New! View global litigation for patent families

CN102593603B - A method of packaging based on the ceramic substrate metamaterial - Google Patents

A method of packaging based on the ceramic substrate metamaterial Download PDF

Info

Publication number
CN102593603B
CN102593603B CN 201210051074 CN201210051074A CN102593603B CN 102593603 B CN102593603 B CN 102593603B CN 201210051074 CN201210051074 CN 201210051074 CN 201210051074 A CN201210051074 A CN 201210051074A CN 102593603 B CN102593603 B CN 102593603B
Authority
CN
Grant status
Grant
Patent type
Application number
CN 201210051074
Other languages
Chinese (zh)
Other versions
CN102593603A (en )
Inventor
刘若鹏
栾琳
缪锡根
熊晓磊
Original Assignee
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明提供一种基于陶瓷基板超材料的封装方法,将制备好的多个超材料片层叠合在一起,将玻璃浆均匀涂覆在超材料片层之间的凹槽内,用激光辐照涂覆有玻璃浆的位置,玻璃浆短时间熔化后快速凝固完成多个超材料片层的封装;激光焊接技术能够快速、精确地辐照玻璃浆封装多片超材料片层,还可以避免陶瓷基板与玻璃的热膨胀性不匹配而造成的崩裂;并且由于玻璃浆的损耗比较低,封装后,超材料的损耗不会因为玻璃的损耗而损耗增大。 The present invention provides a method for packaging ceramic substrate based on metamaterials, a metamaterial preparing a plurality of laminated sheets good together, the glass paste was uniformly applied within the groove between the metamaterial sheet, by laser irradiation, coated glass paste location, short glass paste rapid solidification after melting metamaterial complete the package a plurality of sheet layers; welding laser technology to quickly and accurately irradiated encapsulated multi-piece glass paste metamaterial sheet, the ceramic can also be avoided and thermal expansion of the substrate glass chipping due to mismatch; and the glass paste is relatively low loss, after packaging, because of loss of material does not exceed the loss of the glass increase in loss.

Description

一种基于陶瓷基板超材料的封装方法 A method of packaging based on the ceramic substrate metamaterial

【技术领域】 TECHNICAL FIELD

[0001] 本发明涉及超材料领域,尤其涉及一种基于陶瓷基板超材料的封装方法。 [0001] The present invention relates to the field of metamaterials, in particular to a substrate based on ceramic material ultra-encapsulation method.

【背景技术】 【Background technique】

[0002] 超材料是近十年来发展起来的对电磁波起调制作用的材料。 [0002] metamaterial is an electromagnetic wave from the modulation of the materials developed over the past decade. 超材料一般是由一定数量的微结构附在具有一定力学、电磁学要求的基板上,这些具有特定图案和材质的微结构会对经过其身的特定频段的电磁波产生调制作用。 Metamaterial is typically attached to a number of microstructures having a certain mechanical, electromagnetic requirements on a substrate, the microstructures having a specific pattern and a specific electromagnetic wave through the material will itself generate its band modulation effect. 这种调制作用可使电磁波的方向、强度产生变化,甚至影响电磁波通过的时间。 This allows modulation of the direction of electromagnetic waves, the intensity change is generated, and even affect the time of electromagnetic waves. 一般来说,当微结构的尺寸大小和所需调制的电磁波波长的十分之一相当时,该频率或以此频率为中心的某频段的电磁波才能被此超材料调制。 Generally, when one-tenth the size of the microstructures and the desired wavelength of electromagnetic waves modulated rather, this frequency or this frequency band centered on a wave to be modulated over this material. 光也是一种电磁波,其波长在300至3000纳米之间,若设计微结构大小在30至300纳米之间,则此超材料可对光进行调制,以控制光的投射、反射及偏折,由此,纳米级微结构的超材料可用于增加太阳能电池的发电效率。 Light is an electromagnetic wave with a wavelength between 300 and 3000 nanometers, if the design of the microstructure size between 30 and 300 nm, this metamaterial can modulate light, to control the projection, and the deflection of the reflected light, thus, a metamaterial nanometric structures may be used to increase the power generation efficiency of the solar cell.

[0003] 在实际应用中,需要将多个超材料片层堆叠封装实现某种电磁波调制的功能,最常用的封装方法是用有机树脂胶作为粘结剂固化使之粘结封装,但有机树脂胶的损耗比较高,不能达到超材料对低损耗的要求。 [0003] In practice, a plurality of required stack package metamaterial sheet layers to achieve some modulation wave function, is the most common method of encapsulating an organic resin as a binder curable adhesive so that the adhesive package, but the organic resin gum loss is relatively high, we can not achieve the requirements of the ultra low loss material. 如果超材料的基板采用的是陶瓷基板,可用玻璃作其封装材料,但一般采用的是烧结技术,不仅耗费时间长、过程复杂,另外还得考虑基板上的金属微结构是否会因为温度过高使得金属微结构发生改变。 If the substrate used metamaterial is a ceramic substrate, a glass can be used for encapsulating materials, the sintering is generally used, not only time-consuming, complicated process, have to consider whether further microstructures on the metal substrate because of high temperature such metal microstructure changes.

【发明内容】 [SUMMARY]

[0004] 本发明所要解决的技术问题是:提供一种基于陶瓷基板超材料的封装方法,超材料片层之间涂覆有低损耗的玻璃浆,利用激光焊接技术使玻璃浆短时间熔化后,快速凝固完成多个超材料片层的封装。 [0004] The present invention solves the technical problem: a ceramic substrate to provide a packaging material based on Ultra, coated with the glass paste between ultra low loss material sheet, by laser welding technique of the glass paste to melt the short , rapid solidification metamaterial complete the package a plurality of plies.

[0005] 本发明解决上述技术问题所采用的技术方案是:一种基于陶瓷基板超材料的封装方法,包括以下步骤: [0005] aspect of the present invention to solve the above technical problem is: A method for packaging ceramic substrate based on metamaterials, comprising the steps of:

[0006] 将制备好的多个超材料片层叠合在一起; [0006] The prepared laminate material over the plurality of sheets together;

[0007] 将玻璃浆均匀涂覆在超材料片层之间的凹槽内; [0007] A glass paste was uniformly applied within the groove between the metamaterial sheet;

[0008]用激光辐照涂覆有玻璃浆的位置,玻璃浆熔化后凝固完成多个超材料片层的封装。 [0008] The position where the glass paste is coated by the laser irradiation, a plurality of metamaterial coagulation complete the package sheet after melting glass paste.

[0009] 所述的每个超材料片层上表面或/和下表面的四个角开有凹槽。 Each layer of sheet material over the surface and / or lower surface of the four corners of the [0009] opening of the groove.

[0010] 所述的每个超材料片层上表面或/和下表面的四个边缘开有凹槽。 Surface and / or lower surfaces of the four edges of each open groove metamaterial sheet [0010] said.

[0011] 所述的凹槽为V型凹槽。 [0011] The grooves are V-shaped groove.

[0012] 所述的凹槽为半圆型凹槽。 [0012] The groove is semi-circular recess.

[0013] 所述的凹槽为方型凹槽。 [0013] The groove is a square groove.

[0014] 所述的每个超材料片层都开有定位孔。 [0014] Each of the metamaterial sheet positioning holes are opened.

[0015] 本发明的有益效果为:超材料片层之间涂覆有低损耗的玻璃浆,由于玻璃浆的损耗比较低,封装后,超材料的损耗不会因为玻璃的损耗而损耗增大;利用激光焊接技术使玻璃浆短时间熔化后,快速凝固完成多个超材料片层的封装,激光焊接技术能够快速、精确地辐照玻璃浆封装多片超材料片层,还可以避免陶瓷基板与玻璃的热膨胀性不匹配而造成的崩裂。 [0015] Advantageous effects of the present invention are: low loss glass paste coated between metamaterial sheet, since the glass paste is relatively low loss, after packaging, because of loss of material does not exceed the loss of the glass is increased loss ; by laser welding technique of the glass paste for a short time after melting, rapid solidification metamaterial complete the package a plurality of sheet layers, the laser welding technique to quickly and accurately irradiated encapsulated multi-piece glass paste metamaterial sheet, a ceramic substrate can also be avoided crack does not match the thermal expansion of the glass caused.

【附图说明】 BRIEF DESCRIPTION

[0016] 图1本发明实施例超材料片层第一种示意图; [0016] Figure 1 a schematic view of a first embodiment of the present invention metamaterial sheet embodiment;

[0017] 图2本发明实施例超材料片层第二种示意图; Example metamaterial sheet [0017] Figure 2 a schematic view of a second embodiment of the present invention;

[0018] 图3本发明实施例超材料片层第三种示意图; Example metamaterial sheet [0018] Figure 3 a schematic view of a third embodiment of the present invention;

[0019] 图4本发明实施例超材料片层第四种示意图; Example metamaterial sheet [0019] Figure 4 a schematic view of a fourth embodiment of the present invention;

[0020] 图5本发明实施例超材料片层第五种示意图; [0020] Figure 5 a schematic view of a fifth embodiment of the present invention metamaterial sheet embodiment;

[0021] 图6本发明实施例超材料片层第六种示意图。 [0021] Figure 6 a schematic view of sixth embodiment of the present invention metamaterial sheet embodiment.

【具体实施方式】 【detailed description】

[0022] 为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。 [0022] To make the objectives, technical solutions and advantages of the present invention will become more apparent hereinafter in conjunction with the accompanying drawings and embodiments of the present invention will be further described in detail. 应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。 It should be understood that the specific embodiments described herein are only intended to illustrate the present invention and are not intended to limit the present invention.

[0023] —种基于陶瓷基板超材料的封装方法,包括以下步骤: [0023] - a ceramic encapsulation substrate metamaterial-based, comprising the steps of:

[0024] 将制备好的多个超材料片层精确置合在一起,并且每个超材料片层都开有定位孔; [0024] The prepared sheet material over a plurality of precisely placed together, and each of the metamaterial sheet layers apart positioning holes;

[0025] 将玻璃浆均匀涂覆在超材料片层之间的凹槽内;由于玻璃浆的损耗比较低,封装后,超材料的损耗不会因为玻璃的损耗而损耗增大; [0025] A glass paste was uniformly applied within the groove between the metamaterial sheet; loss due to the relatively low glass paste, after packaging, the loss will not metamaterial loss increases loss of the glass;

[0026]用激光辐照涂覆有玻璃浆的位置,玻璃浆短时间熔化后快速凝固使多个超材料片层封装,所采用的激光是波长为1064nm的C02激光,其功率为5〜25W、行走速度为1〜6000mm/s、频率为1Hz〜6000Hz、停留时间为20〜1000 μ s、光斑直径为25〜250 μ m [0026] There are coated with laser irradiation position of the glass slurry, the slurry for a short time rapidly solidified glass sheet packaging a plurality of metamaterial After melting, the laser used for the C02 laser wavelength of 1064nm, a power of 5~25W , travel speed 1~6000mm / s, a frequency of 1Hz~6000Hz, residence time of 20~1000 μ s, the spot diameter of 25~250 μ m

[0027] 所述的每个超材料片层上表面或/和下表面的四个角开有凹槽或者四个边缘开有凹槽,所述的凹槽为V型凹槽、半圆型凹槽、方型凹槽或者其他形状的凹槽,超材料片层也可以不开凹槽,直接将玻璃浆涂覆在超材料片层之间的缝隙里。 Upper sheet and / or the four corners of the lower surface is opened [0027] surface of each of said grooves or metamaterial four edges is notched, said notch is V-shaped groove, semicircular recesses grooves, or other shaped grooves square grooves metamaterial sheet may not open the recess, the glass paste is coated directly gap between the sheets in the metamaterial.

[0028] 利用激光焊接技术使玻璃浆短时间熔化后,快速凝固完成多个超材料片层的封装,激光焊接技术能够快速、精确地辐照玻璃浆封装多片超材料片层,还可以避免陶瓷基板与玻璃的热膨胀性不匹配而造成的崩裂。 [0028] After the laser welding technique to melt the glass paste short, rapid solidification metamaterial complete the package a plurality of sheet layers, the laser welding technique to quickly and accurately irradiated encapsulated multi-piece glass paste metamaterial sheet, also avoid thermal expansion of the glass ceramic substrate and chipping caused by mismatch.

[0029] 实施例一 [0029] Example a

[0030] 将制备好的每个超材料片层的上表面和下表面的四个角加工成V型凹槽,如图1所示; [0030] The prepared sheet material of each super upper and lower surfaces of the four corners of the V-groove processed, shown in Figure 1;

[0031] 将金属棒或金属钉插入到超材料片层的定位孔内,防止超材料片层发生相对移动,再用夹具夹紧; [0031] The metal or metal rod is inserted into the positioning hole of the staple sheets metamaterial, the metamaterial sheet prevents relative movement, and then the clamping clip;

[0032] 将玻璃浆均匀涂覆在超材料片层之间的V型凹槽里; [0032] A glass paste was uniformly applied between the V-shaped groove in the metamaterial sheet layers;

[0033] 用波长为1064nm的C02辐照涂覆有玻璃浆的位置,激光的功率15W、行走速度3000mm/s、频率3000Hz、停留时间500 μ s、光斑直径150 μ m,玻璃浆瞬间熔化,激光扫描过后,短时间熔化后的玻璃浆快速凝固,使多个超材料片层完成整个封装过程。 [0033] a wavelength of 1064nm is coated with a C02 irradiation position of the glass paste, 15W laser power, running speed of 3000mm / s, the frequency of 3000Hz, the residence time 500 μ s, the spot diameter of 150 μ m, instantaneous melting glass paste, after laser scanning, short melting glass paste after rapid solidification, a plurality of metamaterial sheet layers to complete the encapsulation process.

[0034] 凹槽的形状还可以是半圆型凹槽、方型凹槽,如图2、3所示。 [0034] The shape of the groove may also be a semi-circular groove, square groove, shown in Figure 2,3.

[0035] 实施例二 [0035] Second Embodiment

[0036] 实施例二相对于实施例一的不同点在于:V型凹槽只设置在每个超材料片层的上表面或下表面的四个角,如图4所示;同样的,凹槽也可以是半圆型凹槽、方型凹槽,如图5、6所示; [0036] with respect to the second embodiment differs from the first embodiment in that: V-type groove provided only on the upper surface or the lower sheet of each of the four corners of the surface of the metamaterial, as shown in FIG. 4; the same, recesses groove may be semi-circular groove, square groove, as shown in FIG. 5 and 6;

[0037] 实施例三 [0037] Example three

[0038] 实施例三相对于实施例一和实施例二的不同点在于:每个超材料片层的上表面和下表面的四个边缘加工成V型凹槽、半圆型凹槽、方型凹槽;也可以只是上表面或下表面的四个边缘加工成V型凹槽、半圆型凹槽、方型凹槽。 [0038] Example embodiments for a three-phase embodiment and the second embodiment differs from the embodiment in that: the upper surface of each sheet of material over the edge and lower surface of the four V-groove processed, semi-circular recess, square recess; only four edges may be upper or lower surface of the workpiece in a V-grooves, semi-circular groove, square groove.

[0039] 在上述实施例中,仅对本发明进行了示范性描述,但是本领域技术人员在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明进行各种修改和润饰,均属于本发明的保护范围。 [0039] In the above embodiment, only the present invention has been exemplarily described, those skilled in the art upon reading the present patent application may be made without departing from the modifications and variations of the present invention is carried out in the spirit and scope of the present invention. , belong to the scope of the present invention.

Claims (7)

  1. 1.一种基于陶瓷基板超材料的封装方法,其特征在于,包括以下步骤: 将制备好的多个超材料片层叠合在一起; 将低损耗的玻璃浆均匀涂覆在超材料片层之间的凹槽内或者将低损耗的玻璃浆涂覆在超材料片层之间的缝隙里; 用激光辐照涂覆有玻璃浆的位置,玻璃浆熔化后凝固完成多个超材料片层的封装; 其中,所述陶瓷基板上设置有金属微结构; 其中,所述激光功率为5〜25W、行走速度为1〜6000mm/s、频率为1Hz〜6000Hz、停留时间为20〜1000 μ s、光斑直径为25〜250 μ m。 1. A method of packaging a ceramic substrate based on metamaterials, characterized by comprising the steps of: a plurality of sheets prepared meta-material laminated together; low-loss glass paste is uniformly coated on the sheet metamaterial the groove or between a low-loss glass paste is coated over a gap between the sheet material's; the position of the glass paste coating with laser irradiation, a plurality of complete solidification metamaterial sheet layer after melting glass paste package; wherein the metal microstructure is provided with a ceramic substrate; wherein the laser power is 5~25W, travel speed 1~6000mm / s, a frequency of 1Hz~6000Hz, residence time of 20~1000 μ s, a spot diameter of 25~250 μ m.
  2. 2.根据权利要求1所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的每个超材料片层上表面或/和下表面的四个角开有凹槽。 A method according to claim packaging material based on a ceramic substrate over which claim 1 characterized in that: the surface and / or lower surface of each of the four corners is notched on the metamaterial sheet.
  3. 3.根据权利要求1所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的每个超材料片层上表面或/和下表面的四个边缘开有凹槽。 3. The packaging method of a ceramic-based substrate metamaterial, wherein according to claim 1: each said metamaterial sheet surface and / or lower surfaces of the four edges are grooved.
  4. 4.根据权利要求2或3所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的凹槽为V型凹槽。 A method according to claim package based ceramic substrate metamaterial, wherein 2 or 3: said grooves are V-shaped groove.
  5. 5.根据权利要求2或3所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的凹槽为半圆型凹槽。 A method according to claim package based ceramic substrate metamaterial, wherein 2 or 3: the recess is semi-circular recess.
  6. 6.根据权利要求2或3所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的凹槽为方型凹槽。 A method according to claim package based ceramic substrate metamaterial, wherein 2 or 3: the recess is a square groove.
  7. 7.根据权利要求1所述的基于陶瓷基板超材料的封装方法,其特征在于:所述的每个超材料片层都开有定位孔。 7. The packaging method of a ceramic-based substrate metamaterial, wherein according to claim 1: each of said layers apart metamaterial sheet positioning holes.
CN 201210051074 2012-02-29 2012-02-29 A method of packaging based on the ceramic substrate metamaterial CN102593603B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201210051074 CN102593603B (en) 2012-02-29 2012-02-29 A method of packaging based on the ceramic substrate metamaterial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201210051074 CN102593603B (en) 2012-02-29 2012-02-29 A method of packaging based on the ceramic substrate metamaterial

Publications (2)

Publication Number Publication Date
CN102593603A true CN102593603A (en) 2012-07-18
CN102593603B true CN102593603B (en) 2016-01-20

Family

ID=46481947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201210051074 CN102593603B (en) 2012-02-29 2012-02-29 A method of packaging based on the ceramic substrate metamaterial

Country Status (1)

Country Link
CN (1) CN102593603B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2329546A1 (en) * 2000-12-22 2002-06-22 Robert W. Musk Attaching and fixing components to mems type structures
CN1210749C (en) * 1997-10-01 2005-07-13 全显示解法有限公司 Method and equipment for sealed visual display
CN100409392C (en) * 2003-04-16 2008-08-06 康宁股份有限公司 Glass package that is hermetically sealed with a frit and fabrication method thereof
CN101221910B (en) * 2007-01-12 2011-07-20 三星移动显示器株式会社 Method of manufacturing flat panel display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1210749C (en) * 1997-10-01 2005-07-13 全显示解法有限公司 Method and equipment for sealed visual display
CA2329546A1 (en) * 2000-12-22 2002-06-22 Robert W. Musk Attaching and fixing components to mems type structures
CN100409392C (en) * 2003-04-16 2008-08-06 康宁股份有限公司 Glass package that is hermetically sealed with a frit and fabrication method thereof
CN101221910B (en) * 2007-01-12 2011-07-20 三星移动显示器株式会社 Method of manufacturing flat panel display device

Also Published As

Publication number Publication date Type
CN102593603A (en) 2012-07-18 application

Similar Documents

Publication Publication Date Title
US4328410A (en) Laser skiving system
Tsukamoto et al. Periodic microstructures produced by femtosecond laser irradiation on titanium plate
US20040091694A1 (en) Induction bondable high-pressure laminate
CN1840324A (en) Method of manufacturing release film
Chou et al. Enabling ideal selective solar absorption with 2D metallic dielectric photonic crystals
Nemilentsau et al. Anisotropic 2D materials for tunable hyperbolic plasmonics
US20070051461A1 (en) Method for joining plastic work pieces
CN102500923A (en) Preparation device for preparing functional micro-nano materials on silicon surfaces based on femtosecond laser and method
WO2003015976A1 (en) Brittle material substrate chamfering method and chamfering device
JP2007105732A (en) Laser marking hologram and hologram laser marking method
CN1074160A (en) Technology of laser contour melting cast for surface treatment of aerial blade
US8168514B2 (en) Laser separation of thin laminated glass substrates for flexible display applications
CN101733556A (en) Laser cutting machine
CN102101217A (en) Laser cutting device
CN102380711A (en) Selective sintering laser processing system
CN102903298A (en) Metal coating anti-counterfeiting film with surface micro relief structure
CN102196893A (en) Additive manufacturing apparatus and method
CN101797666A (en) Laser cutting head capable of extending focal depth
CN202224847U (en) Scanning laser processing device for inverted taper hole based on PZT (Pb-based Lanthanumdoped Zirconate Titanates) and parallel plate
CN103325922A (en) LED encapsulating method
US20110296726A1 (en) Laminate structure with embedded cavities and related method of manufacture
CN201886696U (en) Nuclear track anti-fake film
US20140311654A1 (en) Method and Device for Joining Transfer or Laminating Film Webs
JP2007015159A (en) Transfer foil, object with transferred foil and method for manufacturing the object
JP2008070867A (en) Zero-order diffractive filter

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model