误差的增加量多于0. 075,或保持高于S (precomp)的Mrehl比率(具有例如0. 8的值)。 [0144] In some embodiments, the compensator 200 precompensator other types of aberrations, while not increasing the amount that the RMS wave front error of more than 0.075, or holding Mrehl ratio is higher than S (precomp) (having value of 0.8, for example).

[0145] 在一些实施方式中,预补偿器200可以将从预补偿器200引出的光束的半径rb增力口到大于rb = rb (precomp)的值,其中rb (precomp)可以为例如5mm或8mm。 [0145] In some embodiments, the pre-compensator 200 may pre-radius of the beam extraction from the compensator 200 RB booster port to a value greater than rb = rb (precomp), where rb (precomp) may, for example, 5mm or 8mm.

[0146] 通过在预补偿器200中包括一个或多个可移动透镜(movable lens),焦深,以补偿焦平面的曲率。 [0146] By including one or more movable lens (movable lens), the depth of focus in the pre-compensator 200 to compensate for the curvature of the focal plane. 例如,对于径向切口或具有光栅扫描图形的平面切口,径向或XY坐标的改变可以非常快。 For example, with radial cuts or cut-plane raster scan pattern, or changing the radial XY coordinates can be very fast. 在这些过程中,快速的Z扫描速度可有助于形成希望的直切口。 In these processes, a fast scan speed Z may help form a desired straight incision.

[0147] 最终,高Z扫描速度同样可以对于快速地进行诸如角膜过程的一些手术过程是有用的。 [0147] Finally, the high Z scanning speed may also be useful for some surgical procedures, such as corneal quickly perform the process.

[0148] 在一些实施方式中,可移动透镜预补偿器200可以以焦斑的最大横向扫描速度的至少5%的轴向速度改变激光传输系统的焦斑的深度。 [0148] In some embodiments, the movable lens 200 may Precompensator maximum transverse scan speed of the focal spot of at least 5% of the axial velocity varying the depth of the focal spot of the laser delivery system. 在一些实施方式中,轴向速度为焦斑的最大横向扫描速度的至少10%。 In some embodiments, the axial velocity of the focal spot at least 10% of the maximum speed of horizontal scanning. 在其他实施例中,轴向速度为焦斑的最大横向扫描速度的至少20%。 In other embodiments, the axial velocity of at least 20% of the maximum transverse focal spot scanning speed.

[0149] 在一些实施方式中,可移动透镜预补偿器200可以在Z扫描时间内将焦斑的Z坐标改变0. 5-1毫米。 [0149] In certain embodiments, the Z coordinate of the movable lens can be pre-compensator 200 in the Z-scan time to change the focal spot of 0. 5-1 mm.

[0150] 在一些实施方式中,该Z扫描时间可以在10-100纳秒、100纳秒-1毫秒、1毫秒-10毫秒以及10毫秒-100毫秒的范围内。 [0150] In some embodiments, the Z-scan time may be from 10 to 100 nanoseconds, 100 nanoseconds ms -1, in the range of 1 millisecond and 10 milliseconds, -100 milliseconds, -10 milliseconds.

[0151] 在一些实施方式中,透镜组的可移动透镜在Z移动范围内可移动以将第一像差量度减小至少可移动百分比P(Hiovable)。 [0151] In some embodiments, the movable lens group movable lens to reduce aberration measure a first movable at least a percentage P (Hiovable) in the Z moving range. 这里,第一像差量度可以为球面像差系数a4Q、RMS波前误差ω以及焦斑半径rf,且可移动百分比P(movable)可以为10%、20%、30%和40%。 Here, the first aberration coefficient of the spherical aberration measurements may a4Q, RMS wavefront error and a focal spot radius ω rf, and movable percentage P (movable) can be 10%, 20%, 30% and 40%.

[0152] 在一些实施方式中,透镜组的可移动透镜可在Z移动范围内移动,以将Mrehl比率S至少增加可移动百分比P(movable),该可移动百分比P(movable)可以为10%,20%,30% 和40%。 [0152], the movable lens of the lens group movable in the Z moving range, in some embodiments, to Mrehl ratio S increases at least movable percentage P (movable), the movable percentage P (movable) can be 10% , 20%, 30% and 40%.

[0153] 在一些实施方式中,可移动透镜预补偿器200能够通过移动可移动透镜而基本上独立地改变激光传输系统1的数值孔径NA、焦斑的Z深度、像差测量中任一者以及光束直径。 [0153] In some embodiments, the movable lens 200 can be pre-compensator substantially independent laser delivery system to change the numerical aperture NA 1 by moving the movable lens, Z depth, aberration measuring any one of the focal spot and a beam diameter. 换言之,移动可移动透镜能够改变激光传输系统1的这四个特性中的任何一个,而不会改变其他两个特性。 In other words, moving the movable lens can change any of the four characteristics of the laser transmission system 1, without changing the other two properties. 这些实施例为实施例的操作者提供了相当大的控制。 These embodiments provide considerable operator controlled embodiments.

[0154] 预补偿器200的一些功能有时称为束调节或扩束。 [0154] Some functions of the pre-compensator 200 is sometimes referred to as the beam adjustment or a beam expander. 因此,在一些现有系统中,具有相似功能的块称为光束调节器或扩束器。 Thus, in some prior systems, referred to as a block having similar functions beam conditioner or a beam expander.

[0155] 在一些实施例中,预补偿器200包括仅一个透镜来实现上述功能。 [0155] In some embodiments, the pre-compensator 200 includes only one lens to achieve the above functions.

[0156] 在一些实施例中,预补偿器200包括两个到五个透镜以实现上述功能。 [0156] In some embodiments, the pre-compensator 200 comprises two to five lenses to achieve the above-described functions.

[0157] 图8A示例了预补偿器200的三透镜实施例,包括透镜221、222和223。 [0157] Figure 8A illustrates a pre-compensation lens 200 according to a third embodiment, includes lenses 221, 222 and 223.

[0158] 图8B示例了可移动透镜预补偿器200,的三透镜实施例,包括透镜221,、可移动透镜222'和透镜223'。 [0158] Figure 8B illustrates the movable lens pre-compensator 200, the three-lens embodiment, includes a lens 221,, the movable lens 222 'and the lens 223'.

[0159] 图8C示例了预补偿器200”的四透镜实施例,包括透镜231-234。 [0159] FIG 8C illustrates a pre-compensator 200, "the four-lens embodiment, includes a lens 231-234.

[0160] 图8D示例了可移动透镜预补偿器200”'的四透镜实施例,包括透镜231'、可移动透镜232,、透镜233,和透镜234,。 [0160] FIG. 8D illustrates the movable lens Precompensator 200 ' "of four-lens embodiment, includes a lens 231', the movable lens 232 ,, lens 233 and the lens 234 ,.

[0161] 表2-4示例了图8A-B的预补偿器200和200'的各种三透镜实施方式。 [0161] Table 2-4 illustrates the pre-compensator 200 of FIG. 8A-B and 200 'of the various three-lens embodiments. 可以使用薄透镜实施预补偿器200的实施例。 Embodiment may be used a thin lens Precompensator Example 200. 因此,可以关于各透镜的折光力及其与下一透镜相距的距离来描述这些预补偿器。 Accordingly, regarding the refractive power of each lens away from the lens and its distance to the next will be described the pre-compensator.

[0162] 表2示例了在图8A中示出的预补偿器200的三固定透镜实施例。 Three fixed lens [0162] In the example of Table 2 shown in FIG. 8A precompensation Example 200. 在表2中,第1列示出了透镜号,第2列示出了以屈光度Di (i = 1,2,3)量度的折光力,第3列示出了透镜i与i+Ι之间的距离di(i = 1,2)。 In Table 2, the first column shows the lens No. 1, the second column shows the order (i = 1,2,3) measure the refractive power of Di diopters, the third column shows the lens of i and i + Ι distance di between (i = 1,2).

[0163] [0163]

Figure CN102596126AD00171

[0164] 用于图8A的表2 [0164] FIG. 8A for Table 2

[0165] 表3示例了如图8B所示的具有两个可移动透镜222'和223'的预补偿器200'的可能的实施方式,示出了在第3和第4列中的两种配置A和B中的透镜间隔diA和diB。 [0165] As shown in Table 3 illustrates having two movable lens 222 'and 223' shown precompensation 8B possible embodiment 200 ', shown in the first two columns 3 and 4 in configuration a and B and the lens intervals diA diB. 透镜间隔di可以在diA与diB之间连续变化。 Di lens intervals can be varied continuously between diA and diB.

[0166] [0166]

Figure CN102596126AD00172

[0167] 用于图8B的表3 [0167] FIG. 3 for Table 8B

[0168] 表4示例了,在各种实施方式中,依赖于诸如不同光束尺寸和可用空间的大量的设计考虑,上述参数Di和di可呈现宽范围的值。 [0168] Table 4 illustrates, in various embodiments, depending on a large number of different beam size and design considerations, such as available space, the above parameters may be presented Di and di wide range of values. 可通过以比例因子α缩放折光力以及以对应的比例因子l/α缩放距离,来将这些实施方式中的一些参数联系到表2-3的实施例。 [Alpha] can be scaled by scaling factor refractive power and a corresponding scaling factor l / α scale distance to these embodiments, some parameters linked to Table 2-3 embodiment. 此外,可以通过容差因子tl到t3附加地修改折光力,以允许容差和设计实施方式中的差异。 Further, it is possible to additionally modify the refractive t3 force tolerance factor tl, to allow for tolerances and differences in the design of the embodiment. 在表4中总结了这些关系。 These relationships are summarized in Table 4. [0169] [0169]

Figure CN102596126AD00181

[0170] 用于图8A-B的表4 [0170] Figures 8A-B for Table 4

[0171] 在一些实施方式中,比例因子α可以在0. 3到3的范围内,且容差因子tl、t2和t3可以在0.8到1.2的范围内。 [0171] In some embodiments, the scaling factor may be α, and the tolerance factor tl t2 and t3 may be within the range of 0.3 to 3, in the range of 0.8 to 1.2.

[0172] 相似地,表5示例了预补偿器200”的各种四透镜实施方式,其中透镜231、232、233和234被固定,如图8C所示。 [0172] Similarly, Table 5 illustrates the pre-compensator 200 "four-lens embodiments of the various ways in which lenses 232, 233 and 234 are fixed, as shown in FIG. 8C.

[0173] [0173]

Figure CN102596126AD00182

[0174] 用于图8C的表5 [0174] FIG. 8C for Table 5

[0175] 表6示例了图8D的预补偿器200”'的四透镜实施方式,其中具有一个可移动透镜232,。 [0175] Table 6 illustrates the compensator of FIG. 8D pre-200 '' of the four-lens embodiment, having a movable lens 232 ,.

[0176] [0176]

Figure CN102596126AD00183

[0177] 用于图8D的表6 [0177] Table 6 for FIG. 8D

[0178] 与在三透镜实施方式中相同,四透镜预补偿器200”和200”'的参数可以呈现宽范围的值。 Parameter [0178] In the third lens of the same embodiment, the four pre-compensator lens 200 'and 200' 'may exhibit a wide range of values. 与表4相似,可通过分别比例因子α、1/α、tl、t2、t3以及t4将这些实施方式中的一些参数彼此关联。 Similar to Table 4, respectively, may be [alpha] by a scaling factor, 1 / α, tl, t2, t3 and t4 of these embodiments, some of the parameters associated with each other. 比例因子α可以在0.2到5的范围内,且容差因子tl,...t4可以在0.7到1.3的范围内。 Scaling factor α may be in the range of 0.2 to 5, and the tolerance factor TL, ... it may be in the range of 0.7 to 1.3 at t4. [0179] 在其他实施例中,采用其他组合和范围。 [0179] In other embodiments, using other combinations and ranges. 在这些范围内,由于可以最优化系统以用于导致不同选择的许多不同功能,因此激光传输系统1的许多实施例是可能的。 Within these ranges, since the system can be optimized for many different functions in different leads selected, so many laser delivery system of Example 1 are possible. 设计折衷和最优化限制可导致大量的实施方式,每个实施方式都具有其自身的优点。 Optimization design tradeoffs and limitations can lead to a lot of embodiments, each of the embodiments has its own advantages. 通过在上述表2-6中的参数的范围示例了大量的可能性。 By the scope of the parameters in the above Table 2-6 illustrates a number of possibilities.

[0180] 在预补偿器200'的具有一个可移动透镜的实施方式中,该可移动透镜可以基本上独立地改变激光系统特性中的一个。 [0180] In the pre-compensator 200 'having a movable lens in the embodiments described above, the movable lens may be varied substantially independently of the characteristics of a laser system. 这些参数包括Z焦深、数值孔径NA、像差量度中的任一个和出射光束的直径。 These parameters include any one of a Z and a depth of focus, numerical aperture NA, the aberration measurement of the diameter of the light beam. 例如,这些实施方式允许操作者改变例如激光传输系统1的数值孔径而不改变例如Z焦深。 For example, these embodiments allow the operator to change the numerical aperture of the laser delivery system, for example, Z 1, for example, without changing the focal depth.

[0181] 在一些实施方式中,预补偿器200具有两个独立地移动的元件。 [0181] In some embodiments, the pre-compensator 200 has two independently movable elements. 这样的实施方式允许操作者独立地控制激光束的两个特性(例如,光束直径和数值孔径NA),同时使像差保持固定。 Such embodiment allows the operator to control two independent characteristics (e.g., beam diameter and the numerical aperture NA) of the laser beam, while the aberration remains fixed.

[0182] 图9示例了激光传输系统1'的实施例,其中突出显示了各种光学块的Z扫描功能。 [0182] FIG 9 illustrates a laser delivery system according to Example 1 ', wherein Z highlighted various optical scanning function block. 特别地,激光引擎100产生激光束,第一Z扫描器250接收该激光束。 In particular, the laser engine 100 generates a laser beam, a first Z scanner 250 receives the laser beam. 第一Z扫描器250从激光引擎100接收激光束并沿激光传输系统1'的光轴在第一Z间隔(interval)内扫描激光传输系统1'的焦点。 First Z scanner 250 receives the laser beam from the laser engine 100 and 'scanning laser delivery system optical axis Z within a first interval (interval The)' focal point along the laser delivery system 1. XY扫描器300接收由第一Z扫描器250输出的光束,XY扫描器300沿基本上横断激光系统的光轴的方向扫描激光束。 XY scanner 300 receives the light beam output by the first scanner Z 250, the XY scanner 300 along a direction substantially transverse to the optical axis of the laser scanning system of a laser beam. 然后,第二Z扫描器450接收输出的XY扫描激光束,第二Z扫描器250沿激光系统的光轴在第二Z间隔内扫描激光系统的焦点。 Then, XY scanning a second laser beam scanner 450 receives the output of the Z, Z axis of the second laser scanner system 250 along a focus of the laser scanning system in the second Z interval.

[0183] 在一些实施例中,第一Z扫描器250被配置为使第一Z间隔适合于角膜手术过程,且第二Z扫描器450被配置为使第二Z间隔适合于眼前段(anterior segment)手术过程。 [0183] In some embodiments, the first Z scanner 250 is configured such that a first gap is adapted to Z corneal procedures, and the second Z scanner 450 is configured such that the second spacer is adapted to the anterior segment Z (anterior segment) surgical procedure.

[0184] 在一些实施例中,第一Z间隔在0.05-lmm的范围内,且第二Z间隔在l_5mm的范围内。 [0184] In some embodiments, a first spacing Z in the range of 0.05-lmm, and a second interval in the Z l_5mm range.

[0185] 在一些实施例中,第一Z间隔在l-5mm的范围内,且第二Z间隔在5_10mm的范围内。 [0185] In some embodiments, a first spacing Z in the range of l-5mm, and a second interval in the range Z the 5_10mm.

[0186] 在一些实施例中,第一Z扫描器250被配置为在第一扫描时间中在0. 05mm-lmm的第一Z间隔内扫描焦点。 [0186] In some embodiments, the first Z scanner 250 is configured to scan the focal point within the first interval of 0. 05mm-lmm Z in the first time scan. 第一Z扫描时间可以为以下范围中的一个:10-100纳秒、100纳秒-1毫秒、1毫秒-10毫秒以及10毫秒-100毫秒。 First Z scan time may be one of the following ranges: 10-100 ns, 100 ns -1 milliseconds, 1 millisecond and 10 milliseconds, -100 milliseconds, -10 milliseconds.

[0187] 在一些实施例中,第二Z扫描器450被配置为在第二扫描时间中在lmm-5mm的第二Z间隔内扫描焦点。 [0187] In some embodiments, the second Z scanner 450 is configured to scan the focal point in the second interval Z lmm-5mm in the second time scan. 第二Z扫描时间可以为以下范围中的一个:10-100毫秒以及100毫秒-ι秒。 Z may be a second scanning time of a following ranges: 10-100 ms and 100 ms -ι seconds.

[0188] 在一些实施例中,第一Z扫描器250被配置为使激光束的数值孔径的改变量多于10%。 [0188] In some embodiments, the first Z scanner 250 is configured to change the amount of the laser beam numerical aperture of more than 10%.

[0189] 在一些实施例中,第二Z扫描器450被配置为使激光束的数值孔径的改变量多于10%。 [0189] In some embodiments, the second Z scanner 450 is configured to change the amount of the numerical aperture of the laser beam is more than 10%.

[0190] 在一些实施例中,第一Z扫描器250被配置为使激光束的数值孔径的改变量多于25%。 [0190] In some embodiments, the first Z scanner 250 is configured to change the amount of the laser beam numerical aperture of more than 25%.

[0191] 在一些实施例中,第二Z扫描器450被配置为使激光束的数值孔径的改变量多于25%。 [0191] In some embodiments, the second Z scanner 450 is configured to change the amount of the numerical aperture of the laser beam is more than 25%.

[0192] 图10示出了上述元件的多种变型的总结表。 [0192] FIG. 10 illustrates various variations of the device are summarized in Table. 如所示,一些实施方式可以具有0个Z深度扫描器、在XY扫描器300之前的1个Z深度扫描器、在XY扫描器300之后的一个Z深度扫描器、以及2个Z深度扫描器,一个在XY扫描器300之前,另一个在XY扫描器300之后。 As shown, some embodiments may have a depth scanner Z 0, the XY scanner 300 before a Z-depth scanner, a Z depth scanner after the XY scanner 300, and the two Z depth scanner an XY scanner 300 before, another after the XY scanner 300.

[0193] 此外,一些实施方式可以具有0个NA控制器、在XY扫描器300之前的1个NA控制器、在XY扫描器300之后的1个NA控制器、以及2个NA控制器,一个在XY扫描器300之前,另一个在XY扫描器300之后。 [0193] Further, some embodiments may have 0 NA controller, prior to the XY scanner 300 NA controller 1, after the XY scanner controller 300 NA 1, NA 2 and the controller, a before XY scanner 300, the other after the XY scanner 300.

[0194] 这里,Z扫描器和NA控制器通常指可以分别修改Z深度和数值孔径NA的单透镜或透镜组。 [0194] Here, Z and NA scanner controller refers generally Z-depth may be modified and the numerical aperture NA of a single lens or lens group, respectively. 在一些情况下,可以通过单个电致动器激活或控制这些修改器,该单个电致动器使修改器的透镜同步移动以修改光束的NA或Z深度。 In some cases, by a single electrical actuator activation or control modifiers, the single electrical actuator modifier to modify the synchronous mobile lens or NA Z-depth beams.

[0195] Z扫描器和NA控制器二者都被容纳(house)在图9的第一Z扫描器250和第二Z扫描器450中。 [0195] Z both the scanner and the controller are housed NA (House) of FIG. 9 in the first Z scanner 250 and second scanner 450 Z. 在一些情况下,对应的光学元件是不同的,在其他实施方式中,容纳在相同Z扫描器块250或450中的Z扫描器和NA控制器可共享一个或多个透镜、可移动透镜或电致动器。 In some cases, the optical element corresponding to a different, in other embodiments, accommodated in the same Z block Z scanner 250 or the scanner 450 and the controller NA may share one or more lenses, a movable lens or electric actuator.

[0196] 如图10所示,0个Z扫描器和一个或两个NA控制器操作在固定的Z深度处,但可以在XY扫描期间控制NA。 [0196] As shown in FIG. 10, 0 or Z scanner and a controller to operate in two fixed NA Z-depth, but it can be controlled during the XY scanning NA.

[0197] 1个Z扫描器和0个NA控制器可以进行Z扫描。 [0197] and a Z scanner controller may NA 0 Z scan.

[0198] 1个Z扫描器和1或2个NA控制器除了进行Z扫描之外还可以进行对NA的控制。 [0198] a Z scanner 1 or 2, and in addition to controllers NA Z-scanning can also control the NA.

[0199] 2个Z扫描器可以以两个速度进行Z扫描并且在与1个或2个NA控制器组合时还可以控制NA。 [0199] 2 Z Z scanner can scan at two speeds and in combination with one or two controllers can have NA NA controls.

[0200] 在一些实施方式中,还可以使用无透镜的光学元件,例如,可变孔和光瞳。 [0200] In some embodiments, the optical element may also be used without a lens, e.g., a variable aperture and the pupil.

[0201] 此外,所示例的16个组合中的大多数组合可以被进一步配置为预补偿所选择的像差,例如,球面像差。 [0201] In addition, most of the 16 combinations of the exemplified compositions may be further configured to pre-compensate the selected aberration, e.g., spherical aberration.

[0202] 图10示例了可以彼此独立地控制或调整由其像差量度(例如,Strehl比率S)表示的各种系统特性,例如,光束的Z深度、其数值孔径NA及其像差。 [0202] FIG. 10 illustrates another or may be independently controlled by adjusting an aberration measure (e.g., the Strehl ratio S) represented by the various system characteristics, e.g., Z depth of the light beam, whose numerical aperture NA and its aberrations. 这样的实施例为激光传输系统1的操作者提供了很大的控制和精度。 Such embodiments provide a great deal of control and accuracy of the operator of a laser delivery system.

[0203] 在相似实施例中,可对其他成对的光束特性进行这样的双重光束调节(doublebeam conditioning)。 [0203] In a similar embodiment, this may be a dual beam adjustment (doublebeam conditioning) to other pairs of beam characteristics. 例如,对于像差控制器和光束直径控制器,可以创建相似的具有4X4=16对的表。 For example, the controller and the aberration control beam diameter, can create a table with a similar pair 4X4 = 16. 这里,在与0、1或2个光束直径控制器的所有可能组合中,可以与0、1或2个像差控制器配对。 Here, all possible combinations of 0, 1 or 2 with a beam diameter controller, can be paired with 0, 1 or 2 aberration controller.

[0204] 光束特性的列表包括:焦斑的Z深度、数值孔径NA、光束半径以及诸如Mrehl比率S、焦斑半径rf、RMS波前误差ω和球面像差量度α 40的任何像差量度。 List [0204] beam characteristics include: Z depth, the numerical aperture NA, the focal spot and the beam radius ratio such as Mrehl S, focal spot radius rf, RMS wavefront error ω and the measurement of any spherical aberration of aberration measure α 40.

[0205] 3. XY 扫描器300 [0205] 3. XY scanner 300

[0206] XY扫描器300可以从预补偿器200直接或间接地接收已经通过一些中间光学元件的经预补偿的光束。 [0206] XY scanner 300 may be a number of intermediate beams precompensated optical element directly or indirectly received from the pre-compensator 200 has passed. XY扫描器300的功能为沿基本上横断激光传输系统1的光轴的方向扫描从预补偿器200接收的光束。 Is a function of the XY scanner 300 in a direction substantially transverse to the optical axis of laser delivery system 1 of the scanning receiver 200 from the pre-compensator beam. 在各种实施例中,“横断”方向未必垂直于光轴,可以包括与光轴成实质角度(substantial angle)的任何方向。 In various embodiments, the "transverse" direction is not necessarily perpendicular to the optical axis, the optical axis may include a substantial angle in any direction (substantial angle) is.

[0207] 在一些实施例中,XY扫描器300输出扫描激光束(该扫描激光束已经传播通过激光传输系统1并已经到达手术区域),并沿横断方向从零扫描到5-14mm的XY扫描范围的最大值。 [0207] In some embodiments, the output XY scanner 300 scans the laser beam (the scanning laser beam has propagated through the laser delivery system 1 and has reached the surgical area), and the scanning in the transverse direction from zero to the XY scanning 5-14mm maximum range. 在一些实施方式中,XY扫描范围的最大值在8和12mm之间。 In some embodiments, the maximum value in the XY scanning range is between 8 and 12mm.

[0208] 图IlA示例了XY扫描器300可包括X扫描器和Y扫描器。 [0208] FIG IlA example the XY scanner 300 may include an X-Y scanner and scanner. 在一些现有设计中,X扫描器和Y扫描器各自包括一个反射镜(mirror):单X扫描反射镜310和单Y扫描反射镜320。 In some prior designs, X and Y scanner each comprises a scanner mirror (mirror): X single scanning mirror 310 and a single Y-scanning mirror 320. 在这样的设计中,被X扫描反射镜310反射的光束依赖于X扫描反射镜310的取向而入射在Y扫描反射镜320的不同点处。 In such a design, the 310 X-scanning mirror reflected beam depends on the orientation of the X scanning mirror 310 is incident at different points of the Y-scanning mirror 320. 特别地,当X扫描反射镜310处于位置310a时,入射光束331被反射为光束33¾,而当Z扫描反射镜旋转到位置310b时,入射光束被反射为光束33沘。 In particular, when the X-scanning mirror 310 is in position 310a, the incident light beam 331 is reflected as beam 33¾, and when Z is rotated to the position scanning mirror 310b, the incident light beam 33 is reflected as beam Bi.

[0209] 这两个光束33¾和332b入射到Y扫描反射镜320的不同位置,因此,即使Y扫描反射镜320固定在位置320a处,也可以分别产生两个不同的反射光束333aa和33;3ba。 [0209] 33¾ two light beams incident on different positions 332b and Y-scanning mirror 320, and therefore, even if the Y-scanning mirror 320 is fixed at the position 320a, the two may generate different reflected light beams 33 and 333aa, respectively; 3Ba . 更糟糕的是,当Y扫描反射镜320自身从位置320a旋转到320b时,两个入射光束33¾和332b产生两个附加的反射光束333ab和33!3bb,所有四个光束333aa、333ab、333ki和3331Λ沿不同方向传播。 Worse, when the Y-scanning mirror 320 itself rotates from position 320a to 320b, and 332b 33¾ two incident light beams reflected beam produced two additional and 333ab 33! 3bb, all four beams 333aa, 333ab, 333ki and 3331Λ propagating in different directions.

[0210] 可以关于支点(pivot point)的概念来表征该问题。 [0210] on the concept can pivot (pivot point) to characterize the problem. 扫描光学元件的支点的一种定义可以为这样的点,从光学扫描元件出射的基本上所有光线都通过该点。 One definition of the fulcrum of the scanning optical element may be such a point, the optical scanning element from substantially all of the light rays exiting through that point. 在应用于诸如扫描器的移动光学元件时,该概念类似于非移动折射元件的焦点。 When applied to move the optical element such as a scanner, which is similar to the concept of non-moving focus refractive element.

[0211] 使用该术语,上述问题可在图IlA中被追溯到固定于X扫描反射镜310自身上的X扫描器支点315X。 [0211] the term is used, the above problems can be traced to the X scanner fixed to the fulcrum X 315X scanning mirror 310 itself in FIG IlA. 对于随后的光学元件,输出的扫描光束将看起来是已经从X扫描反射镜310上的单个支点315X出射并由此传播成宽范围的角。 For subsequent scanning beam of the optical element, the output would look 315X has a single exit from the fulcrum in the X-scanning mirror 310 and thereby spread to a wide range of angles. 双反射镜设计的该发散会导致多种不同类型的不希望的像差。 The dual reflector design can result in many different types of divergence of undesirable aberrations.

[0212] 图IlB示例了现有的三反射镜XY扫描器300',其中,X扫描器310包括两个反射镜311和312以解决该问题。 [0212] FIG IlB example of a conventional three-mirror XY scanner 300 ', wherein, X scanner 310 includes two mirrors 311 and 312 to resolve the issue. 为了清楚,从侧面示出了各反射镜。 For clarity, it is shown from the side mirrors. 在该设计中,X扫描反射镜311和312以协作的方式执行X扫描功能。 In this design, X scanning mirror 311 and 312 perform in a coordinated manner X scan function. 如图IlB所示,当第一X扫描反射镜311将其取向从311a改变到311b时,第二X扫描反射镜312可以以协作的方式从31¾旋转到312b。 As shown in FIG IlB, when the first X-scanning mirror 311 changes its orientation from 311a to 311b, the second X-scanning mirror 312 may be rotated from a cooperative manner to 31¾ 312b. 这些协作的扫描旋转可以使处于两种旋转状态的偏转光束33¾和332b通过支点315X,该支点315X从X扫描反射镜搬走(lift off)。 These cooperating beam deflection scanning rotation may 33¾ and 332b in one of two states by rotating fulcrum 315X, 315X move the fulcrum (lift off) from the X-scanning mirror.

[0213] 由于X扫描器支点315X已被从X扫描反射镜自身搬走,因此可调整支点的位置。 [0213] Since the X-scanner fulcrum 315X itself has been removed from the X-scanning mirror, and therefore adjust the position of the fulcrum. 在图IlB的设计中,X扫描反射镜被设计为将支点315X基本上置于Y扫描反射镜320上。 In the design of FIG. IlB, X scanning mirror is designed to be placed on a fulcrum 315X substantially Y-scanning mirror 320. 在这样的设计中,图IlA中的X扫描器310的问题基本上被解决,并极大地减小了对应的像差。 In such a design, the problem in FIG IlA X scanner 310 is substantially resolved, and greatly reduces the corresponding aberrations.

[0214] 然而,仅就Y扫描反射镜320而言,即使是该设计也具有类似于图IlA的问题。 [0214] However, just from the Y-scanning mirror 320, even if the design is also it has a problem similar to that of FIG IlA. 在图IlB的设计中,Y扫描器支点315Y仍被固定到Y扫描反射镜。 In the design of FIG. IlB, Y scanners 315Y is still secured to the fulcrum Y-scanning mirror.

[0215] 光学系统的入瞳(entrance pupil)为当从系统前面观测时孔径光阑(apertureStop)的像。 [0215] The optical system of the entrance pupil (entrance pupil) of the system when viewed from the front aperture stop (apertureStop) image. 出瞳为像空间中孔径光阑的像。 Exit pupil is the image of the aperture stop in the image space. 在具有多个透镜组的光学系统中,入瞳和出瞳的位置通常被仔细调整。 In the optical system having a plurality of lens groups, the entrance pupil and the exit pupil position is generally adjusted carefully. 在许多设计中,一个透镜组的出瞳与下一透镜组的入瞳匹配。 In many designs, the entrance pupil and the exit pupil of a lens group to the next lens group matches.

[0216] 对于XY扫描器310,支点可被视为出瞳。 [0216] For the XY scanner 310, the fulcrum of the exit pupil can be considered. 在一些实施例中,该出瞳与诸如Z扫描器450的下一透镜组的入瞳匹配。 In some embodiments, the exit pupil and the entrance pupil of the next match, such as a scanner lens group Z 450. 然而,该透镜组的入瞳可能在不能设置扫描器块的透镜组的物理边界内。 However, the entrance pupil of the lens group may not be provided within the physical boundaries of the scanner lens group block. 在该情况下,这样的扫描器块是希望的,该扫描器块的支点在扫描器块的物理边界外部的可任意选择的位置处。 In this case, such a scanner block is desired, the fulcrum of the scanner at a position in the block may be arbitrarily selected outer boundary of a physical block of the scanner.

[0217] 图IlC示例了用以解决该问题的四反射镜设计。 [0217] FIG IlC example four mirrors designed to solve this problem. 在XY扫描器300”中,X扫描器310仍包括两个X扫描反射镜311和312。然而,Y扫描器同样包括两个Y扫描反射镜321和322。[0218] XY扫描器300”使Y扫描器支点315Y从Y扫描反射镜移除。 In the XY scanner 300 ', X is X scanner 310 still includes two scanning mirrors 311 and 312. However, Y Y scanner also includes two scanning mirrors 321 and 322. [0218] XY scanner 300 "so Y scanner fulcrum 315Y is removed from the Y-scanning mirror. 相应地,XY扫描器300”可控制Y扫描器,或者将支点315Y输出到预定位置。一个实例为将Y扫描-输出支点315Y移到后续透镜组的入瞳340上。在一些实施方式中,X支点315X同样也可以被移到相同位置。 Accordingly, XY scanner 300 "may control the Y scanner, or fulcrum to a predetermined position 315Y outputs a scan example is the Y - 315Y outputs a fulcrum 340 moves on the entrance pupil of the subsequent lens group, in some embodiments, the. X fulcrum 315X likewise be moved to the same position.

[0219] 该设计的其他方面包括:XY扫描器300”可以基本上独立地控制⑴激光传输系统1的光轴与输出的扫描光束之间的角α,以及(ii)通过与光轴相距的距离d表征的扫描光束入射到后续光学元件的入瞳的位置。由于这些控制的近似独立,XY扫描器300”可提供具有最小像差的扫描光束,并且还可控制周边区域(包括手术区域的周边区域)中的像散和慧形像差。 [0219] Other aspects of the design include: XY scanner 300 'can be controlled substantially independently of the angle α between the optical axis of the scanning beam output from the laser delivery system ⑴ 1, and (ii) the optical axis by a distance of characterized distance d is incident scanning beam to the entrance pupil position of the subsequent optical elements. Since approximately independent of these controls, XY scanner 300 'can be provided with the smallest aberration scanning beam, and may also control peripheral area (including the area of ​​surgery astigmatism and coma surrounding region).

[0220] XY扫描器300”'的一些实施方式仅仅包括一个X扫描反射镜310和一个Y扫描反射镜320,每个扫描反射镜都是“快速控制(fast steering)”类型。各快速控制反射镜能够围绕两个旋转轴进行角运动。这些快速控制反射镜的对还可以控制光束角和在横断光轴的面中的光束位置。 [0220] XY scanner 300 ' "Some embodiments include only one X scanning mirror 310 and a Y-scanning mirror 320, scanning mirror are each" fast control (fast steering) "type. Each control quickly reflected mirror capable of angular movement about two axes of rotation. these fast steering mirror and the beam angle of the light beam in the plane transverse to the optical axis position can also be controlled.

[0221] 在一些实施例方式中,XY扫描器300”'被配置为在激光系统的焦平面处在最大值大于5毫秒且小于15毫秒的XY扫描范围内扫描激光束。 [0221] In some embodiments described, XY scanner 300 " 'is configured to scan the laser beam in the XY scanning range is greater than a maximum value of less than 5 milliseconds and 15 milliseconds in the focal plane of the laser system.

[0222] 在一些实施方式中,由第一和第二XY快速控制反射镜产生的X支点与由第一和第二XY快速控制反射镜产生的Y支点重合。 [0222] In some embodiments, the quick control reflecting mirror fulcrum X generated by the first and second Y XY coincides with the fast steering mirror fulcrum by the first and second XY generated.

[0223] 4. Z 扫描器450 [0223] 4. Z scanner 450

[0224] 如上所述,通过具有允许在远大于角膜手术过程中的扫描间隔的间隔内扫描焦点的设计,眼科手术系统被配置为进行眼前段手术或晶状体手术。 [0224] As described above, by having a corneal surgery allowing much greater than the scanning process of scanning the focal point interval within interval design, an ophthalmic surgical system is configured for anterior segment surgery or lens implantation. 在一些实施方式中,在5mm到IOmm或者Omm到15mm的Z扫描范围内在Z扫描路径内进行Z扫描。 In some embodiments, the IOmm or Omm to 5mm in Z-scanning into scanning range Z Z internal scan path of 15mm. (在本申请中,术语“在χ mm到y mm的范围内扫描”是指其初始值为χ mm或更大且结束值为y mm或更小的扫描路径,包括不超过整个扫描范围的所有扫描路径。) (In the present application, the term "χ mm in the range of y mm Scan" refers to its initial value χ mm or more and the end value of y mm or less scanning path, including the entire scan range of not more than All scan path.)

[0225] 这里,应理解,“X,Y,Z”的指派在实施方式中的意义是宽泛的。 [0225] Here, it should be understood that the meaning "X, Y, Z" is assigned in the embodiment is wide. Z典型地表示光轴,其可以靠近几何轴。 Typically Z represents an optical axis, which may be close to the geometric axis. 但在诸如眼睛的目标组织内的Z方可以实现这些功能中的一些功能。 But in the Z direction target tissues such as the eye can achieve some of these functions. 位置致动器(position actuator)可以使可移动透镜移动,改变预补偿器200的某些透镜之间的距离。 Position of the actuator (position actuator) can be the movable lens is moved, changing the distance between certain pre-compensation lens 200.

[0226] 在具有一个可移动透镜的实施方式中,预补偿器200的可移动透镜可以使激光传输系统1的焦平面或焦斑沿光轴移动0. 3-4. 0mm。 [0226] having a movable lens embodiment, the pre-compensation lens 200 is movable laser delivery system can make the focal plane or focal spot movement 1 0. 3-4. 0mm along the optical axis. 在一些其他实施方式中,可以移动0. 5-2. Omm0 In some other embodiments, the movable 0. 5-2. Omm0

[0227] 在一些实施方式中,当在可移动透镜处于中间位置时在上述五个参考点Pl,. . . P5处的至少一个Mrehl比率S(Iow)低于S = S (movable)时,移动可移动透镜,以将Mrehl比率S(low)增加到高于S = S(movable)的值。 [0227] In some embodiments, when the movable lens is in an intermediate position of the five reference points Pl ,... Mrehl least a ratio S (Iow) P5 at less than S = S (movable), moving the movable lens, to Mrehl ratio S (low) increases above the value S = S (movable) a. S(movable)可以为0. 6、0. 7、0. 8 或0. 9。 S (movable) may be 0. 6,0. 7,0. 8 or 0.9.

[0228] 在一些实施方式中,可以将可移动透镜移动为使Mrehl比率S在0. 6-0. 9的范围内变化。 [0228] In some embodiments, the movable lens may be movable so Mrehl ratio S is changed in the range 0. 6-0. 9. 在其他实施方式中,在0. 70-0. 85的范围内变化。 In other embodiments, the variation in the range 0. 70-0. 85.

[0229] 由于预补偿器200位于XY扫描器300或其他扩束器之前,因此光束半径仍是小的。 [0229] Since the pre-compensator 200 is positioned before the XY scanner 300, or other beam expander, the beam radius is still so small. 因此,可移动透镜可以是小的。 Thus, the movable lens may be small. 并且,由于可移动透镜是小的,位置致动器可以非常快速地移动该可移动透镜,这允许非常迅速地改变焦深。 Further, since the movable lens is small, the position of the actuator very rapidly moving the movable lens, which allows the depth of focus change very rapidly. 该特征加速了这些实施例中的深度扫描或Z扫描,且可以使Z扫描速度比得上典型地较快的XY扫描速度。 This feature speeds up the depth scan or scan these embodiments, Z, and Z can be made comparable to the scan speed is typically faster XY scanning speed. [0230] 在一些典型的现有系统中,主要通过诸如透镜的光学装置补偿像差。 [0230] In some typical prior art systems, the major aberrations compensation by optical means such as a lens. 现在描述的可移动透镜预补偿器200可以利用快速可移动透镜而很好地实施该功能。 Movable lens will now be described a pre-compensator 200 may well implement this function with a fast movable lens. 特别地,当用XY扫描器300扫描激光束时,可以使可移动透镜以充分高的速度移动,使得与XY扫描相关的像差被补偿到希望的水平。 In particular, when using the XY scanner 300 scans the laser beam, the movable lens can be at a sufficiently high speed movement, so that the XY scanning related aberration is compensated to a desired level.

[0231] 图7A示例了当基本上跟踪平面或曲形患者接口(patient interface) 208的接触表面而实施横向手术切口206时该方面有用。 [0231] FIG. 7A as an example of a substantially planar or curved track patient interface (patient interface) and the contact surface 208 of the embodiment 206 of the lateral aspect of the incision is useful. 小的可移动透镜的速度使得可以以XY扫描所需的速度进行Z扫描,形成希望的曲形切口。 Small velocity is such that the movable lens can be scanned in XY Z scanning speed required to form a desired curved incision.

[0232] 在一些实施方式中,曲形切口的曲率或半径、或者曲形目标线可以小于1mm、IOmm以及100mm。 [0232] In some embodiments, the curved cuts or radius of curvature, or curved lines may be less than the target 1mm, IOmm and 100mm.

[0233] 图7B示例了高Z扫描速度的另一有用方面。 [0233] FIG 7B illustrates another useful aspect of Z high scanning speed. 大多数光学系统的焦平面是稍微弯曲的。 Most of the focal plane of the optical system is slightly curved. 如果希望产生基本上直的横向切口(因此,该接口不会跟踪焦平面的曲率),需要与快速的横向XY扫描同步地、连续地再调整向可以不完全平行于激光传输系统1的光轴。 If you want to generate a substantially straight transverse incisions (and therefore, the interface will not follow the curvature of the focal plane), and requires a fast transverse XY scanned synchronously, continuously readjusted to may not be exactly parallel to the optical axis of laser delivery system 1 . 这两者之间的任何折衷轴同样称为Z方向。 Any compromise between the two same axis called the Z direction. 同样,X、Y方向未必垂直于Z轴。 Similarly, X, Y direction is not necessarily perpendicular to the Z axis. 它们可表示与Z轴成实质角度的任何方向。 They may represent the Z-axis direction in any substantial angle. 同样,在一些实施方式中,径向坐标系统可以更适合于描述激光传输系统1的扫描。 Also, in some embodiments, the radial coordinate system may be more suitable for describing the scanning laser delivery system 1. 在这些实施方式中,XY扫描是指由合适的径向坐标所参数化的不平行于Z轴的任何扫描。 In these embodiments, XY scanning by the scanning means any suitable parameterized radial coordinate is not parallel to the Z axis.

[0234] 图1示例了:激光传输系统1的一些实施方式通过在Z扫描器450中包括第一扩束器块400和可移动扩束器块500而实现了这些具有挑战性的大的Z扫描范围。 [0234] Figure 1 illustrates: Some embodiments of the laser delivery system 1 by a large Z these challenging block the beam expander 400 and the movable block 500 is achieved in a first expander comprises a Z scanner 450 scanning range. 在各种实施方式中,第一扩束器块400可以为可移动块或固定块。 In various embodiments, the first beam expander 400 may be fixed or movable block block block. 第一扩束器块400和可移动扩束器块500之间的距离可通过例如位置致动器来调整。 First expander and the movable block 400 may adjust the position of the actuator the distance between the beam expander block 500 by, for example.

[0235] 如已经在图2A-B中示例的,当焦点从其在目标组织中的最优位置移开时,像差增加。 [0235] As already when the optimal position of the focus from the target tissue is removed, an example of the aberration increases in the Figures 2A-B. 这些像差典型地称为“几何像差”,因为其可以通过跟踪几何光线而加以理解且源自透镜的有限范围。 These aberrations are typically referred to as "geometrical aberration", as it can be appreciated from a limited range and through the lens geometric ray tracing. 可以通过使Z扫描器450的数值孔径较小来限制这些几何像差。 These can be small to limit the Z geometrical aberration by the numerical aperture of the scanner 450. 这样,几何像差依赖于Z焦深和数值孔径NA 二者。 Thus, both the Z geometrical aberration depends on the depth of focus and the numerical aperture NA.

[0236] 此外,随着数值孔径NA减小,出现由光的波动性所引起的像差的第二来源。 [0236] Further, as the numerical aperture NA is reduced, the second occurrence of the light source from the fluctuation of aberration caused. 这些像差导致所谓的“衍射像差”。 These aberrations cause so-called "diffraction aberration." 随着数值孔径减小,该第二类型的像差使焦斑半径增大。 As the numerical aperture is reduced, like the second type of errand focal spot radius increases.

[0237] 图12A-B示例了作为Z扫描器450的孔尺寸的函数的在眼前段中的几何和衍射像差,其由作为上述像差量度之一的焦斑半径&表征。 [0237] FIGS 12A-B illustrates a Z scanner geometry and the diffraction aberration function of pore size in the anterior segment 450, which is characterized by a focal spot radius & aberration measure as one described above. 由于几何像差随孔尺寸增加而衍射像差减小,总像差(被定义为这两个像差的总和)在最优像差和对应的最优数值像差嫩_处呈现最优的最小值。 Since the pore size increases with the geometrical aberrations and reduce diffraction aberration, the aberration of the total (the sum of these two aberrations are defined as) exhibits optimum optimal aberration and aberration corresponding optimum value at a tender _ minimum.

[0238] 这里,通常的定义将数值孔径NA和孔尺寸联系到一起:NA = η * SinArTan (孔尺寸Λ2 *焦距)),其中η为在其中形成像的材料的折射率。 [0238] Here, a general definition of the pore size and the numerical aperture NA linked together: NA = η * SinArTan (pore size Λ2 * focal length)), where [eta] is the refractive index of the material in which the image is formed.

[0239] 这些曲线针对特定的Z焦深,如图12Α中的Imm的Z焦深和图12Β中的8mm的Z焦深。 [0239] These curves for a specific focal depth Z deep focal depth Z of FIG 12Α Imm of 8mm and the Z-12Β coke. 由于几何像差在不同的Z焦深处是不同的,总像差曲线的最小值和由此的整个系统的最优孔尺寸和最优数值孔径NA。 Since the geometric aberrations at different focal depths Z are different, the optimum minimum pore size of the entire system and thus the total aberration curve and optimal numerical aperture NA. pt依赖于Z焦深:NA。 pt Z depends on the depth of focus: NA. pt = NAopt (ζ)。 pt = NAopt (ζ). 特别地,当Z焦深从Imm增加到8mm时,在该特定实例中,对应于Z焦深增加,最优孔尺寸和NA。 In particular, when Z Imm focal depth increases from 8mm when, in this particular example, increased depth of focus corresponding to Z, the optimum pore size and NA. pt从32mm减小到25mm。 pt reduced from 32mm to 25mm. 因此,希望既用于角膜手术也用于晶状体手术的激光传输系统需要覆盖更宽的孔范围和对应的NA范围。 Accordingly, also desirable both for corneal surgery for lens surgery laser delivery system needs to cover a wider range of aperture NA and the corresponding range. 该需要提出了巨大的设计挑战。 The need to make a huge design challenges.

[0240] 如下面进一步说明的,图12A-B还示例了:对于典型的Imm的角膜Z焦深,像差呈现宽的且平坦的最优值,而对于典型的用于晶状体手术的Z焦深,像差则呈现较窄的且较尖锐的最小值。 [0240] As described further below, FIGS. 12A-B further illustrates: For a typical deep corneal Z Imm focus, aberration shows a broad and flat optimal value, and for a typical focus for lens surgery Z deep, aberration is showing a narrower and sharper minimum.

[0241] 还可以通过其他三个像差量度S、ω或α 4(|来表征像差,它们全都会产生呈现最优值的曲线。上述四个像差量度中的任一个可对应于上述五个参考点P(I),...ρ(5)中的任一个,或者可以为对这些参考点中的部分或全部取的平均值,或者可对应于其他参考点。 . [0241] can also be S, ω or α 4 (measure by three other aberrations | characterized aberration curve exhibits all of them will have an optimum value according to any of the four measurements of aberration may correspond to the five reference points P (I), ... any one of ρ (5) is, or may be a part of these reference points or average value of all taken, or may correspond to other reference points.

[0242] 在一些实施方式中,在Z焦深的宽范围内,可以将孔尺寸和对应的NA调整到实质上最优的数值孔径NA。 [0242] In some embodiments, Z in a wide range of focal depth, and pore size may be adjusted corresponding to a substantially optimal NA numerical aperture NA. pt (ζ),从而使得由像差量度所度量的总像差最小化。 pt (ζ), so that the total metric is a measure of aberrations by the aberration is minimized. 该功能允许极大地减小总像差。 This feature allows greatly reducing the total aberrations. 这里,如前所述,在上述五个参考点Pl,... P5中的任一个处通过四个像差量度rf、S、ω或α 4(|中的一个度量像差。最优像差对应于像差量度rf、ω或α 40的最小值或者Mrehl比率S的最大值。 Here, as described above, in the above-reference point Pl is five, ... P5 to any one of the metric rf, S, ω or α aberration by four (4 |. A measure of aberration optimal image corresponding to the maximum difference between the minimum or Mrehl aberration measure the ratio S rf, ω or of α 40.

[0243] 在某些其他实施方式中,在不能达到最优像差或者设计考虑规定应使用偏离最优值的像差的情况下,与其中Z扫描器450的第二块不可移动且因而不能调整数值孔径的基本上相同的激光系统的像差度量相比,可移动扩束器块500仍可以使像差量度rf、ω或α 40的值减小,减小的百分比至少为P(MovableExpander)百分比,或相应地使Mrehl比率S的值增加,增加的百分比至少为P(M0VableEXpander)百分比。 In the case [0243] In certain other embodiments, the aberration is not optimal or predetermined design considerations should be used from the optimum value of the aberration, wherein the second block is unavailable Z scanner 450 and thus can not be moved with adjusting the numerical aperture aberration of substantially the same laser measurement system as compared to the percentage of the movable beam expander block 500 can still measure the aberration value rf, ω α 40 is reduced or, at least reducing the P (MovableExpander ) percentage, or respectively so that the value of Mrehl ratio S increases, the percentage is at least a percentage of the P (M0VableEXpander). 在一些实施方式中,P(MovableExpander)可以为20%、30%、40%或50%。 In some embodiments, P (MovableExpander) may be 20%, 30%, 40% or 50%. 这里,如前所述,可以在五个参考点Pl,... P5中的任一个处测量像差量度rf、S、ω或α 4。 Here, as described above, the reference point may be five Pl, ... P5 of the measured aberration in either metric rf, S, ω or α 4. .

[0244] 在一些实施方式中,相对于Mrehl比率S低于0. 8的其中Z扫描器不具有可调整的数值孔径的基本上相同的激光系统,包含具有可调整的数值孔径NA的Z扫描器450的激光系统可以将Mrehl比率S增加为高于0. 8。 [0244] In some embodiments, the ratio S with respect Mrehl less than 0.8, wherein Z scanner does not have substantially the same laser system adjustable numerical aperture, comprising a Z-scan having an adjustable numerical aperture NA the laser system 450 may be Mrehl ratio S increases to be higher than 0.8.

[0245] 附加设计挑战不仅要通过将激光传输系统调整到其最优孔尺寸和对应的数值孔径NA。 [0245] Additional design challenge not only to adjust to the optimal pore size and the corresponding numerical aperture NA by the laser delivery system. pt(z)而使在固定的ζ焦深处的总像差最小化,而且在扫描Z焦深时还要使系统保持为至少接近该依赖于Z的最优数值孔径NA。 pt (z) is minimized in the fixed total aberration of focal depths of ζ, and Z in the scanning system focal depth Shihai To maintain optimum depends on the numerical aperture NA of at least approximately Z. pt (ζ)。 pt (ζ). 在典型的实施方式中,最优数值孔径从焦深增加而减小。 In the exemplary embodiment, the optimum numerical aperture of the focal depth increases.

[0246] 为了解决在Z扫描范围内扫描Z焦深时该最优孔径的变化,激光传输系统1的实施方式具有与其Z焦深自身变化基本上无关地使作为Z扫描器450的单独参数的数值孔径NA(Z)改变的能力。 [0246] In order to solve the variation of the optimum aperture scanning focal depth Z in the Z-scan range, the laser delivery system according to embodiment 1 having its own focal depth Z substantially change irrespective of individual parameters serving as Z scanner 450 ability numerical aperture NA (Z) is changed.

[0247] 其中基本上独立地控制两个量(这里为Z焦深和数值孔径NA)的实施方式典型地具有实现该特征(modality)的控制参数的对。 [0247] wherein two substantially independently controlled amount (here, the focal depth Z and the numerical aperture NA) typically has achieved the control parameter characteristic (modality) of the embodiment. 实例包括第一扩束器块400与可移动扩束器块500之间的可控距离和可通过第二光学控制器调整的可移动透镜在这些块的任一个中的位置的配对。 Examples include 400 pairs movable in either a position of the blocks in the block mass controllable beam expander 500 and the distance between the second optical adjustment by the controller of the first movable lens expander. 另一实例包括在Z扫描器450的两个块中的任意组合中的两个可移动透镜。 Another example of Z include any combination of the two blocks 450 of the scanner in the two movable lenses. 应记得,第一束扩展器块400可被实施为固定块或可移动块。 It should be recalled, the first beam expander block 400 may be implemented as a fixed block or the movable block.

[0248] 在一些实施方式中,数值孔径NA可被调整到最优数值孔径值NA。 [0248] In some embodiments, the numerical aperture NA can be adjusted to the optimum value of the numerical aperture NA. pt (ζ)的序列,在扫描Z焦深时产生在Z焦深的序列处的最优总像差值的序列。 pt (ζ) sequence, generating a sequence of optimum overall sequence difference image at focal depth Z Z when the scan depth of focus.

[0249] 如前所述,可以通过上述像差量度rf、ω或α 40中的任一个的最小值或Mrehl比率S的最大值来获知最优总像差。 [0249] As described above, can be learned optimal minimum total aberration measure any one of a maximum value of rf, ω or α 40 or Mrehl ratio S by the above-described aberration. Z扫描范围可以为例如5-10mm或0-15mm。 Z-scan range or, for example, 5-10mm 0-15mm. 可以以半径rl = 0mm,或r2 = 3mm或在某个其他半径r,或在由例如r < 3mm划界的可变半径r (ζ)处扫描Z焦深。 = 0mm may radius rl, r2 = 3mm, or some other, or radius r, such as scanning or by variable radius r r 3mm Z delimited <(ζ) at the depth of focus.

[0250] 表7示例了实例,其中,第二列描述在眼目标组织中的(-0. 14mm, 11. 65mm)的Z扫描范围内的Z焦深的扫描,第三列示出了NA。 Scanning the focal depth Z [0250] Table 7 illustrates an example, wherein the second column is described in the ocular target tissue (-0. 14mm, 11. 65mm) Z-scan range, the third column shows the NA . pt (ζ)的对应值。 pt (ζ) of the corresponding value. Z扫描器450的实施方式能够在该范围内调整Z焦深并将数值孔径NA调整到其在这些焦深处的最优值NA。 Z scanner 450 of the embodiment can adjust the focal depth Z and the numerical aperture NA is adjusted to its optimum value of NA in the depths of focus within this range. pt(z)。 pt (z).

[0251] [0251]

Figure CN102596126AD00251

[0252] 表7 [0252] TABLE 7

[0253] 在某些其他实施方式中,可以在Omm到IOmm的Z扫描范围内扫描Z焦深。 [0253] In certain other embodiments, the inner can to IOmm scanning range in scanning Omm Z Z depth of focus. 在扫描过程中,数值孔径可以在0.4到0. 1的范围内变化,在某些其他实施例中,在0. 35到0. 15的范围内变化。 During the scan, the numerical aperture can be varied within the range of 0.4 to 0.1, in certain other embodiments, the variation in the range of 0.35 to 0.15.

[0254] 图12C示例了与8mm、4mm、2mm和Omm的Z焦深的序列对应的像差曲线的相似序列, [0254] FIG 12C illustrates and 8mm, 4mm focal depth Z aberration curves sequence corresponding to Omm and the 2mm, the similar sequences,

呈现了对应的最优数值孔径N。 Presents the optimum numerical aperture corresponding to N. pt (ζ)的序列。 pt (ζ) sequences.

[0255] 图12D清楚地示例了作为对应Z焦深的函数的最优数值孔径N。 [0255] FIG 12D illustrates clearly the optimal numerical aperture corresponding to Z as a function of the depth of focus of N. pt(z)。 pt (z).

[0256] 如上所述,Z焦深和数值孔径NA的单独可调整性典型地需要两个独立可调整的控制参数。 [0256] As described above, Z depth of focus and numerical aperture NA individual adjustability typically requires two independent adjustable control parameters. 然而,一些实施方式不能提供Z和NA的单独和独立可调整性。 However, some embodiments can provide separate and independent adjustability Z and NA. 替代地,对于每个Z焦深,这些实施方式将数值孔径自动调整到其最优值NA。 Alternatively, for each focal depth Z, the numerical aperture of these embodiments will be automatically adjusted to its optimum value NA. pt(ζ)或至少调整到NA。 pt (ζ) or at least to adjust the NA. pt(z)附近,而无需操作者进行单独的NA调整步骤。 Nearby pt (z), without a separate operator NA adjusting step. 例如,NA可在P (track)百分比内跟踪NA。 For example, within NA NA can track P (track) percentage. pt(z),其中P(track)可以为10%、20%或30%。 pt (z), where P (track) can be 10%, 20% or 30%.

[0257] 这些实施方式可以仅具有单一的整合的可调控制器。 [0257] These embodiments may have only a single embodiment of an adjustable integrated controller. 在刚描述的实例中,该整合的控制器可仅向其控制的系统的用户显示目标区域中的Z焦深。 In the example just described, the user of the integrated controller may only control the display system to which Z depth of focus target area. 然而,控制器可以包含耦合孔调整器,该耦合孔调整器同时调整数值孔径NA以跟踪NA。 However, the controller may comprise a coupling hole adjuster, the coupling hole while adjusting the adjuster to track the numerical aperture NA NA. pt(z)而无需由激光传输系统1的用户进行单独的调节步骤。 pt (z) without the need for a separate step of adjusting a laser delivery system by the user is.

[0258] 在一些实施方式中,调整第一扩束器400与可移动扩束器500之间的距离可以充分地实现该功能。 [0258] In some embodiments, a first beam expander 400 to adjust the distance between the beam expander 500 and the movable filter may function sufficiently to achieve this. 在其他实施方式中,单个可移动透镜可提供该特征。 In other embodiments, the single movable lens may provide this feature. 在另外的其他实施方式中,可以采用两个调整器的组合。 In still other embodiments, the combination of the two regulators may be employed.

[0259] 这些实施方式为激光传输系统1的操作者提供了简化的控制功能。 [0259] These embodiments provide a simplified control of the laser delivery system of the operator 1. 由于实现这样的单一整合的控制功能是设计挑战,因此某些实施方式与诸如预补偿器200、XY扫描器300和物镜700的其他块组合地执行这些整合的控制功能。 Due to such a control function implemented in a single integrated design challenges, some embodiments such as a pre-compensator 200, XY scanner 300 and objective lens 700 in combination with other blocks perform these control functions are integrated.

[0260] 在其中出于各种设计考虑而不能实现或不实现最优总像差值的某些实施方式中,数值孔径NA可被调整到在Z扫描范围内的沿Z扫描路径的Z焦深的序列处的数值孔径值的序列,以便使总像差与其Z扫描器450不具有可调整的数值孔径NA的激光系统相比以至少P(scan)百分比减小。 [0260] in which, for various design considerations can not be achieved or not to implement some embodiments of the best embodiment of the total aberration values, the numerical aperture NA can be adjusted along the scan path in the Z Z Z focus scan range sequence a sequence of values ​​at a numerical aperture of deep, so that its total aberration Z scanner 450 does not have an adjustable numerical aperture NA of the laser system compared to P (scan) percentage is at least reduced. 在一些实施方式中,P(scan)可以为20%、30%、40%或50%。 In some embodiments, P (scan) may be 20%, 30%, 40% or 50%.

[0261] 如上所述,可以通过之前介绍的像差量度rf、ω或α 40中的任何一个来表征总像差。 [0261] As described above, the aberration can be introduced prior to the measurement of any one of rf, ω or α 40 characterized total aberrations. 等价地,可以通过Mrehl比率S的对应增加来表征像差的减小。 Equivalently, to reduce the aberration can be characterized by a corresponding increase in the ratio S Mrehl. Z扫描路径可以是与激光系统的光轴或Z轴相距半径R并平行于Z轴的路径。 Z may be a scanning path to the optical axis or Z axis of the laser system apart and parallel to the radius R of the Z-axis path. 在一些实施方式中,Z扫描路径可以位于与光学Z轴相距半径rl = Omm到r2 = 3mm之间。 In some embodiments, Z may be located in the optical scanning path Z-axis radius rl = Omm distance between r2 = 3mm.

[0262] 可以通过多种不同的方式测量总像差。 [0262] The total aberration can be measured by a variety of different ways. 总像差可以指在Z扫描路径内求平均的总像差或者指沿扫描路径的总像差的最大值或最小值。 May refer to the total aberration of the total aberration of the averaged or to a maximum or minimum of the total aberration in the scanning path Z in the scan path. 总像差的减小可以指这些可能性中的任一种。 Reduction in the total aberration can refer to any of these possibilities.

[0263] 在一些实施方式中,可以将数值孔径NA从进行角膜手术过程时的第一值调整到进行眼前段手术过程时的第二值。 [0263] In some embodiments, the numerical aperture NA can be adjusted from a first value when the corneal surgical procedure is performed to a second value when the front section of the surgical procedure. 在一些实施方式中,第一值在0. 2-0. 5的范围内,且第二值在0. 1-0. 3的范围内。 In some embodiments, the first value in the range of 0. 2-0. 5, and the second value in the range of 0. 1-0. 3. 在一些其他实施方式中,第一值可在0. 25-0. 35的范围内,且第二值可在0. 15-0. 25的范围内。 In some other embodiments, the first value may be in the range 0. 25-0. 35, and the second value may be in the range 0. 15-0. 25.

[0264] Z扫描器450的本实施方式以多种其他方式与现有的角膜激光传输系统不同,这些其他方式包括: [0264] Z scanner 450 of the present embodiment in various other ways conventional corneal laser delivery system, these otherwise include:

[0265] 1.在角膜激光传输系统中,典型地要求数值孔径在焦深的Z扫描期间不变以确保设计的简化。 [0265] 1. corneal laser delivery system, typically requires a numerical aperture during scanning focal depth Z to ensure constant for ease of design. 该设计对于角膜手术是令人满意的,这是由于典型地由Imm的Z扫描诱导的总像差并不是角膜激光传输系统的精度的严重限制因素。 The design is satisfactory for corneal surgery, due to the typically induced by Z-scan Imm total aberration is not a serious limiting factor in the accuracy of corneal laser delivery system. 相比之下,激光传输系统1的实施方式具有可变的数值孔径NA以保持在例如5-10mm的宽广的手术Z范围内将孔调整到其最优孔。 In contrast, laser delivery system according to embodiment 1 having a variable numerical aperture NA, for example, to maintain a wide range of 5-10mm surgical Z will be adjusted to its optimum aperture hole. 当然,可以通过基本上独立于Z焦深地调整数值孔径NA的这一特征而实现这一点。 Of course, this feature can be adjusted by the numerical aperture NA substantially independent of the depth of focus rather Z achieve this.

[0266] 2.并且,典型的现有角膜系统使其Z扫描器在物镜700中或作为物镜700的复杂实施中的一部分,而本文的Z扫描器450被设置在物镜700之前。 [0266] 2. Further, typical prior corneal lens system with its Z scanner 700 or as part of a complex of the objective lens 700 in the embodiment, the Z scanner 450 is herein disposed before the objective lens 700. 本文中,物镜700表示激光传输系统1的被设置在与XY扫描器和Z扫描器的功能机械壳分离的功能机械壳中的最后的透镜组。 Herein, the objective lens 700 represents the last set of laser transmission system is provided with an XY scanner and the scanner function of the mechanical Z shell dividing the shell mechanical function. 术语功能机械壳不是指传输系统的总外壳(其设计可由人机工程学和外观考虑决定),而是指将透镜保持到一起以执行其实际光学功能的外壳。 The term function refers to the total mechanical housing shell is not a transmission system (designed by ergonomics and appearance considerations determined), but the lens holding means together to perform the actual function of the optical housing. 本实施方式的物镜700典型地位于在由Z扫描器450输出并被镜600反射的XYZ扫描光束之后的光学路径中。 The objective lens 700 of the present embodiment is typically located in the optical path after the scanning beam by the XYZ scanner 450 and the output Z of the reflecting mirror 600.

[0267] 3.图12A-B示例了晶状体手术光学系统的又一设计挑战。 A further design challenge [0267] 3. FIG. 12A-B illustrates the optical system of the lens surgery. 显然,对于典型的Imm的角膜Z焦深,总像差呈现宽的且平坦的最优区域,由此(i)可以为其他考虑而使系统参数最优化,(ϋ)可以使用宽的Z扫描范围,以及(iii)需要对系统参数的较不精确的调整,所有这些都不会很大地劣化焦斑尺寸。 Clearly, for a typical focal depth Z Imm cornea, the total aberration shows a broad and flat optimum area, whereby (i) may be optimized considering the other system parameters, (ϋ) may use wide scanning Z range, and (iii) requires less precise adjustment of the system parameters, all of which are not greatly deteriorated focal spot size. 相比之下,对于晶状体手术系统,当(i)为其他考虑而使系统参数最优化,(ii)实施较宽的Z扫描范围以及(iii)较不精确地调整系统参数时,焦斑尺寸迅速劣化。 In contrast, the lens for the surgical system, when (i) the other system parameters to consider optimization, (ii) implement a wide scanning range Z and (iii) when a less accurate adjustment of system parameters, focal spot size deteriorate rapidly. [0268] 在Z扫描器450的实施例的又一方面中,包括成像子系统或视觉观测用光学装置子系统的激光传输系统通过镜600而使与这些子系统中的任一个关联的光束耦合到激光传输系统1中。 [0268] Z-beam coupling in the scanner 450 of the embodiment of yet another aspect, the visual observation or imaging subsystem comprising an optical subsystem means laser delivery system 600 through the mirror according to any one of these subsystems associated 1, the laser delivery system. 镜600可以为例如分色镜。 Mirror 600 may be, for example, a dichroic mirror. 在典型的手术系统中,物镜700是指在光学路径中位于镜600之后的透镜组。 In a typical surgical system, the objective lens 700 lens means located after the lens group 600 in the optical path.

[0269] 实施在镜600之前并与物镜700分离的Z扫描器450是重要的设计考虑,这同样是由于物镜700的重量是关键因素,因为物镜700与诸如患者的眼睛的目标组织基本上直接接触。 [0269] Before embodiments of the objective lens 700 and the mirror 600 and the scanner 450 is separated Z important design consideration, which is also due to the weight of the objective lens 700 is a critical factor, because the objective lens 700 with the target tissue such as the patient's eye substantially directly contact. 因此,使物镜700的重量或质量最小化可以使激光传输系统1的实施对眼施加减小的压力。 Accordingly, the objective lens 700 so that the weight or mass can minimize eye laser delivery system 1 of embodiment applying the reduced pressure. 并且,由于该压力会使眼自身变形并由此降低手术过程的精确度,因此减少对眼睛的压力的设计显著增加了眼科手术的精确度。 Further, since the intraocular pressure will itself is deformed and thus reduce the accuracy of the surgical procedure, thus reducing the pressure on the eye design significantly increases the accuracy of ophthalmic surgery.

[0270] 表8-9示例了用于第一扩束器块400和可移动扩束块500的各种实施例的一些相关参数的范围。 [0270] Table 8-9 illustrates a first expander block 400 of some parameters and scope of the various embodiments of the movable block 500 of the beam expander. 每个扩束器块可具有2-10个透镜,在一些实施例中,可具有3-5个透镜,这些透镜被配置为执行上述功能。 Each block may have a beam expander lens 2 to 10, in some embodiments, it may have 3-5 lenses which are configured to perform the above functions.

[0271] 表8示例了使用工业标准规约的第一扩束器块400的五透镜实施例,关于各表面示出了厚透镜的组。 [0271] Table 8 illustrates the use of industry standard protocol of the first expander block 400 of the five-lens embodiment shown on the respective surfaces of the thick lens group. 第一扩束器块400可以包括具有处于下列范围(由括号指示)的参数的透镜411、412、413、414 以及415 : First expander block 400 may include a lens having the following parameters is in the range (indicated by a bracket) of 411,412,413,414 and 415:

[0272] [0272]

Figure CN102596126AD00271

[0273]表 8 [0273] TABLE 8

[0274] 在一些实施例中,第一扩束器块400自面向XY扫描器300的输入侧依次包括:具有正折光力的第一透镜组、具有面向输入侧的凸起表面的凹凸透镜(meniscus lens)、以及具有面向输入侧的凹入表面的第二透镜。 [0274] In some embodiments, a first beam expander 400 since the input side facing the XY scanner 300 in turn comprises block: meniscus lens convex surface facing the input side, having positive refractive power of the first lens group having a ( meniscus lens), and a second lens having a concave surface facing the input side.

[0275] 其他实施方式涉及通过比例因子α缩放的表8的实施方式,具有五个缩放的透镜,使第二列的曲率乘以α,使第三列的距离乘以Ι/a,以及具有未改变的折射率η。 [0275] Other embodiments relate embodiment by a scale factor [alpha] scaling of Table 8, the zoom lens having five, so that [alpha] is multiplied by the curvature of the second column, the third column is multiplied by the distance Ι / a, and a unaltered refractive index η. 比例因子α可以取0.3与3之间的值。 Scaling factor α can take a value between 0.3 and 3.

[0276] 表9示例了移动扩束器块500的四透镜实施例,包括具有处于下列范围的参数的透镜511、512、513 和514 : [0276] Table 9 illustrates an embodiment of a movable expander block 500 of a four-lens, comprising a lens having the parameters as at 511,512,513 and 514 in the following ranges:

[0277] [0277]

Figure CN102596126AD00281

[0278]表 9 [0278] Table 9

[0279] 可移动扩束器块500的一些实施方式自面向第一扩束器块400的输入侧依次包括:具有面向输入侧的凹入表面的凹凸透镜、具有负折光力的负透镜、以及具有正折光力的正透镜组。 [0279] movable beam expander some embodiments block 500 from block facing a first input side of the beam expander 400 includes, in order: a meniscus lens having a concave surface facing the input side, having negative refractive power, a negative lens, and a positive lens group having a positive refractive power.

[0280] 其他实施方式涉及通过比例因子α缩放的表9的实施方式,具有四个缩放的透镜,使第二列的曲率乘以α,使第三列的距离乘以l/α,以及具有未改变的折射率η。 [0280] Other embodiments relate embodiment by a scale factor [alpha] scaling of Table 9, the zoom lens having four, so that [alpha] is multiplied by the curvature of the second column, the third column is multiplied by the distance l / α, and having unaltered refractive index η. 比例因子α可以取0. 3与3之间的值。 Scaling factor α can take a value between 0.3 and 3.

[0281] 图13Α-Β示例了其中第一扩束器块400与移动扩束器块500之间具有不同距离的两种配置下的表8-9的实施例。 [0281] FIG 13Α-Β exemplary embodiment in which the embodiment 400 Table 8-9 under two kinds of moving the beam expander 500 blocks having different distances between the first expander block configuration. 在一些实施方式中,移动扩束器块500可以相对于第一扩束器块400以d = 5-50mm的范围内的距离移动。 In some embodiments, the beam expander block 500 moves relative to the first expander block 400 d = distance to the range of movement of 5-50mm.

[0282] 这些附图示例了在工作时的Z扫描器450的设计考虑。 [0282] These drawings illustrate a work Z scanner 450 design considerations.

[0283] 图13示例了当可移动扩束器块500处于相对远离第一扩束器块400的位置时的情况。 [0283] FIG. 13 illustrates a beam expander when the movable block 500 when the case is in a first position relatively far from the beam expander block 400. 在该情况下,从组合的组件引出的光束具有(i)会聚的光线、(ii)在出瞳ExP处的相对大的直径、(iii)当固定焦距物镜被设置在Z扫描器450的出瞳附近时焦斑的较浅的Z深度,以及由此(iv)通过具有较大数值孔径NA的光束形成焦斑。 In this case, from the combined beam components having leads (i) converging the light, (ii) at a relatively large diameter at the pupil ExP, (iii) when a fixed focus objective lens is disposed at a Z scanner 450 Z-depth shallower focal spot near the pupil, and thus (iv) a focal spot formed by a beam having a large numerical aperture NA.

[0284] 图1¾示例了当可移动扩束器块500比图13A的情况更靠近第一扩束器400时的情况。 [0284] FIG 1¾ example the case when the movable beam expander block 500 of FIG. 13A is closer than the case where the first expander 400. 此时,光束具有⑴发散的光线、(ii)在出瞳ExP处的较小的直径、(iii)当固定焦距物镜被设置在Z扫描器450的出瞳处时焦斑的较深的Z深度,以及由此(iv)通过具有较小数值孔径NA的光束形成焦斑。 In this case, the light beam having a diverging ⑴, (ii) at a smaller diameter at the pupil ExP, (iii) when a fixed-focus lens is provided deeper focal spot when Z Z scanner 450 at the exit pupil depth, and thus (iv) a focal spot formed by a beam having a small numerical aperture NA.

[0285] 总之,在较浅的Z焦深处,通过大NA光束产生焦斑,而对于增加的Z焦深,数值孔径NA减小。 [0285] In summary, the shallow focal depth of Z, the focal spot produced by the high NA light flux, and Z for increased depth of focus, numerical aperture NA is reduced. 通过最优化扩束器块400和500的出瞳ExP的位置和会聚物镜700的入瞳的位置,可以使数值孔径NA的相对改变最优化。 By optimizing the position of the exit pupil expander ExP the blocks 400 and 500 and the converging position of the entrance pupil of the objective lens 700 can change the relative numerical aperture NA optimized. 这些实施方式是用于在即使不使用预补偿器200的功能的情况下最优化在不同焦深处的数值孔径的备选方式。 These embodiments are alternative ways to optimize the numerical aperture at different depths of focus in the case without using the pre-compensation function 200 is used.

[0286] 如上所述,可以在具有或不具有预补偿器200的情况下,广泛地调整数值孔径NA。 [0286] As described above, in the case with or without a pre-compensator 200, broadly tuned numerical aperture NA. 在整个激光传输系统1中,可以通过控制预补偿器200、第一扩束器块400或可移动扩束器块500,或者通过组合地控制这些块,来调整数值孔径NA。 In the entire laser delivery system 1 can 200, a first beam expander 400, or the numerical aperture NA of the block movable block the beam expander 500, or by controlling the combination of these blocks is adjusted by controlling the pre-compensator. 在实践中,实施方式的实际选择依赖于其他较高级系统级要求,例如,扫描范围、扫描速度以及复杂性。 In practice, the actual choice of embodiment depends on the requirements of other higher level systems, e.g., scanning range, the scanning speed, and complexity. 具有其他数值范围的实施方式还可以被配置为实施上述功能中的部分或全部功能。 Other embodiment having a range of values ​​may also be configured to implement part or all of the functions of the above-described functions.

[0287] 图14示例了Z扫描器450的又一方面。 [0287] FIG. 14 illustrates another aspect of the Z scanner 450. 示出了从XY扫描器300的引出支点(exitpivot point)PP(XY)出射的三个不同的特征光束。 It shows features from three different light beams emitted lead fulcrum (exitpivot point) PP (XY) XY scanner 300. 显著地,Z扫描器450将所有三个特征光束聚焦到物镜700的引入支点(entrance pivot point)PP(O)中。 Significantly, Z scanner 450 to focus the beam wherein all three incorporated pivot the objective lens 700 (entrance pivot point) PP (O) in the. 例如,可通过可移动扩束器500调整PP(O)的位置。 For example, by the position of the movable beam expander 500 is adjusted PP (O) a.

[0288] 如下所述,产生离开XY扫描器300的反射镜的支点PP (0)的激光传输系统例如在其中PP(O)支点落入物镜700内部的实施例中具有有用的特征。 [0288] as described below, generating a mirror of the XY scanner 300 away from the pivot point PP (0), for example, a laser delivery system which has a useful feature in Example PP (O) fulcrums 700 fall inside the objective lens.

[0289] 在其他实施例中,XY扫描器300具有比到Z扫描器450的距离远的引出支点PP(XY)。 [0289] In other embodiments, XY scanner 300 has a scanner 450 than the distance Z to the lead distal pivot PP (XY). 在这些实施例中,Z扫描器450仅仅将XY扫描器300的引出支点PP(XY)修改成物镜700的引入支点PP(O)。 In these embodiments, Z is a scanner only the XY scanner 450 300 drawn fulcrum PP (XY) modified to introduce a fulcrum PP (O) of the objective lens 700.

[0290] 在任一情况下,这些实施方式利用位于第一扩束器块400与可移动扩束器块500之间的中间焦平面451的存在。 [0290] In either case, these embodiments are positioned using a first beam expander 400 and the movable block intermediate between the beam expander block 500 of the focal plane 451 exists. 由具有基本上相同的Z坐标的横向排列的三个特征光束的焦点来指示该中间焦平面451的存在。 Characterized by the focus three beams arranged horizontally have substantially the same Z-coordinate to indicate the presence of the intermediate focal plane 451. 相反地,不具有这样的中间焦平面的实施方式并不充分适合具有可调整的支点PP(O)。 Conversely, without such an intermediate focal plane of the embodiment is not well suited PP has an adjustable fulcrum (O).

[0291] 5.物镜700 [0291] The objective lens 700

[0292] 在一些实施方式中,由Z扫描器450输出的激光束被分束器/分色镜600偏转到物镜700上。 [0292] In some embodiments, the laser beam output by Z scanner 450 is a beam splitter / dichroic mirror 600 to the objective lens 700 deflect. 通过该镜600,还可以将各种辅助光耦合到激光传输系统1中。 By this mirror 600 may also be coupled to various auxiliary laser light transmission system 1. 辅助光源可以包括与光相干断层成像(OCT)系统、照明系统以及视觉观测块相关的光。 Auxiliary light sources may include optical coherence tomography (OCT) systems, lighting systems and the associated visual inspection block light.

[0293] 物镜700可以为从激光引擎100传播通过XY扫描器300和Z扫描器450的XYZ扫描激光束和进入手术目标区域的辅助光提供共享的光学路径。 [0293] the objective lens 700 may provide light from the optical path shared by the laser engine 100 propagating through the XY scanner 300 and scanning the laser beam Z XYZ scanner 450 and the auxiliary access to the surgical target region. 在各种实施方式中,物镜700可以包括物镜透镜组。 In various embodiments, the objective lens 700 may include the objective lens group. 在一些实施方式中,物镜透镜组中的透镜不能相对于彼此移动。 In some embodiments, the objective lens of the lens group is not moved relative to each other. 因此,虽然物镜700为Z扫描功能的整体的组成部件(integral part),但物镜700对可变或动态方式的Z扫描没有贡献。 Accordingly, while the objective lens 700 as an integral component part of the scan function Z (integral part), but does not contribute to the objective lens 700 or the variable Z is dynamically scanned. 在这些实施方式中,没有调整物镜700中的透镜位置来移动焦斑的Z焦深。 In these embodiments, no adjustment of position of the objective lens 700 is moved in the focal depth Z of the focal spot.

[0294] 物镜700的实施方式可以控制手术脉冲激光束的球面像差、彗形像差以及更高级像差中的至少一种。 Embodiment [0294] The objective lens 700 may control the operation of the pulse laser beam spherical aberration, coma aberration and at least one of higher.

[0295] 由于物镜700导引不同波长的光,物镜700的实施方式使用消色差透镜组。 [0295] Since different wavelengths of light guide 700 of the objective lens, the objective lens 700 of the embodiment using achromatic lens group. 辅助光的波长可以例如在0. 4微米到0. 9微米的范围内,且手术光的波长可以在1. 0-1. 1微米范围内。 Auxiliary light wavelength may be in the range of 0.4 microns to 0.9 microns, and the wavelength of light may be in operation within, for example, 1. 0-1. 1 micron. 在所使用的光的整个波长范围,例如,上述实例中的0. 4微米到1. 1微米,物镜700的实施方式使色差保持为低于预定值。 In the entire wavelength range of light to be used, for example, in the above example 0.4 microns to 1.1 microns, the objective lens 700 of the embodiment is the color difference remains below a predetermined value.

[0296] 物镜700的重量和质量为重要的考虑因素。 [0296] The weight of the objective lens 700 and the quality of important considerations. 在一些实施方式中,物镜与患者的眼睛机械接触。 In some embodiments, the objective lens and the patient eye mechanical contact. 因此,物镜对眼睛施加压力。 Thus, pressure is applied to the eye lens. 该压力会使眼睛变形而偏离其放松配置,使得更加难以选择目标并精确地导引手术激光束。 This pressure causes deformation of the eye departing from its relaxed configuration, making it more difficult to accurately select the target and guiding the surgical laser beam.

[0297] 此外,如果患者在手术过程期间移动,则优选物镜可响应于患者的移动而以最小的阻力移动。 [0297] Further, if the patient moves during a surgical procedure, it is preferable that the objective lens may be movable in response to movement of the patient with minimal resistance. 虽然可利用弹簧系统或抗衡力(counterbalance)来静态平衡物镜的重量,但这些措施不会减小动态或惯性力。 Although a counter force or a spring system (counterbalance) to static balance the weight of the objective lens, but these measures do not reduce the dynamic or inertia forces. 事实上,这样措施会增加这些力。 In fact, such measures would increase these forces. 所有这些考虑表明减小物镜700的重量或质量是有用的。 All these considerations suggest reducing the weight or mass of the objective lens 700 is useful.

[0298] 对于眼手术过程存在识别临界力和对应的物镜质量的多种方式。 [0298] For a variety of ways to identify the presence of a threshold force ophthalmic surgical procedure and a corresponding mass of the objective lens. 例如,在Duma SM, Ng TP, Kennedy EA, Stitzel JD, Herring IP,Kuhn F.的Determination ofSignificant Parameters for Eye Injury Risk from Projectiles, J Trauma. 20050ct ;59(4) :960-4中发表了对眼的各种冲击的综述。 For example, in the Determination Duma SM, Ng TP, Kennedy EA, Stitzel JD, Herring IP, Kuhn F. The ofSignificant Parameters for Eye Injury Risk from Projectiles, J Trauma 20050ct; 59 (4):. 960-4 published in the eye the review of the various shocks. 该论文综述了冲击眼睛的物体并提供了冲击物体的临界能量值,该能量值对应于(i)对眼睛的不同类型的伤害,包括诸如角膜磨损的轻度损伤、诸如晶状体移位的中度损伤以及诸如视网膜损伤的严重损伤。 The paper summarizes the impact object of the eye and provides critical energy value of the impact object, the energy value corresponding to (i) different types of damage to the eye, including corneal abrasion such as mild injury, such as a shift lens moderate damage and serious injuries, such as retinal damage. 该论文还分配了伤害的概率,(ii)从代表百分之几的可能性的低概率,到代表约50%的可能性的中概率,到代表近乎伤害必然性的高概率。 The paper also assigned a probability of harm, (ii) the possibility of a few percent from the representative of the low probability, the probability of about 50% chance of representatives, on behalf of almost hurt to the inevitability of high probability. 该论文(iii)还基于冲击物体的形状、根据总冲击能量进行的分类和通过冲击面积归一化的冲击能量而对冲击情形(scenarios)进行分级。 The paper (iii) is also based on the shape of the impact object, and normalized by the area of ​​impact energy and impact of the graded impact situations (Scenarios) Total impact energy according to the classification performed.

[0299] 通过调查由物镜700的机械支撑系统的完全崩塌导致的最高可能冲击伤害,可将这些结果应用于眼手术的特定情况。 [0299] By investigating the highest possible impact damage to the mechanical support by the objective lens system 700 results in a complete collapse of these results may be applied to the particular case of eye surgery. 这样的崩塌可导致整个物镜700在典型的20-25mm的垂直路径内的自由落体,将所有物镜能量都转移到眼自身。 Such collapse can result in the entire objective lens 700 in a typical vertical free fall path of 20-25mm, all the energy is transferred to the objective lens the eye itself. 可以从所发表的根据已知的物理原理对物镜的自由落体建模的临界能量值来计算临界质量。 Can be published on the critical energy value is calculated modeling free fall from a critical mass of the objective lens according to known physical principles.

[0300] 该长度的垂直路径可来自以下设计原则。 [0300] The length of the vertical path may be from the following design principles. 物镜700可被安装在垂直滑动台上以通过到眼睛的门架(gantry)而提供激光传输系统1的安全并可靠的入位(docking)。 700 may be mounted to the objective lens into the eye through the gantry (Gantry) to provide safe and reliable laser delivery system 1 into position (Docking) in a vertical sliding table. 这样的设计放松了对门架的精确度和力要求,这是因为垂直门架收纳要在垂直行进范围内定位的物镜700。 This design force and relaxed accuracy requirements of the mast, because the vertical gantry to be positioned housed within the vertical range of travel of the objective lens 700. 此外,一旦眼睛入位,这些设计允许眼相对于激光源100垂直地移动,而不会破坏眼睛对激光传输系统1的附接。 Furthermore, once the eye in place, these designs allow the eye relative to the laser source 100 moves vertically, without damaging the eyes of a laser delivery system is attached. 这些移动可以因患者移动或手术床的移动而发生。 These movements can move due to patient movement or surgical bed occurs. 物镜700的20到25mm的垂直行进范围有效并安全地减轻了门架力和该范围内的患者移动。 20, the objective lens 700 to the vertical range of travel of 25mm effectively and safely reduce the patient within the range and the force for moving the gantry.

[0301] 最终,(iv)设计考虑还在物镜700的光学元件(例如,物镜透镜组中的仅仅玻璃透镜)的(“光学”)质量限定整个物镜的质量的下界的意义上影响临界质量,这是因为存在多种方式来减小物镜的外壳和控制系统的质量,但要减小透镜的质量却难得多。 [0301] finally, (iv) the design considerations of the objective optical element 700 is still (e.g., only the objective lens of a glass lens group) in the ( "optical") affect the quality of the critical mass defining a lower bound on the quality of the entire sense of the objective lens, this is because there are numerous ways to reduce the mass of the objective lens housing and the control system, but to a much reduced mass of the lens but difficult. 在本系统中,物镜的总质量可以为仅仅透镜的“光学”质量的两倍到三倍。 Quality in this system, the total mass of the objective lens may be simply "optical" two to three times.

[0302] 这些标准中的部分标准产生对临界质量的更严格的定义,其他标准仅仅是平滑的交叉相关(smooth crossover dependence)而其自身并非对严格定义有用。 [0302] These standards part of the standard to produce a more strict definition of the critical mass, other criteria are merely smoothed cross-correlation (smooth crossover dependence) and not be useful for their own strict definition.

[0303] 通过上述(i)-(iv)类别的所有可能组合,可以确定如下的四个对临界质量MC的相对严格并具有意义的定义: [0303] By the above-mentioned (i) - all possible combinations of (iv) category, may be determined as a relatively stringent and four meaningful definition of the critical mass of MC:

[0304] (I)MCl〜400克:即使在崩塌情形的最坏情况下,具有M < MCl的质量的物镜对患者也基本上没有伤害危险; [0304] (I) MCl~400 g: collapse even in the worst case scenario, with M <MCl quality of the objective lens to the patient also is substantially free of risk of injury;

[0305] (2)MC2〜750克:在MCl < M < MC2的范围的质量可具有大于10%的通过总冲击能量造成部分角膜磨损的可能性; [0305] (2) MC2~750 g: In MCl <M <MC2 mass range may have a total impact energy by greater than 10% likelihood of causing wear of the portion of the cornea;

[0306] (3)MC3〜1300-1400克:在MC2 < M < MC3的范围的质量会在任何冲击情形中具有50%的造成角膜磨损的可能性;以及最后 [0306] (3) MC3~1300-1400 g: The possibility of <M <MC3 mass range of 50% may have any impact in case of MC2 of corneal abrasion caused; and finally

[0307] (4)MC4〜3300克:在MC3 < M < MC4范围的质量在某些冲击情形中可造成近乎必然的角膜磨损,并可发展中等严重或更糟糕的伤害的非零可能性。 [0307] (4) MC4~3300 g: In MC3 <M <MC4 mass range in some cases may cause the impact of the almost inevitable corneal abrasion, and the development of moderately severe injury or worse non-zero likelihood.

[0308] 当然,所有这些概率要与实际发生的物镜的机械支撑系统的完全崩塌的小概率相乘。 [0308] Of course, all these probabilities are multiplied with a small probability to completely collapse the mechanical support system of the objective lens actually occurred. 然而,在眼科应用中,需要采取极端措施来防护所有能想到的伤害情形,然而,却未必使上述临界质量相关。 However, in ophthalmic applications, we need to take extreme measures to protect all damage scenarios can think of, however, not necessarily related to the above-mentioned critical mass.

[0309] 因此,关于物镜700的总质量和光学质量,上述考虑根据明确的标准确定四个临界质量。 [0309] Thus, on the total mass of the objective lens 700 and the optical quality of the four critical mass is determined according to considering specific criteria. 相应地,其中设计过程设法将物镜质量减小到低于上述临界质量MC4,...,MCl中的任一个的物镜700的实施例为安全的手术过程提供了较佳定量的可能性。 Accordingly, the design process which seek to reduce the mass of the objective lens is less than the critical mass MC4, ..., MCl any one objective lens 700 of the embodiment of security procedure gives a better quantitative possibilities.

[0310] 用于飞秒眼科激光的现有物镜具有大于5000克的质量,显著大于这四个临界质量中的最大者。 [0310] Existing ophthalmic lens for femtosecond laser having a mass greater than 5000 grams, was significantly greater than the critical mass of these four greatest. 一个例外为Manzi的美国专利申请20030053219,其描述了这样的透镜系统,其中,仅仅透镜的光学质量为约1000克,可能导致2000-3000克的总质量。 One exception is U.S. Patent Application 20030053219 Manzi, which describes such a lens system, wherein the optical lens has a mass of only about 1000 grams, may result in the total mass of 2000-3000 g. 虽然Manzi的设计要比其他现有物镜轻,但质量仍然是相当大的。 Although Manzi design than other existing objective light, but the quality is still quite large. 这主要归因于Z扫描器为物镜的整体的组成部件,因为物镜内部的透镜元件被用于Z焦点控制。 This is mainly due to the Z-components of the overall objective lens of the scanner, since the inside of the objective lens elements are used in Z focus control. Manzi需要附加的质量以用于精确加工的外壳、透镜的精确线形导引(linear guide)以及用于伺服马达,所有这些将总质量增加回到大于5000克的值。 Precision linear guide (linear guide) Manzi need for additional mass precisely machined housing, and a lens servo motors, all of which will increase the total mass of greater than 5000 grams Back.

[0311] 相比之下,物镜700的各种实施例的质量可落入上述四个质量范围中的任一个:0-400克、400-750克、750-1350克以及1350-3300克。 [0311] In contrast, various embodiments of the mass of the objective lens 700 may fall in any of the four a mass range: 0-400 g, 400-750 g, 750-1350 and 1350-3300 grams grams. 该质量可以为光学质量或总质量。 The mass may be an optical or mass of the total mass. 例如,在物镜700的实施方式中的透镜可以具有小于130克的质量。 For example, in the embodiment of the objective lens 700 may have a mass of less than 130 grams. 对于400克的总组装质量,将这些透镜安装到精确金属外壳中是可行的。 For assembling the total mass of 400 grams, the lenses to the precise mounting metal case it is feasible.

[0312] 物镜700的实施例通过将Z扫描功能移到单独的Z扫描器450,在单独的功能或机械外壳中收纳该Z扫描器450,而可以实现低于400克、750克、1350克以及3300克的这样的显著的质量减小。 Example [0312] Z of the objective lens 700 by the scanning function to a separate Z scanner 450, scanner 450 accommodating the Z or mechanical functions in a single housing, can be realized is less than 400 g, 750 g, 1,350 g and such a significant reduction in the quality of 3300 g. 这里,术语“功能或机械外壳”是指:总的非功能性设计考虑会导致将单独的Z扫描器450设置到与物镜700相同的常规容器中,但这样的常规容器并不用于光学功能或机械目的。 Here, the term "functional or mechanical housing" means: the total non-functional design considerations lead to the individual Z scanner 450 is set to the same objective lens 700 in conventional containers, but such containers are not used for conventional optical function or mechanical purpose.

[0313] 在一些实施例中,与通过调整物镜700的光学特性而执行至少部分动态Z扫描功能的相似物镜相比,可以使物镜700的质量以P(Hiass)百分比减小。 [0313] In some embodiments, the objective lens compared to a similar performing at least part of the dynamic scanning function Z of the objective lens by adjusting the optical characteristics 700, the quality of the objective lens 700 can be made to P (Hiass) percentage decreases. 这样的特性可以为将整个Z扫描器450整合到物镜700中,或将可移动扩束器块500整合到物镜700中,或将一个或多个可移动扫描透镜整合到物镜700中。 Such characteristics may be the entire Z scanner 450 integrated into the objective lens 700, a beam expander or the movable block 500 is integrated into the objective lens 700, or to integrate one or more movable scan lens 700 to the objective lens. POiiass)可以为10%、50%或100%。 POiiass) may be 10%, 50% or 100%.

[0314] 关于图14描述了物镜700和手术激光系统1的对应设计的另一相关方面,其中示出了:Z扫描器450的实施例可以将CTZ扫描的激光束聚焦到物镜的引入支点ΡΡ(0)。 [0314] On FIG. 14 depicts another related aspect of the objective lens 700 and correspondingly designed surgical laser system 1, there is shown: Z Example scanner 450 may scan the laser beam focusing CTZ to introduction of the objective lens fulcrum ΡΡ (0). 具有位于物镜700内部的引入支点PP(O)的实施例在光束朝该内部支点PP(O)会聚时在光学路径的大部分上具有大大减小的光束半径rb。 Example embodiments having the objective lens 700 is introduced inside the fulcrum PP (O) having a greatly reduced beam radius rb on most of the optical path when the light beam converges toward the inner pivot point PP (O). 进而,可以通过较小的透镜控制具有减小的光束半径rb的光束,导致物镜700的总质量的显著减小。 Further, the beam can be controlled with reduced beam radius rb of the lens through a smaller, results in a significant reduction in the total mass of the objective lens 700.

[0315] 在表10中总结并在图15中示例了根据上述设计见解的物镜700的实施方式。 [0315] Table 10 and summarized in the exemplary embodiment of the objective lens 700 according to the above findings of the design in FIG. 15. 物镜700的实施方式包括用于从Z扫描器450接收手术脉冲激光束的第一透镜组和用于从第一透镜组接收手术脉冲激光束并将该手术激光束聚焦到目标区域上的第二透镜组。 Embodiment 700 comprises the objective lens for the first lens group from Z scanner 450 receives the laser beam and the pulsed operation for receiving the laser beam from the pulsed operation of the first lens group and the surgical laser beam is focused onto a target area of ​​the second lens group.

[0316] 表10通过表面1到16更详细地示例了图15的物镜700。 [0316] Table 10 illustrates the surface of the objective lens 70 015 by 1 to 16 in more detail. 物镜700具有九个透镜L1-L9并通过表面17与患者接口800接口。 An objective lens 700 having nine lenses L1-L9 and the surface 17 and the patient interface 800 interfaces. 如上所述,括号表示对应参数可以取的范围。 As described above, brackets indicate that the corresponding range of the parameter can take. (表面1和2限定透镜L1/L2的双合透镜,表面8和9限定透镜L5/L6的双合透镜,因此,是16个表面而不是18个。) (1 and 2 define a lens surface of a doublet lens L1 / L2, the lens surfaces 8 and 9 define a doublet lens L5 / L6, and therefore, the surface 16 is not 18.)

[0317] [0317]

Figure CN102596126AD00321

[0318] 表10 [0318] TABLE 10

[0319] 在其他实施方式中,可以使用可比地较好满足上述设计考虑的具有不同参数范围的不同数目的透镜。 [0319] In other embodiments, it may be used to better meet different than the number of lenses with different parameter ranges of the above-described design considerations.

[0320] 在一些实施方式中,可以关于透镜组描述物镜700。 [0320] In some embodiments, the lens group can be described with respect to the objective lens 700. 例如,物镜700可以包括用于从Z扫描器450接收XYZ扫描激光束的第一透镜组以及用于从第一透镜组接收激光束的第二透镜组。 For example, the objective lens 700 may include a first lens group from Z scanner 450 receives XYZ scanning laser beam and a second lens group for receiving the laser beam from the first lens group. 第二透镜组可以包括第一透镜,该第一透镜具有在1. 54到1. 72的范围内的折射率、具有37.9到651/m的范围内的曲率的引入表面(entry surface)以及具有_15. 4到5. 21/m的范围内的曲率的引出表面(exit surface) 0此外,第二透镜组还可以包括第二透镜,该第二透镜与第一透镜相距0到6. 5mm的范围内的距离,具有在1. 56到1. 85的范围内的折射率、具有-55. 1到-21.81/m的范围内的曲率的引入表面以及具有11.4到沈.81/!11的范围内的曲率的引出表面。 The second lens group may include a first lens, the first lens has a refractive index in the range of 1.54 to 1.72, with the introduction of surface curvature in the range of 37.9 to 651 / m of (entry surface) and having lead _15 surface curvature in the range of 4 to 5. 21 / m of (exit surface) 0 further, the second lens group may further comprise a second lens, the second lens and the first lens away from 0 to 6. 5mm a distance in the range, has a refractive index in the range of 1.56 to 1.85, with the introduction of surface curvature in the range -55. 1 to -21.81 / m and having a sink to 11.4 .81 /! 11 lead surface curvature within the range. 物镜700可以通过第二透镜将激光束输出到患者接口800上。 The objective lens 700 may output a laser beam onto the patient interface 800 by the second lens.

[0321] 在一些实施方式中,物镜700的有效焦距小于70mm。 [0321] In some embodiments, the effective focal length of the objective lens 700 is less than 70mm.

[0322] 在一些实施方式中,从物镜700到患者接口800的距离小于20mm。 [0322] In some embodiments, the distance from the objective lens 700 to the interface 800, the patient is less than 20mm.

[0323] 在一些设计中,激光传输系统1的焦平面的曲率大于201/m。 [0323] In some designs, the curvature of the focal plane of the laser delivery system 1 is greater than 201 / m.

[0324] 还可以通过使用商业可得的光学设计软件包(例如,来自kmax DevelopmentCorporation 的Zemax 或来自Optical Research Associates 的Code V)而产生遵循通过本申请表达的设计原则的物镜700和整个手术激光系统1的多种其他实施方式。 [0324] Also by using commercially available optical design software packages (e.g., Zemax from kmax DevelopmentCorporation or from Optical Research Associates of Code V) is generated to follow the design principles of the present disclosure expressed by the objective lens 700 and the entire surgical laser system 1 more other embodiments.

[0325] 6.整个系统光学性能 [0325] 6. The optical performance of the entire system

[0326] 在各种实施方式中,可以以相互依赖的方式最优化子系统预补偿器200、XY扫描器300、Z扫描器450以及物镜700的参数,使得整个激光传输系统1的光学性能可呈现独特地用于例如眼科手术应用的特性。 [0326] In various embodiments, may be interdependent manner Precompensator optimization subsystem 200, XY scanner 300, Z 450 parameter scanner 700 and an objective lens, so that the overall optical performance of a laser delivery system may be It presents unique characteristics such as used in ophthalmic surgical applications.

[0327] 表IlA-B关于数值孔径NA和Mrehl比率S总结了在第一和第二实施方式中的整个激光传输系统1的光学性能。 [0327] Table IlA-B and on the numerical aperture NA Mrehl ratio S summarizes the optical performance of the entire laser delivery system in the first embodiment and the second embodiment 1. 仍然在与上述参考点Pl,... P5相似的参考点处表征光学性能。 Still and the reference point Pl, ... at reference point P5 similar optical performance characterization. 表IlA-B示出了其部件处于配置A、B、C和D的激光传输系统1的光学性能,该激光传输系统1将激光束分别传递到角膜的中心(A)、角膜的周边(B)、晶状体的中心(C)以及晶状体的周边(D)。 Table IlA-B shows the optical properties of the laser delivery system which member is arranged A, B, C and D 1, the laser delivery system 1 of the laser beam is transferred to the center of the cornea (A), the corneal periphery (B ), the center of the lens (C) and outside (D lens). 这些参考点代表与对晶状体进行眼科手术的挑战相关的大的手术体积。 These reference points represent major surgery and challenges related to the volume of the crystalline lens of the eye surgery.

[0328] 表IlA-B示出了具有特定值的参考点的径向坐标。 [0328] Table IlA-B illustrate the radial coordinate of the reference point having a specific value. 然而,在其他实施方式中,NA和S在这些特定径向坐标“附近”的相同的相应范围内取值。 However, in other embodiments, NA, and S corresponding values ​​in the same range of "near" to these particular radial coordinate. 在一些情况下,术语“附近”是指在示出的径向坐标值的P(radial)百分比内的径向坐标的范围,其中P(radial)可以为10%、20%和30%中的一个。 In some cases, the term "near" refers to a range of the radially inner radial coordinate value P shown in (Radial) the percentage of coordinates, where P (Radial) can be 10%, 20% and 30% of One. 例如,具有在7. 2mm到8. 8mm的范围内的ζ径向坐标的点在“晶状体,中心”参考点的ζ = 8. Omm径向坐标的P (radial) = 10%附近。 For example, having a radial point in the range of [zeta] 7. 2mm to 8. 8mm coordinates in the "lens center" reference point ζ = 8. Omm radial coordinate P (radial) = 10% nearby.

[0329] 此外,在一些实施方式中,NA和S落入为B、C和D配置列出的其三个相应范围中的仅一个内。 [0329] Further, in some embodiments, NA, and fall within the S configuration are for B, C and D which three respective ranges of only one of the. 在一些其他实施方式中,NA和S落入表IlA-B中的为B、C和D配置列出的其三个相应范围中的两个内。 In some other embodiments, NA, and S which fall within the three respective ranges of the two configurations are for B, C and D in Table IlA-B.

[0330] 显然,在整个晶状体手术体积内,所描述的激光传输系统被良好地校正到基本上衍射受限的光学性能。 [0330] Obviously, the entire volume of the lens surgery, laser delivery system described herein are well corrected to a substantially diffraction limited optical performance.

[0331] [0331]

Figure CN102596126AD00331

[0332] 表IlA [0332] Table IlA

[0333] [0333]

Figure CN102596126AD00332
Figure CN102596126AD00341

[0334] 表IlB [0334] TABLE IlB

[0335] 可以将具有高于0. 8的Mrehl比率S的相似设计视为等价于上面列出的设计,这是因为所有这些设计被视为衍射受限的系统。 [0335] may have a higher ratio of S 0. 8 Mrehl of similar design as equivalent to the above-listed design, since all of these designs are considered diffraction limited system.

[0336] 除了Mrehl比率S之外,还可以使用诸如焦斑半径rf的其他像差量度来表征激光传输系统1的整体光学性能。 [0336] In addition Mrehl ratio S, it may also be characterized overall optical performance of a laser delivery system, such as measurements using other aberrations of the focal spot radius rf. 由于与大数值孔径NA组合的大乂1~吐1比率转换(translate)为小焦斑半径rf,对于配置AD,在眼目标区域中,焦斑半径rf在一些实施方式中可保持为小于2微米,其它实施方式中保持为小于4微米,在另外的其他实施方式中保持为小于10微米。 Due to the combination of a large numerical aperture NA and qe 1 to 1 ratio conversion jetting (Translate) small focal spot radius rf, arranged for the AD, the eye target region at the focal spot radius rf] In some embodiments, can be held to less than 2 microns, in other embodiments less than 4 microns is maintained, is kept less than 10 microns in yet other embodiments.

[0337] 为了更精确地表征激光传输系统的性能并描述角膜和晶状体对光束传播的实质影响,通过设计包括眼作为光学设计的整体的组成部件的系统而获得(derive) 了表IlA-B的NA和S值。 [0337] In order to characterize more precisely the performance of the laser delivery system and are described materially affect the cornea and lens of the light propagating through the design of a system including the entire components of the eye as an optical design is obtained (Derive) Table IlA-B of NA and S values. 在一些设计中,以其自然形式来对眼建模。 In some designs, in their natural form eye model. 在其他设计中,包括眼的扁平程度,以表示可信的(authentic)手术条件。 In other designs, including degree of flattening of the eye, to represent authentic (Authentic) surgical conditions.

[0338] 表12总结了如图15中的模型人眼850所示的相关眼组织的简单模型。 [0338] Table 12 summarizes the simple model related ocular tissue model eye 850 shown in FIG. 15. (表面的编号被选择为继续表10的编号,从表面18开始,该表面将患者接口800连接到角膜组织。)通过0. 6mm厚度的角膜(经由共享表面18从患者接口进入)、水状体(aqueous humor)(经由表面19从角膜进入)以及晶状体(经由表面20从水状体进入)来对眼组织建模。 (No. Surface No. is selected to continue in Table 10, from the surface 18, the surface of the patient interface 800 is connected to the corneal tissue.) Through the cornea 0. 6mm thickness (from the interface 18 into the patient via a shared surface), aqueous modeling body tissues (aqueous humor) (from surface 19 to enter via the cornea) and a lens (20 enters from the surface through the aqueous humor) to the eye. 与透镜表面1-16的分离相似地处理眼表面的分离。 1-16 of the lens surface separation ocular surface treated similarly isolated.

[0339] [0339]

Figure CN102596126AD00342

表12 Table 12

使用眼组织的该模型计算表IlA-B的NA和S值。 Using this model of ocular tissue calculation table NA and S values ​​of IlA-B. 眼的相关模型导致可比的像差 Correlation model eye aberrations lead to comparable

[0340] [0340]

[0341]量度。 [0341] measure.

[0342] 在单独的其他方面中,在一些实施方式中,可通过使某些畸变和场曲保持未经光学装置修正,来简化整个激光传输系统1的光学设计。 [0342] In another separate aspect, in some embodiments, it can be obtained by holding some distortion and curvature of field without correcting optical means, to simplify the overall optical design of a laser delivery system.

[0343] 图16示例了,在某些系统中,该设计原则使手术系统的位置精度的优良性降低。 [0343] FIG. 16 illustrates, in some systems, the design principle that the decrease in positional accuracy good surgical system. 方形点表示当XY扫描器300的反射镜以1度步长(St印)扫描且Z扫描器450通过使可移动扩束器500以5mm步长移动来扫描Z焦深时焦斑的位置。 450 square points represents the position of the mirror of the XY scanner 300 when in 1 degree steps (St printing) and Z scanner scanning the focal spot 500 to 5mm when the steps move through the scanning focus depth Z the movable beam expander. 显然,被定义为在保持Z焦深恒定时的焦斑的XY扫描位置的“焦平面”是弯曲的。 Obviously, it is defined as the XY scanning of the focal spot position at the time of holding constant the focal depth Z "focal plane" is curved. 在横向周边,切割深度较浅,这与具有未校正的场曲的透镜的公知特性一致。 Transverse periphery, the cutting depth is shallow, which is consistent with the uncorrected field curvature having a lens of known characteristics.

[0344] 同样,如果XY扫描器300的反射镜保持固定且Z扫描器450扫描Z焦深,则焦斑的横向位置改变。 [0344] Similarly, if the XY scanner mirror 300 is kept stationary and Z scanner 450 scans the focal depth Z, to change the lateral position of the focal spot. 进一步使设计复杂化,径向横向XY位置和Z焦深都没有呈现出对相应扫描器位置的线性依赖性。 Further complicating the design, the radial position of the lateral XY and Z have the depth of focus does not exhibit a linear dependence on the respective position of the scanner. 在XY平面中,这些畸变称为桶形畸变或枕形畸变。 In the XY plane, these distortion or barrel distortion is called pincushion distortion. (在许多实施方式中,第三坐标,即,XY扫描器300的方位角不变地转换(transfer)到焦点位置的方位角,因此将被省略(suppress)。) (In many embodiments, a third coordinate, i.e., XY scanner 300 is the same azimuth angle converted (Transfer) to the focal position of the azimuth, thus it will be omitted (suppress).)

[0345] 图17示例了激光传输系统1的一些实施方式如何提供对上述挑战的新的计算解(computational solution) 0以球坐标(ζ,χ,φ)给出扫描器坐标,其中ξ为Z扫描器450的位置,χ为XY扫描器300关于光轴的倾斜角,Φ为方位角。 [0345] FIG. 17 illustrates how the laser delivery system 1 of the embodiment of some embodiments provide a new solution to the above challenges computing (computational solution) 0 to spherical coordinates (ζ, χ, φ) is given scanner coordinate, wherein Z is ξ the position of the scanner 450, χ is the inclination angle of the XY scanner 300 about the optical axis, Φ is the azimuthal angle. 通过柱面焦点坐标(z, r,Φ)给出焦斑位置,z为Z焦深,r为与光轴的径向距离,Φ为方位角。 The focal position by the focal spot is given a cylindrical coordinate (z, r, Φ), z is the depth of focus Z, r is the radial distance from the optical axis, Φ is the azimuthal angle.

[0346] 焦点位置的方位角与扫描器的方位角基本上相同,因此未示出。 [0346] azimuth and azimuth scanner focal position is substantially the same, and therefore not shown. 剩余的XY和Z扫描器坐标(ζ,Χ )在其相应扫描范围内被离散化,限定了扫描格栅和对应的扫描矩阵Cij, 该扫描矩阵Cu被定义为Cu = ( ζ χ j)。 The remaining XY and Z coordinates of the scanner ([zeta], [chi]) is discretized within their respective scan range defining a grid and scanning scan matrix Cij corresponding to the scan matrix is ​​defined as Cu Cu = (ζ χ j). 如果实际扫描器坐标取为值(ζ i(l,)c J0),则扫描矩阵Cu在该特定的(i0,j0)对处为1,而对所有其他的(i,j)对为零。 If the actual value is taken as the coordinates of the scanner (ζ i (l,) c J0), the scan matrix in this particular Cu (i0, j0) of the 1, while all other (i, j) to zero .

[0347] 相似地,可以通过二维焦点矩阵、表征焦斑位置,其中、涉及离散的径向和Z 深度焦点坐标(zk,Γι)0关于扫描器矩阵Cij和焦点矩阵、,可用四维转移矩阵(transfer matrix) Tijkl来表征激光传输系统1的光学性能,其中四维转移矩阵Tijkl表达扫描器坐标(ζ i,Χ」)如何转换到焦点坐标(zk,rx):概括而言,S = TC,或详细而言: [0347] Similarly, by the two-dimensional focus matrix, characterized by the position of the focal spot, which relates to discrete radial depth of focus and the Z coordinate (zk, Γι) 0 matrix Cij on the scanner and focus matrix available ,, dimensional transfer matrix (transfer matrix) Tijkl to characterize the optical performance of a laser delivery system, wherein the four-dimensional transfer matrix Tijkl scanner coordinate expression (ζ i, Χ ") is converted to the focal point coordinates (zk, rx): in summary, S = TC, or more specifically:

[0348] [0348]

Figure CN102596126AD00351

[0349] 虽然转移矩阵Tijkl表示扫描器矩阵Cij和焦点矩阵、之间的线性关联,但在一些其他实施方式中,在扫描器矩阵Cu与焦点矩阵、之间可以存在非线性关系。 [0349] Although the scanner transfer matrix represents Tijkl matrix Cij and focus matrix, linear correlation between, but in other embodiments, the scanner and the focus matrix Cu matrix, there may be non-linear relationship between. 在这些实施方式中,式(¾被非线性关联替代。 In these embodiments, the formula (¾ nonlinear correlation is replaced.

[0350] 激光传输系统1可被设计为通过计算的光线跟踪、物理校准或二者的组合来使转移矩阵T的元最优化。 [0350] 1 laser delivery system can be designed by ray tracing calculations, or combinations of both physical calibration element to make the transfer matrix T is optimized. 在可被用于这样的目的的美国专利申请US20090131921中描述了物理校准方法的实施方式。 In U.S. Patent Application US20090131921 may be used for such purposes is described in the physical embodiment of the calibration method.

[0351] 典型地,转移矩阵T是可逆的并可被用于产生逆转移矩阵Γ1,该逆转移矩阵将焦点矩阵、的元关联到扫描器矩阵Cijtl [0351] Typically, the transfer matrix T is reversible and may be used to produce an inverse Gamma] 1 transfer matrix, the inverse matrix of the focal point transfer matrix, a matrix element associated to the scanner Cijtl

[0352] 或者,在一些实施例中,可以通过以目标区域中希望的焦点矩阵、开始计算设计处理而直接确定逆转移矩阵T—1,并使用例如光线跟踪来重构对应的扫描器矩阵Cijtl [0352] Alternatively, in some embodiments, the target region may be by a desired focal matrix calculation design process starts directly determining the inverse transfer matrix T-1, for example, ray tracing using the reconstructed matrix corresponding scanner Cijtl

[0353] 图17-18示例了这样的关系。 [0353] FIG 17-18 illustrates such a relationship. 图17-18是列线图,示例了XY扫描器300或Z扫描器450可被调整到哪个(ζ Xj)扫描器坐标以将光束聚焦到在z和r轴上示出的(zk,ri) 焦点坐标。 17-18 is a collinear diagram, illustrates the XY scanner 300 or the scanner 450 may be adjusted Z to which (ζ Xj) to focus a beam scanner coordinate to (zk in the z-axis and r shown, ri ) focus coordinates.

[0354] 图17示出了与(z,r)焦点坐标对应的XY扫描器300的χ倾斜角。 [0354] FIG. 17 shows a (z, r) corresponding to the coordinates of the XY scanner focus χ 300 tilt angle. 作为实例,为了实现ζ = 6mm的Z深度和r = 4mm的径向位置,虚线表明可以使用x = 6. 4度的XY扫描器倾斜角。 As an example, in order to achieve the depth ζ = Z r = 6mm and 4mm radial position, the dashed line indicates the XY scanner can use x = 6. 4 ° tilt angle.

[0355] 图18表明:为了实现相同的(z,r) = (4,6)焦点坐标,可以使用ζ = 15. 5mm的Z扫描器位置。 [0355] FIG. 18 shows that: In order to achieve the same (z, r) = (4,6) coordinates of focus, may be used ζ = Z position of the scanner of 15. 5mm. 通过计算,列线图可被存储在计算机存储器中作为查找表。 By calculation, nomograms can be stored in a computer memory as a lookup table. 在所存储的查找坐标之间的值可以由二维线性或二次插值法迅速确定。 Find the value between the stored coordinates may be determined by two-dimensional linear interpolation or quadratic rapidly.

[0356] 知晓转移矩阵T及其逆矩阵Γ1允许激光传输系统1的实施例通过使用计算方法替代光学方法来校正图16的像差。 [0356] the transfer matrix T and its inverse matrix Γ1 embodiment allows the laser delivery system to correct aberrations in Example 1 of FIG. 16 instead of the optical method by using the calculation method. 这些实施例可包括计算控制器,该计算控制器可以控制XY扫描器300和Z扫描器450中的至少一个以控制激光传输系统1的光学畸变。 These embodiments may include a calculation controller, the controller may control calculates the XY scanner 300 and at least one Z scanner laser delivery system to control the optical distortion in the 4501's.

[0357] 图19示例了:例如,如果在目标区域中希望沿具有减小的光学畸变的扫描模式(pattern)扫描,例如,沿在预定Z焦深z处的平焦平面扫描,计算控制器可以执行以下计算控制方法900的步骤: [0357] FIG. 19 illustrates: For example, if an optical distortion along the desired scan pattern in the target region decrease (pattern) scan, for example, along a predetermined focal depth Z z at the focal plane scan level, calculation controller the control method may perform the following calculation step 900:

[0358] (910):接收与目标区域中的具有减小的光学畸变的扫描模式对应的焦点矩阵、 的元和输入(zk,rx)焦点坐标中的至少一个; [0358] (910): receiving the target focus area of ​​the optical scanning pattern having reduced distortion corresponding matrix elements and the input (zk, rx) at least one focal point coordinates;

[0359] (920):使用预定的逆转移矩阵(T—OiM计算或从存储的存储器调用与焦点矩阵Skl的元或输入(zk,rx)焦点坐标对应的扫描器矩阵Cij的元和坐标(ζ χ ρ扫描器坐标中的至少一个;以及 [0359] (920): using a predetermined inverse transfer matrix (T-OiM Cij is calculated matrix element or a scanner, and the focus coordinates from memory recall or enter the matrix Skl storage element (zk, rx) corresponding to the coordinates of the focal point ( ζ χ ρ scanner coordinate at least one; and

[0360] (930):根据计算的(ζ X j)扫描器坐标控制Z扫描器450和XY扫描器300中的至少一个以根据焦点矩阵Skl的元或输入(zk,ri)焦点坐标来扫描焦斑。 [0360] (930): According to (ζ X j) Z scanner coordinate calculation control scanner 450 and the XY scanner 300 to focus at least one of the coordinates (zk, ri) The focus of the matrix Skl membered or scanned input focal spot.

[0361] 相对于不具有这样的控制器的相同或相似的激光系统,具有这样的计算控制器的激光传输系统可以减小光学畸变。 [0361] with respect to the laser delivery system does not have the same or similar laser system such controller, the controller having such calculations can be reduced optical distortion. 减小程度在一些实施中可以高达10%,在其他实施例中可以高达30%。 In some embodiments the degree of decrease may be up to 10%, in other embodiments, may be up to 30%.

[0362] 减小的光学畸变可以为像差、场曲、桶形畸变、枕形畸变、弯曲焦平面以及弯曲扫描线(希望平行于Z轴)中的任一种。 [0362] The optical distortion may be reduced aberration, curvature of field, barrel distortion, pincushion distortion, the curved focal plane and a curved scanning line (parallel to the Z-axis desired) of any one.

[0363] 在一些实施方式中,计算控制器与激光传输系统的其他块协作来执行这些功能, 所述其他块包括可能地利用其上述特征中的任一者的预补偿器200、XY扫描器300、Z扫描器450以及物镜700。 [0363] In some embodiments, the controller and other collaborative computing block laser delivery system to perform these functions, the possible use of other blocks comprising the pre-compensator which features described above in any one of 200, XY scanner 300, Z scanner 450 and an objective lens 700.

[0364] 依赖于计算控制以减小光学像差的原理,可能的相似实施方式的数目是极大的。 [0364] depends on the calculation control principles to reduce optical aberrations, a similar number of possible embodiments is great. 例如,在一些实施例中,计算控制器能够在具有低于临界曲率值的曲率的焦平面内扫描焦斑。 For example, in some embodiments, the controller calculates the focal spot in the focal plane can be scanned with a curvature of less than a critical curvature value. 在一些其他实施方式中,可以利用对计算控制器的适宜操作来扫描具有预定形状的表 In some other embodiments, the table may be utilized to optimum operating calculation controller scan having a predetermined shape,

[0365] 虽然该文件包含许多细节,但这些细节不应被解释为对本发明或所要求保护的范围的限制,而是应被解释为对本发明的特定实施例具体化的特征的描述。 [0365] While this document contains many specifics, these specifics should not be construed as limitations on the scope or the claimed invention, but rather as descriptions of features specific to particular embodiments of the embodiment of the present invention. 在本文件的分开的实施例的上下文中描述的特定特征还可以组合而被实施为单个实施例。 Specific features described in the context of separate embodiments, this file may also be implemented in combination as a single embodiment. 相反地,在单个实施例的上下文中描述的各种特征同样可以分开地在多个实施例中实施或在任何合适的子组合中实施。 Conversely, various features that are described in the context of a single embodiment, may also be separately implemented in a plurality of embodiments or in any suitable subcombination embodiment. 此外,虽然在上面特征被描述为在特定组合中起作用以及甚至被初始要求保护,但来自所要求保护的组合的一个或多个特征在一些情况下可从组合中去除,以及所要求保护的组合可涉及子组合或子组合的变形。 Furthermore, although described above as acting in certain feature combinations and even initially claimed as such, but one or more features from a claimed combination may be removed from the combination, in some cases, and claimed combination may be directed to a subcombination or variation of a subcombination.

[0366] 公开了成像导引激光手术技术、装置以及系统的多种实施方式。 [0366] Various embodiments disclosed imaging guided laser surgical techniques, apparatus and systems. 然而,可以基于所描述的内容而对所描述的实施方式以及其他实施方式进行变形和增强。 However, variations and enhancements may be of the described embodiments and other embodiments based on the content herein.

Claims (21)

1. 一种用于眼科手术的激光系统,包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所产生的脉冲激光束并输出扫描激光束,所述XY扫描器包括:X扫描器,其包括两个χ扫描反射镜;以及Y扫描器,其包括两个Y扫描反射镜。 1. A laser system for eye surgery, comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving the pulsed laser beam generated by the laser beam and outputs the scanning, the XY scanner comprising : X scanner comprising two scanning mirror χ; and Y scanner, comprising two Y-scanning mirrors.
2.根据权利要求1的激光系统,其中:所述χ扫描器被配置为使所述χ扫描器的支点离开所述χ扫描器的反射镜。 2. The laser system according to claim 1, wherein: said fulcrum χ scanner is configured to cause the scanner χ χ away from the mirror scanner.
3.根据权利要求2的激光系统,其中:所述X扫描器的支点基本上在所述Y扫描器的反射镜上。 3. The laser system of claim 2, wherein: said fulcrum X scanner substantially in the Y-scanner mirror.
4.根据权利要求1的激光系统,其中:所述Y扫描器被配置为使所述Y扫描器的支点离开所述Y扫描器的反射镜。 4. The laser system of claim 1, wherein: the Y scanner is configured to pivot away from the scanner of the Y Y scanner mirror.
5.根据权利要求1的激光系统,其中:所述X扫描器和所述Y扫描器被配置为使所述χ扫描器的支点离开所述χ扫描器的反射镜且使所述Y扫描器的支点离开所述Y扫描器的反射镜,并且使所述X扫描器的支点与所述Y扫描器的支点基本上重合。 The laser system of claim 1, wherein: the X-Y scanner and the scanner is configured to pivot away from the scanner of the χ χ scanner mirror and the Y scanner Y scanner fulcrum away from the mirror, and the pivot fulcrum of the X-Y scanner with the scanner substantially coincident.
6.根据权利要求1的激光系统,其中:所述X扫描器和所述Y扫描器被配置为使所述X扫描器的支点与所述Y扫描器的支点重合。 6. A laser system according to claim 1, wherein: the X-Y scanner and the scanner is configured such that the fulcrum of the fulcrum and the X-Y scanner to scanner coincide.
7.根据权利要求1的激光系统,其中:所述Y扫描器的支点基本上在后续光学元件的进入表面上。 7. The laser system of claim 1, wherein: Y scanner fulcrum of said upper surface of the subsequent optical element enters substantially.
8.根据权利要求1的激光系统,其中:所述Y扫描器的支点基本上在后续光学元件的入瞳上。 8. The laser system of claim 1, wherein: said fulcrum Y scanner substantially on the entrance pupil of the subsequent optical elements.
9.根据权利要求1的激光系统,其中:所述XY扫描器被配置为基本上独立地修改:由所述XY扫描器输出的扫描激光束与光轴所成的角;以及所输出的扫描激光束与垂直于所述光轴的后续参考平面相交的位置。 Scan and output; by the scanning laser beam and the optical axis of the XY scanner output angle formed: 9. The laser system of claim 1, wherein: said XY scanner is configured to be substantially modified independently the laser beam is perpendicular to the plane of the subsequent reference position of the optical axis intersects.
10.根据权利要求1的激光系统,其中:所述XY扫描器被配置为使像差与包括仅具有两个反射镜的XY扫描器的相应激光系统的像差相比减小。 10. The laser system of claim 1, wherein: said XY scanner is reduced compared with the configuration comprising only two XY scanner mirrors aberration laser system such that the respective aberrations.
11.根据权利要求1的激光系统,其中:所述XY扫描器被配置为使像散与包括仅具有两个反射镜的XY扫描器的相应激光系统的像散相比减小。 11. The laser system of claim 1, wherein: said XY scanner is configured to image the image including scattered scattered XY scanner having only two mirrors of the system is reduced as compared to the corresponding laser.
12.根据权利要求1的激光系统,其中:所述XY扫描器被配置为使彗形像差与包括仅具有两个反射镜的XY扫描器的基本上相同的激光系统的彗形像差相比减小。 12. The laser system of claim 1, wherein: said XY scanner is configured to cause coma aberration and coma XY scanner comprising only two mirrors having substantially the same phase difference of the laser system ratio decreases.
13.根据权利要求1的激光系统,其中:所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于5毫米且小于15毫米。 13. The laser system of claim 1, wherein: said XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum 5 mm and less than 15 mm.
14.根据权利要求1的激光系统,其中:所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于8毫米且小于13毫米。 14. The laser system of claim 1, wherein: said XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum value of 8 mm and less than 13 mm.
15. 一种用于眼科手术的激光系统,包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所产生的脉冲激光束并输出扫描激光束,其中,所述XY扫描器被配置为基本上独立地修改:所输出的扫描激光束与光轴所成的角;以及所输出的扫描激光束与垂直于所述光轴的后续参考平面相交的位置。 15. A system for laser eye surgery, comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving the pulsed laser beam generated by the laser beam, and outputs the scan, wherein said XY scanning is configured to substantially independently Review: scanning a laser beam with the optical axis angle formed by the output; and a position of the scanning laser beam output from the vertical to the optical axis intersects the subsequent reference plane.
16.根据权利要求15的激光系统,其中:所述XY扫描器包括:X扫描器,其包括两个X扫描反射镜;以及Y扫描器,其包括两个Y扫描反射镜。 16. The laser system of claim 15, wherein: said XY scanner comprising: a scanner X, X comprising two scanning mirror; and Y scanner, comprising two Y-scanning mirrors.
17.根据权利要求16的激光系统,其中:X支点离开X扫描反射镜;且Y支点离开Y扫描反射镜。 17. The laser system of claim 16, wherein: X X scanning mirror away from the fulcrum; Y and Y scanning mirror away from the fulcrum.
18.根据权利要求16的激光系统,其中:X支点离开X扫描反射镜;Y支点离开Y扫描反射镜;且所述X支点与所述Y支点基本上重合 18. The laser system of claim 16, wherein: X X scanning mirror away from the fulcrum; Y Y scanning mirror away from the fulcrum; the X and Y with the fulcrum pivot point substantially coincident
19.根据权利要求16的激光系统,其中:所述XY扫描器被配置为在所述激光系统的焦平面处在XY扫描范围内扫描所述激光束,所述XY扫描范围的最大值大于5毫米且小于15毫米。 19. The laser system of claim 16, wherein: said XY scanner is configured in the focal plane of the laser system in the XY scanning range of the scanning of the laser beam, the XY scanning range is greater than the maximum 5 mm and less than 15 mm.
20. 一种用于眼科手术的激光系统,包括:激光引擎,用于产生脉冲激光束;以及XY扫描器,用于接收所述脉冲激光束并输出扫描激光束,其中,所述XY扫描器包括:第一快速控制XY扫描反射镜;以及第二快速控制XY扫描反射镜,其中,所述第一和第二快速控制XY反射镜能够围绕两个旋转轴而进行角运动。 20. A system for laser eye surgery, comprising: a laser engine for generating a pulsed laser beam; and an XY scanner for receiving said output pulse laser beam and scanning the laser beam, wherein the XY scanner comprising: a first rapid control of XY scanning mirror; a second fast and controls the XY scanning mirror, wherein the first and second flash control XY mirror capable of angular movement about two axes of rotation.
21.根据权利要求20的激光系统,其中:由所述第一和第二XY快速控制反射镜产生的X支点与由所述第一和第二XY快速控制反射镜产生的Y支点基本上重合。 21. The laser system of claim 20, wherein: the flash is controlled by first and second pivot mirror XY X generated by the fast control by said first and second pivot mirror XY Y generated substantially coincident .
CN201080043148.3A 2009-07-29 2010-07-21 Optical system for ophthalmic surgical laser CN102596126B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/511,979 US8500725B2 (en) 2009-07-29 2009-07-29 Optical system for ophthalmic surgical laser
US12/511,979 2009-07-29
PCT/US2010/042786 WO2011017000A2 (en) 2009-07-29 2010-07-21 Optical system for ophthalmic surgical laser

Publications (2)

Publication Number Publication Date
CN102596126A true CN102596126A (en) 2012-07-18
CN102596126B CN102596126B (en) 2014-08-13

Family

ID=45804341

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201080043148.3A CN102596126B (en) 2009-07-29 2010-07-21 Optical system for ophthalmic surgical laser

Country Status (8)

Country Link
EP (1) EP2459135A4 (en)
JP (1) JP5540097B2 (en)
KR (1) KR20120068819A (en)
CN (1) CN102596126B (en)
AU (1) AU2010281494B2 (en)
CA (1) CA2769099A1 (en)
MX (1) MX2012001330A (en)
RU (1) RU2544371C2 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053540A (en) * 1990-01-22 1991-08-07 外科镭射科技日本公司 Laser light irradiation apparatus for medical treatment
US6312422B1 (en) * 1998-03-30 2001-11-06 Carl Zeiss Jena Gmbh Process and arrangement for monitoring and controlling the treatment parameters in an ophthalmic treatment device
CN1390106A (en) * 1999-10-07 2003-01-08 维思克斯公司 Two camera off-axis eye tracker
US20040054359A1 (en) * 2000-10-17 2004-03-18 Ruiz Luis Antonio Method and apparatus for precision laser surgery
CN2860437Y (en) * 2005-06-02 2007-01-24 新视界有限公司 Semiconductor laser pump type laser micro-operation apparatus
EP1811547A1 (en) * 2005-02-03 2007-07-25 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
US20070185475A1 (en) * 2006-01-20 2007-08-09 Frey Rudolph W System and method for providing the shaped structural weakening of the human lens with a laser
CN101034205A (en) * 2006-03-06 2007-09-12 佳能株式会社 Optical scanning apparatus and image forming apparatus using the same
CN201085731Y (en) * 2007-02-15 2008-07-16 新视界有限公司 High efficiency flying spot scanning laser sight therapeutic equipment
CN101282680A (en) * 2005-10-10 2008-10-08 托比技术有限公司 Eye tracker having an extended span of operating distances
US20080319464A1 (en) * 2007-04-26 2008-12-25 Carl Zeiss Meditec Ag Re-treatment for ophthalmic correction of refraction
CN101344639A (en) * 2008-08-27 2009-01-14 中国科学院光电技术研究所 Self-adapting optical system based on ant colony algorithm
US7872952B2 (en) * 2004-10-07 2011-01-18 Panasonic Corporation Optical disc drive

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901718A (en) * 1988-02-02 1990-02-20 Intelligent Surgical Lasers 3-Dimensional laser beam guidance system
RU2183107C2 (en) * 2000-09-07 2002-06-10 Государственное учреждение "Межотраслевой научно-технический комплекс "Микрохирургия глаза" Device for forming laser radiation profile
US7618415B2 (en) * 2004-04-09 2009-11-17 Technolas Perfect Vision Gmbh Beam steering system for corneal laser surgery
US20070106285A1 (en) * 2005-11-09 2007-05-10 Ferenc Raksi Laser scanner
EP2649971B1 (en) * 2007-03-13 2016-08-31 Optimedica Corporation Apparatus for creating ocular surgical and relaxing incisions
ES2673575T3 (en) * 2007-09-06 2018-06-22 Alcon Lensx, Inc. Precise fixation of surgical photo-disruption objective
EP2197382A4 (en) * 2007-09-10 2013-01-23 Alcon Lensx Inc Effective laser photodisruptive surgery in a gravity field

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1053540A (en) * 1990-01-22 1991-08-07 外科镭射科技日本公司 Laser light irradiation apparatus for medical treatment
US6312422B1 (en) * 1998-03-30 2001-11-06 Carl Zeiss Jena Gmbh Process and arrangement for monitoring and controlling the treatment parameters in an ophthalmic treatment device
CN1390106A (en) * 1999-10-07 2003-01-08 维思克斯公司 Two camera off-axis eye tracker
US20040054359A1 (en) * 2000-10-17 2004-03-18 Ruiz Luis Antonio Method and apparatus for precision laser surgery
US7872952B2 (en) * 2004-10-07 2011-01-18 Panasonic Corporation Optical disc drive
EP1811547A1 (en) * 2005-02-03 2007-07-25 Nikon Corporation Optical integrator, illumination optical device, exposure device, and exposure method
CN2860437Y (en) * 2005-06-02 2007-01-24 新视界有限公司 Semiconductor laser pump type laser micro-operation apparatus
CN101282680A (en) * 2005-10-10 2008-10-08 托比技术有限公司 Eye tracker having an extended span of operating distances
US20070185475A1 (en) * 2006-01-20 2007-08-09 Frey Rudolph W System and method for providing the shaped structural weakening of the human lens with a laser
CN101034205A (en) * 2006-03-06 2007-09-12 佳能株式会社 Optical scanning apparatus and image forming apparatus using the same
CN201085731Y (en) * 2007-02-15 2008-07-16 新视界有限公司 High efficiency flying spot scanning laser sight therapeutic equipment
US20080319464A1 (en) * 2007-04-26 2008-12-25 Carl Zeiss Meditec Ag Re-treatment for ophthalmic correction of refraction
CN101344639A (en) * 2008-08-27 2009-01-14 中国科学院光电技术研究所 Self-adapting optical system based on ant colony algorithm

Also Published As

Publication number Publication date
AU2010281494B2 (en) 2015-01-22
JP5540097B2 (en) 2014-07-02
KR20120068819A (en) 2012-06-27
AU2010281494A1 (en) 2012-02-16
EP2459135A4 (en) 2012-11-07
RU2544371C2 (en) 2015-03-20
JP2013500131A (en) 2013-01-07
CN102596126B (en) 2014-08-13
EP2459135A2 (en) 2012-06-06
CA2769099A1 (en) 2011-02-10
MX2012001330A (en) 2012-08-15
RU2012107317A (en) 2013-09-10

Similar Documents

Publication Publication Date Title
JP5878527B2 (en) Method and apparatus for integrating cataract surgery for glaucoma or astigmatism surgery
EP2311415B1 (en) Apparatus and method for ophthalmologic surgical procedures using a femtosecond fiber laser
EP2231084B1 (en) Laser correction of vision conditions on the natural eye lens
US9408749B2 (en) Precise targeting of surgical photodisruption
US20090137993A1 (en) Methods and Apparatus for Integrated Cataract Surgery
CN101631522B (en) Apparatus for creating ocular surgical and relaxing incisions
ES2217137T3 (en) Optimization of correction by ablation of an optical system.
US9504609B2 (en) Apparatus, systems and techniques for interfacing with an eye in laser surgery
ES2528651T3 (en) Laser induced protection screen in laser surgery
US7238176B2 (en) Method for intrastromal photodisruption of dome-shaped surfaces
US20140257258A1 (en) Methods And Apparatus For Improved Post-Operative Ocular Optical Performance
JP2003533277A5 (en)
AU2007227152B2 (en) Intrastromal refractive correction systems and methods
JP2011507559A (en) Apparatus for surgical correction of refractive errors in the eye and method for generating control data therefor
KR101243998B1 (en) Device for laser-optical eye surgery
DE112008002448B4 (en) Effective laser photodisruptive surgery in a gravitational field
DE112009001166T5 (en) Photodisruptive laser treatment of the crystalline lens
JP2013529977A5 (en)
CN102791228A (en) System for modifying eye tissue and intraocular lenses
US20090137991A1 (en) Methods and Apparatus for Laser Treatment of the Crystalline Lens
EP2695016B1 (en) System for laser generated corneal and crystalline lens incisions using a variable f/ optical system with aspheric contact interface to the cornea or rotating and adaptive optics
US20090149840A1 (en) Photodisruptive Treatment of Crystalline Lens
EP2585014A2 (en) Method to guide a cataract procedure by corneal imaging
JP2014522284A (en) Laser transmission system for ophthalmic surgery
EP2968000B1 (en) Laser eye surgery system

Legal Events

Date Code Title Description
PB01 Publication
C06 Publication
SE01 Entry into force of request for substantive examination
C10 Entry into substantive examination
GR01 Patent grant
C14 Grant of patent or utility model
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: American Texas

Patentee after: Alcon Blues Co., Ltd.

Address before: California, USA

Patentee before: Alcon Blues Co., Ltd.

TR01 Transfer of patent right

Effective date of registration: 20191127

Address after: Fribourg

Patentee after: Alcon Company

Address before: American Texas

Patentee before: Alcon Blues Co., Ltd.

TR01 Transfer of patent right