CN102591358A - Multi-UAV (unmanned aerial vehicle) dynamic formation control method - Google Patents

Multi-UAV (unmanned aerial vehicle) dynamic formation control method Download PDF

Info

Publication number
CN102591358A
CN102591358A CN201210088140XA CN201210088140A CN102591358A CN 102591358 A CN102591358 A CN 102591358A CN 201210088140X A CN201210088140X A CN 201210088140XA CN 201210088140 A CN201210088140 A CN 201210088140A CN 102591358 A CN102591358 A CN 102591358A
Authority
CN
China
Prior art keywords
formation
wingman
uav
obstacle
virtual
Prior art date
Application number
CN201210088140XA
Other languages
Chinese (zh)
Other versions
CN102591358B (en
Inventor
吴森堂
孙健
杜阳
胡楠希
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to CN201210088140.XA priority Critical patent/CN102591358B/en
Publication of CN102591358A publication Critical patent/CN102591358A/en
Application granted granted Critical
Publication of CN102591358B publication Critical patent/CN102591358B/en

Links

Abstract

The invention discloses a multi-UAV (unmanned aerial vehicle) dynamic formation control method, and belongs to the technical field of flight control. The multi-UAV dynamic formation control method includes steps as follows: step 1, a formation keeping method; step 2, an obstacle avoidance method; and step 3, a behavior-based formation process, wherein the behavior-based formation process includes behavior decomposition and control realization. The method solves the defect that the traditional virtual structure manner formation control has higher communication quality requirement; the behavior-based formation control method is introduced to lower the requirement of formation wireless data link update rate and enhances the obstacle avoidance capability of the UAV group formation; and aiming at the defect that the traditional behavior-based manner formation control cannot keep good formation rigidity, a virtual structure is introduced for reference. On the premise of keeping the relatively stable formation, the capability of obstacle and threat avoidance of a microminiature UAV can be enhanced, and the method has a certain reference value for UAV group cooperation low-altitude penetration.

Description

一种多无人机的动态编队控制方法 A multi-dynamic formation control method UAV

技术领域 FIELD

[0001] 本发明涉及一种微小型无人飞行器编队控制,属于飞行控制技术领域,具体涉及一种多无人机的动态编队控制方法。 [0001] The present invention relates to a miniature unmanned aircraft formation control, flight control belonging to the technical field, particularly relates to a method for controlling a multi-dynamic formation of the UAV.

背景技术 Background technique

[0002] 当前已经有多达三十多个国家投入大量人力和财力从事无人机的研究和生产。 [0002] currently has more than thirty countries up to a lot of manpower and financial resources in research and production of unmanned aerial vehicles. 经过二十年的发展,该项技术已经比较成熟,在军民各个领域发挥着作用,尽管如此,单架无人机在遂行任务时存在着一些问题,例如单架无人机可能受到传感器的数量限制,不能从多角度全方位的对目标区域进行观察,面临大面积搜索任务时,不能有效的覆盖整个搜索区域;如果执行的是救援任务,单架无人机在载荷方面受到限制,往往影响整个救援的效能,带来更大损失,另外,一旦单架无人机出现故障,必须立即中断任务返回,可能会延误救援时机。 After two decades of development, the technology is relatively mature, plays a role in all areas of military and civilian, however, a single drone there are some problems at the time to carry out tasks such as unmanned aircraft may be subject to a single sensor number time limit, the full range of the target area can not be viewed from many angles, facing the task of searching a large area, can not effectively cover the entire search area; if you perform a rescue mission, single-UAVs are limited in terms of load, often affect rescue entire performance, lead to greater losses. in addition, once a single drone aircraft failure occurs, it must immediately interrupt task returns may delay the rescue time.

[0003] 针对单架无人机的缺点,近些年提出了编队飞行控制的概念并取得了一定得研究成果主要包括:队形设计,气动耦合、队形动态调整、航迹协调规划、移动自组织网络以及编队飞行控制方法等。 [0003] for the shortcomings of single-UAVs, in recent years, proposed the concept of formation flying control and have made certain findings include: formation design, aerodynamic coupling, formation of dynamic adjustment, trajectory planning and coordination, movement self-organizing networks, and formation flying control methods. 编队控制方法通常包括基于行为方式的编队控制、“长机-僚机”方式的编队控制和虚拟结构方式编队控制。 Formation control methods typically include behavior-based formation control mode, - formation control, "lead plane wingman" approach and the way virtual structure formation control.

[0004] 基于行为方式的编队控制:在多无人机近距编队飞行过程中,机群中每一架无人机对其传感器输入信息的行为相应分成以下四种情况:碰撞避免、障碍物回避、目标获取和队形保持。 [0004] Based on the behavior of formation control: multi UAV close formation flight, the unmanned aircraft fleet each input information into its respective sensor behavior the following four cases: a collision avoidance, obstacle avoidance , target acquisition and formation keeping. 基于行为方式的编队控制方法的最大特点是借助于行为响应控制的平均权重来确定编队中每一架无人机该采用哪一种行为响应方式,但该方法的队形刚性不够,往往为松散编队。 Maximum formation control method based on the characteristic behavior of the weight determined by means of the behavior of formation of each of the UAVs which responds using the response behavior average weight control, but the formation method is not rigid, they tend to be loose formation.

[0005] “长机-僚机”方式的编队控制:这种编队策略的特点是基于预设的编队结构,通过对长机的航向速度、航向角和高度跟踪,来调整僚机,达到保持编队队形的目的。 [0005] - Formation Control "lead plane wingman" approach: This strategy is based on the characteristics of the formation of pre-formation structure, through the course of the speed of the lead plane, heading and altitude tracking, to adjust the wingman, to keep the team in formation shaped purposes. 由于这种控制结构会受到很大的干扰影响,因此针对其特点,采用了鲁棒控制方法、极值搜索控制方法、自适应控制方法和变结构控制方法等多种技术,这种编队的缺点是队形刚性太强,威胁回避能力不足。 Since this control structure will be greatly interference, and therefore its characteristics using a robust control method, extremum search control method, and a method of adaptive control variable structure control and other technologies, the disadvantage of such formation formation is too rigid, to avoid the threat of lack of capacity.

[0006] 虚拟结构方式编队控制:虚拟结构方式一般采取虚拟长机的方法协调其他飞机, 这种方式可以避免“长机-僚机”方式的干扰问题,但是合成虚拟长机位置和向编队各无人机传输其位置,需要以高通信质量和高计算能力为代价,另外虚拟结构的节点位置固定,避障功能往往很差。 [0006] virtual structure formation control mode: the virtual mode structure generally take the lead plane of Virtual coordinate with other aircraft, can be avoided in this way - interference "lead plane wingman" approach, but the location and the synthesis of virtual lead plane to the fleet each no man-machine transmits its position, communication quality needs to be high and the cost of a high computing power, the node position of the virtual structure of the additional fixing, obstacle avoidance function is often poor.

[0007] 除了上述的三种编队控制方法以外,无人机的编队控制方法还包括一些其他方式的控制,如MPC模型预测控制策略方法、基于模糊逻辑和神经网络技术的编队控制与避障策略方法,这两种方法控制结构比较复杂,在模糊逻辑和神经网络权值选取上需要做较多次试验才能确定,占用时间较多,且结果不具有普适性。 [0007] In addition to the above three formation control method, formation control method further comprises a drone control in some other way, such as MPC model predictive control strategy method, formation of Fuzzy Logic and Neural Network Based on the avoidance strategy methods, both of which control structure is complicated, in fuzzy logic and neural network weights to select a more needs to be done several tests to determine, take up more time, and the results are not universal.

发明内容[0008] 本发明的目的是解决便于工程化的微小型无人飞行器编队控制问题,提出一种多无人机的动态编队控制方法,针对传统的虚拟结构方式编队控制对通信质量要求较高的缺点,引入了基于行为的编队控制方法,降低了对编队无线数据链更新率的要求,增强了无人机群编队的避障能力;针对传统基于行为方式的编队控制编队刚性保持不好的缺点,引入了虚拟结构作为参考,通过两种编队方法的融合,可以发挥各自方法的优点:在保持队形相对稳定的前提下,增强微小型无人机在未知环境下规避障碍物和威胁的能力,对于无人机群协同低空突防有一定借鉴意义的。 SUMMARY OF THE INVENTION [0008] The object of the present invention is to solve facilitate engineered micro UAVs control problem, dynamic formation control method of a multi-UAVs, the control structure for the traditional way of formation of a virtual communications quality than high disadvantage, the introduction of the formation control method based on behavior, reducing the requirements for the formation of a wireless data link update rate, the ability to enhance the avoidance of the formation UAV group; formation control based on the traditional behavior of maintaining good formation of rigid shortcomings, the introduction of virtual reference structure, through the integration of the two methods of formation, can play the advantages of each approach: under the premise of maintaining a relatively stable formation, enhanced micro UAV avoid obstacles and threats in unknown environment the ability for low altitude penetration UAV sWARM will provide experience of. 且本发明提出的一种多无人机的动态编队控制方法, 尤其适用于威胁不确定环境下,以往无人机编队遂行侦查或搜救任务的环境一般是山地或平原,这时的障碍物一般是尺度比较大的自然物(例如山峰),这样的障碍物易被数字地图提取,往往在执行编队飞行任务前已经装载在飞控计算机的数字地图中。 And dynamic formation control method for a multi-UAV proposed by the present invention, especially for the threat of an uncertain environment, the previous UAV formation carry out the investigation or search and rescue work environment in general is mountainous or plain, when the obstacle general is a large-scale natural objects (such as mountains), obstacles such as digital maps easily extracted, often before performing formation flying mission has been loaded in the digital map flight control computer. 而对于城市的侦查和搜救任务,地面情况较为复杂,为保证侦查图像精度要求编队飞行高度低,飞行高度较低的无人机易与地面人工障碍物(例如楼群、高压线塔和电线杆)发生碰撞,而人工障碍物与自然物有很大区别,人工障碍物尺度较小,不易在数字地图提取,易引发编队飞行更大的风险。 As for the investigation and search and rescue missions in the city, the ground situation is more complex, in order to ensure detection of image precision formation flying low height, low altitude UAV ground easily and artificial obstacles (such as buildings, pylons and poles) collision, while the artificial barriers and the natural world is very different, smaller-scale artificial obstacles, difficult to extract the digital map, easily lead to formation flying greater risk.

[0009] 一种多无人机的动态编队控制方法,其特征在于:包括以下几个步骤: Formation Dynamic Control Method [0009] A multi-UAVs, characterized by: comprising the steps of:

[0010] 步骤一:队形保持方法; [0010] Step a: Formation holding method;

[0011] (I)建立地面坐标系XOY ; [0011] (I) establishing the XOY ground surface coordinate system;

[0012] 建立地面坐标系Χ0Υ,其中X轴代表东向位置,Y轴代表北向位置,ML和MF分别表示编队长机和僚机,^\和分别表示长机和僚机的航迹偏角,MV表示虚拟结构设定的僚机,简称为虚拟僚机,L和a分别表示虚拟僚机对长机期望的距离和观测角,L1和ai分别表示实际僚机对长机的距离和观测角,存在的通信网络延迟为AU MVH和ΜίΉ分别表示虚拟僚机和实际僚机在At移动后的位置,MFH表示长机MF在通信网络延迟At内飞行的剖面距离,MVH表示虚拟僚机MV在通信网络延迟At内飞行的剖面距离; [0012] ground surface coordinate system established Χ0Υ, wherein X axis represents the east position, Y-axis represents the position of north, ML and MF respectively formations and lead plane wing plane, ^ \ and angle represent the track and lead plane wingman, MV representing a virtual structure setting wingman, referred to as virtual wingman, L, respectively, and a dummy lead aircraft wing plane of a desired observation angle and distance, L1, and ai represent the actual communications network and from lead aircraft wing plane of observation angles, there is AU MVH delay and ΜίΉ represent actual and virtual wingman wingman at the position after the movement, MFH sectional view showing the lead plane retardation MF at the distance flown in a communication network, MVH LiaoJi MV represents a virtual flight delay profile in a communication network at distance;

[0013] (2)建立各个关系公式; [0013] (2) establishing the relationship between the respective formula;

[0014] 设定长机和僚机在通信周期内移动距离均为1,根据长机、僚机和虚拟僚机的几何关系建立长机ML和MVH的位置关系公式: [0014] setting the lead plane wing plane and moved within 1 communication cycle are distance, to establish the positional relationship between the lead aircraft and the ML equations according MVH lead plane geometry, and the virtual wingman wing plane:

[0015] [0015]

Figure CN102591358AD00071

[0016] 其中,Xmvh, y·、Xml^ yML分别表示考虑通信延迟的虚拟僚机的东向位置、北向位置、 长机的东向位置、北向位置,L表示虚拟僚机对长机期望的距离,^\表示长机的航迹偏角, a表示虚拟僚机对长机期望的观测角,I表示长机僚机在通信周期内移动距离; [0016] where, Xmvh, y ·, Xml ^ yML respectively, consider a virtual wingman communication delay eastbound to the position, north position, the lead plane east position, north position, L represents a virtual wingman to lead aircraft desired distance, ^ \ represents track angle lead aircraft, a represents a virtual lead aircraft wing plane of a desired observation angle, I represents a moving distance of the lead plane wing plane in the communication cycle;

[0017] 建立僚机MF和MFH的位置关系公式: [0017] formula to establish the positional relationship wingman MF and MFH of:

[0018] [0018]

Figure CN102591358AD00072

[0019] 其中,xMFH, yMFH、Xw、yMF分别表示考虑通信延迟的实际僚机的东向位置、北向位置、 实际僚机的东向位置、北向位置,表示僚机的航迹偏角;公式(2)减公式(I)可以建立MVH和MFH的跟踪误差关系公式: [0019] wherein, xMFH, yMFH, Xw, yMF respectively, regardless of the actual LiaoJi communication delay the east position, north position, the actual wingman east position, north position, showing the track angle wingman; Equation (2) Save the formula (I) may establish relationships MVH and tracking error MFH formula:

[0020] [0020]

Figure CN102591358AD00081

[0021] 其中,ex、ey分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差dtMVH和ΜΪΉ的跟踪误差关系公式(3)进行求导,得到: [0021] wherein, ex, ey respectively, regardless of the communication delay and the actual virtual wingman wingman evaluated dtMVH guide position deviation and tracking error ΜΪΉ relational formula (3) to the east position, north, to give:

[0022] [0022]

Figure CN102591358AD00082

[0023] 其中,\、Vf分别表示长机和僚机的速度,ωρ 0^分别表长机和僚机的偏航角速度,之、4分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差的导数,I表示长机僚机在通信周期内移动距离,L表示僚机对虚拟长机期望的距离,ψί表示长机的航迹偏角,a表示虚拟长机期望的观测角,$“奈机的航迹偏角; [0023] wherein, \, respectively, Vf and lead plane wingman speed, ωρ 0 ^ respectively represent the yaw rate and the lead plane wingman, of, respectively, 4 represents a communication delay consideration of the actual and virtual wingman wingman east position, North derivative of the position deviation, I represents the lead plane wing plane in the mobile communication cycle distance, L represents the distance to the virtual lead aircraft wing plane desired, ψί indicates track angle lead aircraft, a represents a desired observation angle virtual lead aircraft, $ "Chennai machine track angle;

[0024] 将地面坐标系的ex、ey投影到僚机的速度坐标系: [0024] The ground coordinate system ex, ey projected coordinate systems to be Flying speed:

[0025] [0025]

Figure CN102591358AD00083

[0026] 其中,ex、ey分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差,5分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差在僚机速度坐标系下的投影; [0026] wherein, ex, ey respectively, regardless of the communication delay of the virtual wing plane and the actual wingman east positional deviation to the position, north, 5 respectively considering the communication delay of the virtual wing plane and the actual wingman East deviation wingman forward position, north position the projection coordinates speed;

[0027] 对变换坐标后的公式(5)进行求导,得到: [0027] The equation (5) the transformed coordinates, we get the:

[0028] [0028]

Figure CN102591358AD00084

[0029] 其中έχ、&分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置 [0029] in which έχ, & represent consider virtual wingman wingman and actual communication delay of east position, north position

偏差的导数,t、&分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置 Derivative deviation, t, & wing plane and represent the actual virtual consider wingman communication delay to the east position, north position

偏差在僚机速度坐标系下的投影的导数; Derivative deviation at a speed wingman projected coordinate system;

[0030] 联立公式⑶、公式⑷和公式(6)得到: [0030] simultaneous equation ⑶, ⑷ formula and Equation (6) yields:

[0031] [0031]

Figure CN102591358AD00085

[0032] 当僚机的偏航角速度和速度指令为公式(8)所示时,公式(7)可以化简为公式 [0032] When the yaw rate and the speed command is wingman formula (8) shown in Equation (7) can be simplified as Formula

(9): (9):

[0033] [0033]

Figure CN102591358AD00091

[0034] 其中,k1; k2表示实际编队过程中待调整的控制律系数; [0034] wherein, k1; k2 represent coefficients of actual control law during formation to be adjusted;

[0035] [0035]

Figure CN102591358AD00092

[0036] 考虑李雅普诺夫函数: [0036] Consider the Lyapunov function:

[0037] [0037]

Figure CN102591358AD00093

[0038] 公式(9)代入公式(10)可得 [0038] Equation (9) into equation (10) can be obtained

[0039] [0039]

Figure CN102591358AD00094

[0040] 由李雅普诺夫定律,对于给定的偏差0,采用公式⑶的速度和角速度指令,编队队形偏差收敛为O,使得误差表达式4,收敛为O ; [0040] by the Lyapunov's law, for a given deviation of 0, using the formula ⑶ speed and angular speed commands, formation formation converges deviation is O, such that the error expression 4, convergence is O;

[0041] 最终的编队过载指令<和编队速度指令Pf为: [0041] The final instruction of overload formation <Pf and formation speed command is:

[0042] [0042]

Figure CN102591358AD00095

[0043] 步骤二:避障方法; [0043] Step Two: Obstacle Avoidance;

[0044] 地面障碍物在空间中服从均匀分布,M为无人机当前位置,V为无人机速度矢量,r 为障碍物的威胁范围,R为无人机距离障碍物的距离,为保证无人机不进入威胁区,无人机可以沿左侧航迹MA飞行也可以沿右侧航迹MB飞行,设距无人机最近的威胁源为圆心0,理想威胁回避航迹为与圆O外切且与速度矢量V相切的两圆OpO,的圆弧MA和MB,定义切点A、B为威胁回避导航点; [0044] ground obstacles obey a uniform distribution in space, M being the current position of the UAV, V is the velocity vector UAV, r is a threat to the obstacle, R is the distance to the obstacle from the UAV, to ensure UAVs do not enter the threatened area, UAVs can fly along the left side of the track MA may also fly along the right track MB, set away from the drone recent sources of threats as the center 0, track is ideal for threat avoidance and round O exo velocity vector V and the tangent to the two circles OpO, arc MA and MB, define cut points a, B is a threat avoidance navigation point;

[0045] 转弯半径应用解三角形的方法求取,在Λ OO1M中应用余弦定理得: [0045] Solutions for application of a turning radius is obtained from the triangle, the law of cosines have application in Λ OO1M:

[0046] [0046]

Figure CN102591358AD00096

2RRl 2RRl

[0047] 得出无人机威胁回避的转弯半径: [0047] draw UAV threat avoidance of turning radius:

[0048] [0048]

Figure CN102591358AD00097

[0049] [0049]

Figure CN102591358AD00101

[0050] 相应的侧向加速度的表达式为: [0050] The corresponding expression for the lateral acceleration:

[0051] [0051]

Figure CN102591358AD00102

[0052] 其中a,、ai分别表示无人机沿圆弧MB、MA进行避障所需要的侧向加速度; [0052] wherein each represent a ,, ai UAV along a circular arc MB, MA needed for obstacle avoidance lateral acceleration;

[0053] 最终的避障过载指令< : [0053] The final instruction of overload avoidance <:

[0054] [0054]

Figure CN102591358AD00103

[0055] 最终避障速度指令选择与长机速度对齐指令72*: [0055] The final speed command selecting avoidance ChangJi alignment instruction speed * 72:

[0056] [0056]

Figure CN102591358AD00104

(18) (18)

[0057] 其中' 表示长机的速度; [0057] wherein 'indicates the speed of the lead aircraft;

[0058] 步骤三:基于行为的编队过程; [0058] Step Three: Formation Behavior-based process;

[0059] (1)行为分解过程:将任务行为分解为三个互相平行的子行为:异常情况处理,队形保持方法和威胁回避方法,同时为每个子行为赋予相应的重要性,用权值表示;队形保持方法中无人机通过无线通信网络获得长机的信息,具体包括长机速度'、偏航角速度和航迹偏角;无人机通过自身本机导航设备获得导航信息,具体包括速度%、角速度(^和偏角,按照步骤一公式(8)和公式(12)生成编队过载指令<和编队速度指令Pf;避障方法中无人机通过光学传感器获取障碍物的信息包括:无人机距离障碍物的距离R,速度矢量与无人机与障碍物连线的夹角为b,按照步骤二公式(17)和公式(18)生成避障过载指令<和避障速度指令;异常情况处理是指飞行器在执行飞行任务时,遇到通信链路中断等无法维持编队的原因,无人机飞控计算机进入异常处理状态,异常处理要 [0059] (1) decomposition behavior: the task behavior into three mutually parallel child behavior: exception handling, and a method of holding formation threat avoidance method, while giving importance for each respective child behavior, by weight represents; formation method UAV holding information obtained through the wireless communication network lead aircraft, comprises lead aircraft speed ', yaw rate and track angle; UAV navigation information obtained by the navigation apparatus itself native, particularly % including speed, the angular velocity (^ and angle, according to the procedure a formula (8) and formula (12) generates a command overload formation <Pf and formation speed command; obstacle avoidance UAV obstacle information acquired by an optical sensor comprising : UAV distance to the obstacle distance R, the velocity vector and the obstacle drone connection angle is b, the two steps in accordance with formula (17) and equation (18) generates overload avoidance instruction <velocity and avoidance instruction; exception handling refers to the aircraft performing flight tasks encountered reasons for interruption of the communication link can not be maintained fleet of UAV flight control computer into the state of exception handling, exception handling to 证无人机按照单机最优的策略执行任务或飞离搜索区域到达指定位置准备降落,异常处理在执行任务中优先级最高,无人机按照单机最优的策略执行任务需要的过载指令和速度指令分别为 Stand-alone license UAVs in accordance with the best strategy to perform a task or fly away from the search area arrived at the designated location for a landing, exception handling in the performance of their duties with the highest priority, unmanned aerial vehicles need to follow the single best policy enforcement task overload command and speed instructions are

* * * *

[0060] (2)控制实现过程指无人机根据运动模型和当前运动状态,加权计算无人机实际的控制指令,进而输入执行机构:无人机的偏航通道产生方向舵偏,从而实现对无人飞行器编队的运动控制; [0060] (2) The UAV control implementation means a motion model and the current state of motion of the actual weighted UAV control commands, and thus enter the actuator: UAV yaw rudder bias generating channels, so as to achieve UAVs motion control;

[0061] 根据步骤一和步骤二中的队形保持方法和避障方法,各个子行为的过载指令和速度指令获得后按照公式(17)进行加权: [0061] The method of holding and obstacle avoidance method steps one and two in the formation step, (17) is weighted according to the formula the overload command and speed command of each child behavior is obtained:

[0062] n = wn0n0 + wnXn\ + wn2n2 [0062] n = wn0n0 + wnXn \ + wn2n2

[0063] [0063]

Figure CN102591358AD00111

[0064]其中 Wnt^WnJWn2 = I. O, wv0+wvi+wv2 =1.0 [0064] wherein Wnt ^ WnJWn2 = I. O, wv0 + wvi + wv2 = 1.0

[0065] 其中,Wntl表示异常处理时过载指令权值、wTO表示异常处理时速度指令权值、Wnl表示队形保持时过载指令权值、wvl表示队形保持时速度指令权值、Wn2表示避障时过载指令权值、Wv2表示避障时速度指令权值; [0065] wherein, Wntl represents overload exception processing instruction weight, wTO represents speed command value when the exception handling, Wnl represents overload command weight value formation keeping, wvl indicates formation remains speed command value, Wn2 indicates avoid command when the overload fault weights, Wv2 represents speed command value avoidance;

[0066] I)符合异常处理的条件:wn(l = Wvo = I. O, wnl = wvl = Wn2 = wV2 = O. O,这时队形保持和避障方法已经不再有效,无人机采取单机飞行的方式执行任务,或者沿指定导航点进入降落阶段; Conditions [0066] I) meet the exception handling: wn (l = Wvo = I. O, wnl = wvl = Wn2 = wV2 = O. O, retention time and formation method of obstacle avoidance is no longer valid, UAV take the form of stand-alone flight tasks, or enter the landing stage along a specified waypoints;

[0067] 2)未符合异常处理条件时,队形保持方法与避障方法有效,按照光学传感器是否发现障碍物进行权值计算: When the [0067] 2) does not meet the conditions of the exception handling, and formation method of obstacle avoidance for maintaining effective, the optical sensor is found to be an obstacle for weight calculation:

[0068] [0068]

Ki=wKi=1-0 Ki = wKi = 1-0

< 光学传感器未发现障碍物 <No obstacle optical sensor

Wn2 = WV 2 = 0.0 Wn2 = WV 2 = 0.0

< (20) w«i = wvi = 0.6 〜0.8 <(20) w «i = wvi = 0.6 ~0.8

光学传感器发现障碍物 The optical sensor obstacle found

K2 = WV2 = 0·2 〜0 4 K2 = WV2 = 0 · 2 ~0 4

V、 V,

[0069] 其中,Wn2, wV2的取值取决于地面障碍物尺度与障碍物威胁范围的比值,Wnl = [0069] wherein, Wn2, wV2 obstacle depends on the ratio of the value scale ground obstacle threat range, Wnl =

I. O Wr^ ? "Wyi I. O "Wy2 O I. O Wr ^? "Wyi I. O" Wy2 O

[0070] 本发明的优点在于: [0070] The advantage of the present invention:

[0071] (I)针对传统的虚拟结构方式编队控制对通信质量要求较高的缺点,引入了基于行为的编队控制方法,降低了对编队无线数据链更新率的要求,增强了无人机群编队的避障能力; [0071] (I) a virtual configuration for a conventional manner to control formation of a high quality communication disadvantage, the introduction of a control based on the behavior of the formation, reduces the requirements for the data link update rate wireless formation, enhanced group formation UAV the obstacle avoidance capability;

[0072] (2)针对传统基于行为方式的编队控制编队刚性保持不好的缺点,引入了虚拟结构作为参考,通过两种编队方法的融合,可以发挥各自方法的优点:在保持队形相对稳定的前提下,增强微小型无人机在未知环境下规避障碍物和威胁的能力,对于无人机群协同低空突防有一定借鉴意义的; [0072] (2) Formation traditional control based on the behavior of formation of rigid holding bad disadvantage, the introduction of virtual configuration as a reference, by fusing the two methods of formation, the method may exert their advantages: relatively stable holding formation under the premise of enhancing micro UAV ability to circumvent the obstacles and threats in unknown environment for UAV sWARM low altitude penetration will provide experience of;

[0073] (3)针对实际微小型无人机提出的编队策略,采用的数学模型也是实际微小型无人机动力学与运动学模型,不仅对算法进行了验证,还具有很强的实际工程意义。 [0073] (3) for the actual policy formation Micro UAV proposed mathematical model is also used in the actual Micro UAV dynamics and kinematics model, not only for algorithm verification, also has a strong practical engineering significance .

[0074] (4)为了验证编队方法与威胁回避策略,开发了实际仿真群体行为的软件,该软件具有用户友好、便于操作与演示的优点,对于编队仿真软件的开发与国产化有一定的借鉴意义。 [0074] (4) In order to verify the formation methods and threat avoidance strategies, develop software actual simulation of group behavior, the software has a user-friendly, easy advantage of operating with the presentation, for the development and localization of the fleet simulation software has certain model significance.

附图说明 BRIEF DESCRIPTION

[0075] 图I :本发明中长机、僚机和虚拟僚机在地面坐标系中位置关系图; [0075] FIG. I: In the present invention, the lead plane, the positional relationship wingman wing plane and the virtual ground coordinate system in FIG;

[0076] 图2 :本发明中未采用队形保持方法无人机群初始位置及障碍物分布俯视图; [0076] FIG. 2: the present invention is not employed in the initial group formation method for maintaining the position of UAV and the obstacle distribution plan view;

[0077] 图3 :本发明中接入队形保持方法无人机群编队控制结果图; [0077] Figure 3: Formation present invention, an access control method for maintaining formation results in FIG UAV group;

11[0078] 图4 :本发明中无人机与地面障碍物位置关系图; 11 [0078] FIG. 4: UAV of the present invention with the ground obstacle FIG positional relationship;

[0079] 图5 :本发明中接入避障方法进行威胁回避的结果图; [0079] Figure 5: In the present invention, an access method of obstacle avoidance for the results of FIG threat avoidance;

[0080] 图6 :本发明中基于行为的编队过程的流程示意图; [0080] FIG. 6: Formation of the flow behavior of the process based on the present invention in a schematic view;

[0081] 图7 :本发明中威胁回避之后重新编队的结果图; [0081] Figure 7: Results of the present invention in view after the threat avoidance of re-formation;

[0082] 图8 :本发明中实现上述仿真结果所利用的演示软件的示意图。 [0082] FIG. 8: a schematic view of the above-described simulation result presentation software utilized in the present invention is implemented.

具体实施方式 Detailed ways

[0083] 下面将结合附图对本发明作进一步的详细说明。 [0083] The following with reference to the present invention will be further described in detail.

[0084] 本发明提出的一种多无人机的动态编队控制方法,包括以下几个步骤: [0084] The present invention proposed a multi-dynamic formation UAV control method, comprising the steps of:

[0085] 步骤一:队形保持方法; [0085] Step a: Formation holding method;

[0086] (I)建立地面坐标系XOY ; [0086] (I) establishing the XOY ground surface coordinate system;

[0087] 建立地面坐标系Χ0Υ,如图I所示,其中X轴代表东向位置,Y轴代表北向位置。 [0087] The ground surface coordinate system established Χ0Υ, as shown in FIG I, wherein X axis represents the east position, Y-axis represents the North position. ML 和MF分别代表编队长机和僚机,^\和ΨΡ分别代表长机和僚机的航迹偏角,MV代表虚拟结构设定的僚机,简称为虚拟僚机,L和a分别代表虚拟僚机对长机期望的距离和观测角, L1和&分别代表实际僚机对长机的距离和观测角,存在的通信网络延迟为Λ t,MVH和MFH 分别表示虚拟僚机和实际僚机在At移动后的位置,所以无人机编队问题等同于MH^^MVH 的跟踪问题,也即考虑网络延迟后的实际僚机对虚拟僚机的跟踪问题,其中ΜίΉ表示长机MF在通信网络延迟At内飞行的剖面距离,MVH表示虚拟僚机MV在通信网络延迟At内飞行的剖面距离。 MF and ML and represent lead aircraft wing plane formations, ^ \ and ΨΡ represent track angle and the lead plane wingman, MV wingman virtual structure representative of a set, referred to as virtual wingman, L, and a pair of long represent virtual LiaoJi machine observation angle and a desired distance, L1, and & LiaoJi represent the actual distance of the lead aircraft and the angle of observation, the presence of network communication delay Λ t, MVH and MFH wing plane and represent the actual position of the virtual at wingman after movement, Therefore, the problem is equivalent to the UAV formation MH ^^ MVH of tracking, i.e., after considering the actual network delay wingman tracking virtual wingman, wherein the lead aircraft MF represents ΜίΉ delay profile at the distance flown in a communication network, MVH MV represents a virtual wingman delay profile from flying within at the communications network. 要求所使用无人机纵向能够处于稳定的定高飞行状态,无人机采用方向舵进行侧滑转弯,所以主升力面面积和飞行速度在飞行过程变化不大,耦合引起的飞行器高度损失能够用升降舵进行很好的补偿。 Requirements can be used for longitudinal stability at a given high flight, UAV used a rudder for STT, and the main lifting surface area and little variation in the flight speed flight, the aircraft altitude loss due to the coupling is possible with elevator It is well compensated.

[0088] (2)建立各个关系公式; [0088] (2) establishing the relationship between the respective formula;

[0089] 由于编队的长机僚机纵向均处于定高状态,采用的转弯方式均为侧滑转弯,故长机僚机速度偏差不大,一般偏差不超过IOm时,所以设定长机和僚机在通信周期内移动距离均为1,根据图I中长机、僚机和虚拟僚机的几何关系建立长机ML和MVH的位置关系公式: [0089] Since the formation of the lead aircraft wing plane in the longitudinal direction are set in a high state, turning STT mode are used, it is not the speed deviation lead aircraft wing plane, when the deviation does not exceed IOm generally, it is set in the lead plane and wingman a moving distance are within a communication cycle 1, the positional relationship established formulas ML and MVH lead plane geometry of FIG. I in accordance with the lead aircraft, wing plane and virtual wingman:

[yMVH =yML_LsinOi -O)+ ISinψι [YMVH = yML_LsinOi -O) + ISinψι

[0091] 其中,Xmvh, y·、Xml^ yML分别表示考虑通信延迟的虚拟僚机的东向位置、北向位置、 长机的东向位置、北向位置。 [0091] where, Xmvh, y ·, Xml ^ yML represent the communication delay consideration of virtual wingman east position, north position, the lead plane position east, north location. L表不虚拟僚机对长机期望的距尚,表不长机的航迹偏角, a表示虚拟僚机对长机期望的观测角,I表示长机僚机在通信周期内移动距离。 Table L Virtual LiaoJi not desirable from the lead aircraft is still on the table does not lead aircraft flight path angle, a represents a virtual lead aircraft wing plane of a desired observation angle, I represents a moving distance of the lead plane wing plane within the communication cycle.

[0092] 根据图I中长机、僚机和虚拟僚机的几何关系建立僚机MF和MFH的位置关系公式: [0092] The positional relationship established MF and MFH formula wing plane geometry of FIG. I in accordance with the lead aircraft, wing plane and virtual wingman:

[0093] [0093]

Figure CN102591358AD00121

[0094] 其中,xMFH, yMFH、Xw、yMF分别表示考虑通信延迟的实际僚机的东向位置、北向位置、 [0094] wherein, xMFH, yMFH, Xw, yMF respectively, considering the actual communication delay wingman position to the east position, north,

[0090] [0090]

Figure CN102591358AD00122

实际僚机的东向位置、北向位置,ΨF表示僚机的航迹偏角。 The actual wingman eastward position, ΨF represents track position angle wingman to the north. 公式⑵减公式⑴可以建立MVH和MFH的跟踪误差关系公式: Save formula ⑴ ⑵ formula can be established and the tracking error relationship MVH MFH formula:

[0095] [0095]

Figure CN102591358AD00131

[0096] 其中,ex、ey分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差。 [0096] wherein, ex, ey respectively, regardless of the communication delay and the actual virtual wingman wingman positional deviation to the east position, north.

[0097] 对MVH和MFH的跟踪误差关系公式⑶进行求导,得到: [0097] The relationship between the tracking error and MVH formulas for derivation of MFH ⑶ obtain:

[0098] [0098]

Figure CN102591358AD00132

[0099] 其中,\、Vf分别表示长机和僚机的速度,ωρ 别表长机和僚机的偏航角速度,之、<分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差的导数。 [0099] wherein, \, respectively, Vf represents the speed of the lead plane and wingman, ωρ not lead plane and the yaw rate table wingman, the <represent consider the communication delay and the actual virtual wingman wingman east position, north position derivative deviation. I表示长机僚机在通信周期内移动距离,L表示僚机对虚拟长机期望的距离,表示长机的航迹偏角,a表示虚拟长机期望的观测角,ΨΡ僚机的航迹偏角。 I represents the moving distance of the lead aircraft wing plane within the communication cycle, L represents a virtual lead aircraft wing plane a desired distance, the lead plane indicates track angle, a represents the desired virtual lead plane observation angles, ΨΡ wingman track angle.

[0100] 将地面坐标系的ex、ey投影到僚机的速度坐标系,这个坐标系的定义为僚机的速度方向为X轴,与X垂直顺时针选转90度为Y轴。 [0100] The ex ground coordinate system, EY projected coordinate system to be Flying speed, the speed of the coordinate system is defined as the X-axis direction wingman, and X is selected from 90 degrees clockwise vertical Y-axis.

[0101] [0101]

Figure CN102591358AD00133

[0102] 其中,ex、ey分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差,5分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差在僚机速度坐标系下的投影。 [0102] wherein, ex, ey respectively, regardless of the communication delay of the virtual wing plane and the actual wingman east positional deviation to the position, north, 5 respectively considering the communication delay of the virtual wing plane and the actual wingman East deviation wingman forward position, north position the projection coordinates speed.

[0103] 对变换坐标后的公式(5)进行求导,得到: [0103] The equation (5) the transformed coordinates, we get the:

[0104] [0104]

Figure CN102591358AD00134

[0105] 其中έχ、^,分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置 [0105] in which έχ, ^, respectively, consider the virtual wingman wingman and actual communication delay of east position, north position

偏差的导数,t、$分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置 The deviation of the derivative, t, $ represent the considered virtual wingman wingman and actual communication delay of east position, north position

偏差在僚机速度坐标系下的投影的导数。 Derivative deviation at a speed wingman projected coordinate system.

[0106] 联立公式(3)、公式(4)和公式(6),得到: [0106] simultaneous equation (3), equation (4) and Formula (6), to give:

[0107] [0107]

Figure CN102591358AD00135

[0108] 由公式(7)可以看出,当僚机的偏航角速度和速度指令为公式(8)所示时,公式(7)可以化简为公式(9) [0108] (7) It can be seen from the formula, when the yaw rate and the speed command is wingman formula (8) shown in Equation (7) can be simplified as Equation (9)

[0109] [0109]

Figure CN102591358AD00141

[0110] 其中,k1;k2表示实际编队过程中待调整的控制律系数,实际编队中取值量级与ωρ 近似的正数。 [0110] wherein, k1; k2 represent coefficients of actual control law during formation to be adjusted, the actual value of a positive number in the order of formation and ωρ approximation.

[0111] [0111]

Figure CN102591358AD00142

[0112] 考虑李雅普诺夫函数: [0112] Consider the Lyapunov function:

[0113] [0113]

Figure CN102591358AD00143

[0114] 公式(9)代入公式(10)可得 [0114] Equation (9) into equation (10) can be obtained

[0115] [0115]

Figure CN102591358AD00144

[0116] 由李雅普诺夫定律,对于给定的偏差O,采用公式(8)的速度和角速度指令,编队队形偏差能够收敛为O。 [0116] by the Lyapunov's law, for a given deviation of O, using Equation (8) and the angular speed command, the deviation converge formation formation is O. 使得误差表达式€,&收敛为O。 Such that the error expression €, & convergence is O.

[0117] 最终的编队过载指令<和编队速度指令Pf : [0117] The final instruction of overload formations <formation speed command and Pf:

[0118] [01]

Figure CN102591358AD00145

[0119] 应用本发明中队形保持方法进行编队,未采用队形保持方法无人机群初始位置及障碍物分布俯视图如图2所示,编队结果俯视图如图3所示,其中O、1、2、3、4代表无人机,O 号代表长机,1-4号代表实际无人机,实线的椭圆圈代表有一定威胁的区域,虚线椭圆圈代表无人机探测范围,从图中可以看出,应用本发明步骤一提出的队形保持方法,能够完成微小型无人机的编队任务。 [0119] Application of the present invention, a method for maintaining formation formation, the method is not employed to maintain formation position and the obstacle UAV initial population distribution plan shown in Figure 2, the results of a top formation shown in Figure 3, wherein O, 1, 2,3,4 representative of UAVs, the lead plane number represents O, 1-4 represent the actual UAV, elliptical solid line circles represent the threat of a certain region, UAV dashed oval circle represents the detection range, from FIG. As can be seen, the present invention is a formation step of applying the proposed method for maintaining, to complete the formation of micro UAV mission.

[0120] 步骤二:避障方法; [0120] Step Two: Obstacle Avoidance;

[0121] 无人机在编队飞行的过程中,往往存在地面上的障碍物,例如对地观测搜索时的地面高压电线和楼群,如果这些障碍物在执行任务之前是已知的,并且在无人机编队飞行过程中障碍物不移动或移动的位置变化不大,那么在执行任务之前可以靠离线航路规划来回避地面已知障碍物。 [0121] UAV in flight during formation, there is often an obstacle on the ground, such as buildings and high-voltage electric wires in the ground to observe the search, if these obstacles are known before the execution of the task, and position change UAV formation flight obstacle is not moving or not moving, before you can perform tasks on the ground offline route planning to avoid known obstacles. 实际上侦查区域的障碍物一般是未知的,所以要求无人机编队对于未知或突然出现的障碍物有一定的回避能力。 Indeed obstacle investigation area is generally unknown, it requires UAV formation of the unknown or the sudden appearance of a certain obstacle avoidance capability.

[0122] 设地面障碍物在空间中服从均匀分布,如图4所示,M为无人机当前位置,V为无人机速度矢量,r为障碍物的威胁范围,R为无人机距离障碍物的距离。 [0122] provided ground obstacles uniform distribution in space,, M is the current position of the UAV, V is the velocity vector UAV, r is a threat to the obstacle, R is the distance shown in Figure 4 UAV distance to the obstacle. 为保证无人机不进入威胁区,无人机可以沿左侧航迹MA飞行也可以沿右侧航迹MB飞行,设距无人机最近的威胁源为圆心0,理想威胁回避航迹为与圆O外切且与速度矢量V相切的两圆O1.も的圆弧MA 和MB,定义切点A、B为威胁回避导航点。 To ensure that does not enter the UAV threat area, unmanned aerial vehicles can fly along the left side of the track MA can fly along the right track MB, set away from the drone recent sources of threats as the center 0, track is ideal for threat avoidance O and tangential to the outer circle of the two circles O1 V the velocity vector tangential to the circular arc mo MA and MB, define cut points a, B is a threat avoidance navigation point.

[0123]转弯半径应用解三角形的方法求取,在AOO1M中应用余弦定理得: [0123] Solutions for application of a turning radius is obtained from the triangle, the law of cosines obtained in the application AOO1M:

[0124] [0124]

Figure CN102591358AD00151

[0125]进ー步得出无人机威胁回避的转弯半径: [0125] Step into the draw ー UAV threat avoidance of turning radius:

Figure CN102591358AD00152

[0128]相应的侧向加速度的表达式为: [0128] The corresponding expression for the lateral acceleration:

[0129] [0129]

Figure CN102591358AD00153

[0130]其中も、B1分別表示无人机沿圆弧MB、MA进行避障所需要的侧向加速度。 [0130] wherein mo, B1 denote the UAV along a circular arc MB, MA lateral acceleration for obstacle avoidance required.

[0131]最终的避障过载指令: [0131] The final avoidance command overload:

[0132] [0132]

Figure CN102591358AD00154

[0133]在障碍物区域不是很大的前提下,最终避障速度指令选择与长机速度对齐指令厂;: [0133] Under the premise obstacle region is not large, the final obstacle avoidance lead aircraft speed and the speed command selection factory alignment instructions;:

[0134] [0134]

K = VL (18) K = VL (18)

[0135]其中\表示长机的速度。 [0135] where \ represents the speed of the lead aircraft.

[0136]采用步骤ニ中的避障方法进行威胁回避的结果如图5所示,其中实线长曲线表示无人机飞行轨迹,实线的椭圆圈代表有一定威胁的区域,虚线椭圆圈代表无人机探測范围。 Results [0136] The process step avoidance in Ni threat avoidance shown in Figure 5, where the solid line represents the curve length UAV flight path, an elliptical solid line circles represent the threat of a certain region, dashed oval circle represents UAV detection range. 1-4号无人机可以采用步骤ニ中的避障方法进行威胁回避策,避开可能存在的地面威胁,由于编队的权值不完全为零,所以在回避威胁的情况下,基本的编队位置也能进ー步維持,为威胁回避后的重新编队做好准备。 1-4 avoidance UAV may be employed in the method step ni threat avoidance strategy to avoid possible ground threats, due to the incomplete formation weights zero, so that in case of threat avoidance, the basic formation location can also step into the ー maintain, prepare for the re-formation after the threat avoidance.

[0137]步骤三:基于行为的编队过程; [0137] Step Three: Formation Behavior-based process;

[0138]步骤ー和步骤ニ给出了微小型无人机的编队方法和避障方法,实际编队飞行过程就是上述两种情况的叠加,为了获得大面积对地观测往往要求飞行器进行编队飞行,当飞行器遇到前期航路规划未标明的障碍物时往往要求飞行器有临时躲避威胁的功能,采用基于行为的编队过程,将步骤一和步骤二的过程结合起来,具体分为两个步骤,如图6所示, 分别为行为分解与控制实现。 [0138] Step ー Ni step formation method given micro UAV and obstacle avoidance, the actual process of formation flight is superimposed above two cases, in order to obtain a large area of ​​Earth observation often required the aircraft formation flight, when the aircraft did not meet the pre-marked route planning obstacles often requires aircraft to avoid the threat of temporary function, behavior-based formation process, the process steps one and two together, concrete is divided into two steps, as 6, respectively, and the decomposition behavior control is realized.

[0139] (I)在行为分解过程中,无人机根据当前的环境信息和任务性质,将任务行为分解为三个互相平行的子行为:异常情况处理,队形保持方法和威胁回避方法,同时为每个子行为赋予相应的重要性,用权值表示。 [0139] (I) acts in the decomposition process, the UAV according to the current environmental information and nature of the task, the task behavior into three mutually parallel child behavior: exception handling, and a method of holding formation threat avoidance method, while giving appropriate importance to each sub-behavior, expressed in weight. 队形保持方法参考步骤一,无人机通过无线通信网络获得长机的信息,具体包括长机速度'、偏航角速度和航迹偏角;无人机通过自身本机导航设备获得导航信息,具体包括速度Vf、角速度ωρ和偏角ΨΡ,按照步骤一公式(8)和公式(12)生成编队过载指令<和编队速度指令K1'避障方法参考步骤二,无人机通过光学传感器获取障碍物的信息包括:无人机距离障碍物的距离R,速度矢量与无人机与障碍物连线的夹角为b,按照步骤二公式(17)和公式(18)生成避障过载指令<和避障速度指令72*。 Reference holding a formation step, the lead plane UAVs to obtain information through the wireless communication network, comprises lead aircraft speed ', yaw rate and track angle; UAV navigation information obtained by the navigation apparatus itself native, specifically includes speed Vf, and the angular velocity ωρ angle ΨΡ, the step of generating a formation according to equation (8) and formula (12) overload command <formations speed command and K1 'obstacle avoidance reference to step two, the UAV acquired by an optical sensor barriers information thereof comprising: UAV distance to the obstacle distance R, the angle between the velocity vector and the drone connection with the obstacle is b, (17) and equation (18) generates overload avoidance instruction according to step two formulas < 72 and obstacle avoidance velocity command *. 异常情况处理是指飞行器在执行飞行任务时,遇到通信链路中断等无法维持编队的原因, 无人机飞控计算机进入异常处理状态,异常处理要保证无人机按照单机最优的策略执行任务或飞离搜索区域到达指定位置准备降落,异常处理在执行任务中优先级最高,无人机按照单机最优的策略执行任务需要的过载指令和速度指令分别为乂、K:,例如O、 Exception handling refers to the aircraft performing flight tasks encountered communication link is interrupted and other reasons can not be maintained fleet of UAV flight control computer into the state of exception handling, exception handling to ensure that the UAV in accordance with the single best policy enforcement task or fly search area arrived at the designated location for a landing, exception handling the highest priority in the line of duty, according to overload UAV command and speed command single best strategy to perform the required tasks are qe, K :, such as O,

=匕沿直线飞行。 = Dagger flying in a straight line.

[0140] (2)控制实现过程指无人机根据运动模型和当前运动状态,加权计算无人机实际的控制指令,进而输入执行机构,无人机的偏航通道产生方向舵偏,从而实现对无人飞行器编队的运动控制。 [0140] (2) The UAV control implementation means a motion model and the current state of motion, UAV weighted actual control instruction, the actuator further input, UAV yaw rudder bias generating channels, so as to achieve UAVs motion control.

[0141] 根据步骤一和步骤二中的队形保持方法和避障方法,各个子行为的过载指令和速度指令求出以后可以按照下式进行加权: [0141] The method of holding and obstacle avoidance method steps one and two in the formation step, the overload command and speed command is determined after each child behavior may be weighted according to the following formula:

Figure CN102591358AD00161

[0144]其中 Wnt^WnJWn2 = I. O, wv0+wvi+wv2 =1.0 [0144] wherein Wnt ^ WnJWn2 = I. O, wv0 + wvi + wv2 = 1.0

[0145] 其中,Wntl表示异常处理时过载指令权值、wTO表示异常处理时速度指令权值、Wnl表示队形保持时过载指令权值、wvl表示队形保持时速度指令权值、Wn2表示避障时过载指令权值、wV2表示避障时速度指令权值。 [0145] wherein, Wntl represents overload exception processing instruction weight, wTO represents speed command value when the exception handling, Wnl represents overload command weight value formation keeping, wvl indicates formation remains speed command value, Wn2 indicates avoid command when the overload fault weights, wV2 represents speed command value avoidance.

[0146] I)符合异常处理的条件:wn(l = Wvo = I. O, wnl = wvl = Wn2 = wV2 = O. O,这时队形保持和避障方法已经不再有效,无人机采取单机飞行的方式执行任务,或者沿指定导航点进入降落阶段; Conditions [0146] I) meet the exception handling: wn (l = Wvo = I. O, wnl = wvl = Wn2 = wV2 = O. O, retention time and formation method of obstacle avoidance is no longer valid, UAV take the form of stand-alone flight tasks, or enter the landing stage along a specified waypoints;

[0147] 2)未符合异常处理条件时,队形保持方法与避障方法有效,按照光学传感器是否发现障碍物进行权值计算: When the [0147] 2) does not meet the conditions of the exception handling, and formation method of obstacle avoidance for maintaining effective, the optical sensor is found to be an obstacle for weight calculation:

[0148] [0148]

Figure CN102591358AD00171

[0149] 其中,Wnl wvl Wn2 Wv2可根据实际情况适当调整,Wn2^ Wv2的取值主要取决于地面障碍物尺度与障碍物威胁范围的比值,比值大说明障碍物尺度比较大,这时wn2,wV2取值要加大,防止与障碍物发生碰撞,否则Wn2, Wy2取值减小,wnl = I. O-Wn2, wvl = I. O-Wv2增大,增强无人机的编队能力。 [0149] wherein, Wnl wvl Wn2 Wv2 can be adjusted according to the actual situation, Wn2 ^ Wv2 values ​​depends on the ratio of the range of the obstacle threat scale ground obstacle, the obstacle described large-scale ratio is relatively large, then Wn2, wV2 to increase the value, to prevent a collision with an obstacle, otherwise Wn2, Wy2 value decreases, wnl = I. O-Wn2, wvl = I. O-Wv2 increases, the ability to enhance the formation of UAVs. Wn2优选取值为wn2 = O. 3, Wnl = O. 7ο本发明的生成指令η*为过载指令,故对于无法安装测量气流角的传感器的无人机有一定借鉴意义。 Value is preferably Wn2 wn2 = O. 3, Wnl = O. 7ο generation instruction according to the present invention, η * overload command, it can not be installed for measuring the flow angle sensor UAVs have some reference.

[0150] 如图7所示,在无人机探测不到威胁的情况下,重新恢复编队队形,进行编队飞行,其中实线长曲线表示无人机飞行轨迹,实线的椭圆圈代表有一定威胁的区域,虚线椭圆圈代表无人机探测范围。 [0150] 7, in a case where the UAV undetectable threat restored formation formation, formation flight, where the solid line represents the curve length UAV flight path, the oval represents the real line has region of a certain threat, UAV dashed oval circle represents the detection range. 1-4号无人机可以采用步骤三中的基于行为的编队方法进行队形保持与威胁回避,在避开可能存在的地面威胁的前提下保持队形的刚性。 1-4 UAV may be employed a method based on the behavior of formation in three steps for maintaining formation threat avoidance, remain rigid at avoiding the formation of ground threats possible premise. 图8为实现上述仿真结果所利用的演示软件的示意图,国内目前现有的群体编队仿真软件往往不便于演示,而该软件具有用户友好、便于操作与演示的优点,其软件架构对于编队仿真软件的开发与国产化有一定的借鉴意义。 8 is a schematic view of the above-described simulation results achieved using presentation software, currently available domestic group formation is often not easy to demonstrate simulation software, and the software has a user-friendly, easy to operate and advantages of the presentation, the software architecture for the formation simulation software development and localization has a certain significance.

Claims (1)

1. 一种多无人机的动态编队控制方法,其特征在于:包括以下几个步骤:步骤一:队形保持方法;(1)建立地面坐标系XOY ;建立地面坐标系XOY,其中X轴代表东向位置,Y轴代表北向位置,ML和MF分别表示编队长机和僚机,^\和分别表示长机和僚机的航迹偏角,MV表示虚拟结构设定的僚机, 简称为虚拟僚机,L和a分别表示虚拟僚机对长机期望的距离和观测角,k和ai分别表示实际僚机对长机的距离和观测角,存在的通信网络延迟为At,MVH和MH1分别表示虚拟僚机和实际僚机在At移动后的位置,MH1表示长机MF在通信网络延迟At内飞行的剖面距离,MVH表示虚拟僚机MV在通信网络延迟At内飞行的剖面距离;(2)建立各个关系公式;设定长机和僚机在通信周期内移动距离均为1,根据长机、僚机和虚拟僚机的几何关系建立长机ML和MVH的位置关系公式: Formation Dynamic control method for a multi-UAVs, characterized by: comprising the following steps: Step 1: Method retaining formation; (1) establishing the XOY ground surface coordinate system; establishing the XOY ground surface coordinate system, wherein the X-axis on behalf of East position, Y-axis represents the position of the north, ML and MF respectively formation lead aircraft and wingman, ^ \ and denote the lead plane and the flight path angle wingman, MV represents a virtual wingman set structure, referred to as a virtual wingman , L and each represent a virtual distance wing plane of the lead aircraft and a desired observation angle, k and ai, respectively, represent the actual distance and lead aircraft wing plane of observation angles, there is a communications network delay At, MVH and MH1 respectively represent virtual wingmen the actual position of the wingman at mobile, MH1 sectional view showing the lead plane retardation MF at the distance flown in a communication network, MVH LiaoJi MV represents a virtual flying distance of the delay profile at a communication network; (2) establishing the relationship between the respective formula; provided lead plane and fixed wing plane in the mobile communication distances are 1 cycle, to establish a positional relationship between the lead aircraft and the ML equations according MVH lead plane geometry, and the virtual wingman wing plane:
Figure CN102591358AC00021
其中,x—、y—、xML> yML分别表示考虑通信延迟的虚拟僚机的东向位置、北向位置、长机的东向位置、北向位置,L表不虚拟僚机对长机期望的距尚,表不长机的航迹偏角,a表示虚拟僚机对长机期望的观测角,1表示长机僚机在通信周期内移动距离;建立僚机MF和MFH的位置关系公式: Which, x-, y-, xML> yML represent virtual wingman communication delay consideration of the east position, north position, the lead plane position east, north position, L virtual wingman table is not expected to lead aircraft from the still, table does not lead aircraft track angle, a represents a virtual lead aircraft wing plane to a desired observation angle, the lead plane LiaoJi 1 represents a moving distance in a communication cycle; established MF wing plane and the positional relationship of MFH formula:
Figure CN102591358AC00022
其中,X„FH> yMFH> XMF、yMF分别表示考虑通信延迟的实际僚机的东向位置、北向位置、实际僚机的东向位置、北向位置,&表示僚机的航迹偏角;公式⑵减公式⑴可以建立MVH和MFH的跟踪误差关系公式: Wherein, X "FH> yMFH> XMF, yMF respectively, regardless of the actual LiaoJi communication delay the east position, north position, the actual wingman east position, north position, & represents a track angle wingman; formula ⑵ formula Save ⑴ can establish relationships tracking error and MFH of formula MVH:
Figure CN102591358AC00023
其中,ex、ey分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差; 对MVH和MH1的跟踪误差关系公式(3)进行求导,得到: Wherein, ex, ey respectively, regardless of the communication delay and the actual virtual wingman wingman positional deviation to the east position, north; MH1 for MVH and tracking error relational formula (3), get the:
Figure CN102591358AC00024
其中,'、vF*别表示长机和僚机的速度,«F分别表长机和僚机的偏航角速度, 之、4分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差的导数,1 表示长机僚机在通信周期内移动距离,L表示僚机对虚拟长机期望的距离,表示长机的航迹偏角,a表示虚拟长机期望的观测角,^^僚机的航迹偏角;将地面坐标系的ex、ey投影到僚机的速度坐标系: Wherein, ', vF * denote the speed of the lead plane and wingman, «F., Respectively, and the lead plane table wingman yaw rate, of, respectively, 4 represents a communication delay consideration of the actual and virtual wingman wingman positional deviation to the east position, north derivative, 1 represents a moving distance of the lead plane wing plane within the communication cycle, L represents the distance to the virtual lead aircraft wing plane desired track angle represents the lead plane, a represents a desired observation angle virtual lead aircraft, aircraft ^^ wingman track angle; and ground coordinates ex, ey projected coordinate system wingman speed:
Figure CN102591358AC00031
其中,ex、ey*别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差,K、5分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差在僚机速度坐标系下的投影;对变换坐标后的公式(5)进行求导,得到: Wherein, ex, ey * denote considering the communication delay of the virtual wing plane and the actual wingman east position, north position deviation, K, 5 respectively, regardless of the communication delay of the virtual wing plane and the actual wingman East deviation wingman forward position, north position the coordinates of the projection of the speed line; equation (5) the transformed coordinates, get the:
Figure CN102591358AC00032
其中之、&分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差的导数,t、^分别表示考虑通信延迟的虚拟僚机和实际僚机的东向位置、北向位置偏差在僚机速度坐标系下的投影的导数;联立公式(3)、公式(4)和公式(6)得到: Wherein, the & represent consider virtual wing plane and the actual wingman communication delay the east position, north derivative of the position deviation, t, ^ respectively, regardless of the communication delay of the virtual wing plane and the actual wingman East deviation wingman forward position, north position derivative projected at a speed coordinates; simultaneous equation (3), equation (4) and formula (6) to give:
Figure CN102591358AC00033
当僚机的偏航角速度和速度指令为公式(8)所示时,公式(7)可以化简为公式(9): When the yaw rate and the speed command is wingman formula (8) shown in Equation (7) can be simplified as Equation (9):
Figure CN102591358AC00034
其中,k1; k2表示实际编队过程中待调整的控制律系数; Wherein, k1; k2 represent coefficients of actual control law during formation to be adjusted;
Figure CN102591358AC00035
考虑李雅普诺夫函数: Consider Lyapunov function:
Figure CN102591358AC00036
公式(9)代入公式(10)可得 Equation (9) into equation (10) can be obtained
Figure CN102591358AC00037
由李雅普诺夫定律,对于给定的偏差采用公式(8)的速度和角速度指令, 编队队形偏差收敛为O,使得误差表达式4,收敛为O ;最终的编队过载指令<和编队速度指令为: , For a given deviation from the Lyapunov's law using the equation (8) and the angular speed command, the deviation converges formation formation is O, such that the error expression 4, convergence is O; final formation overload command <formations and the speed command for:
Figure CN102591358AC00038
步骤二:避障方法;地面障碍物在空间中服从均匀分布,M为无人机当前位置,V为无人机速度矢量,r为障碍物的威胁范围,R为无人机距离障碍物的距离,为保证无人机不进入威胁区,无人机可以沿左侧航迹MA飞行也可以沿右侧航迹MB飞行,设距无人机最近的威胁源为圆心0,理想威胁回避航迹为与圆0外切且与速度矢量V相切的两圆OpO,的圆弧MA和MB,定义切点A、B 为威胁回避导航点;转弯半径应用解三角形的方法求取,在AOOW中应用余弦定理得: Step two: Obstacle Avoidance; ground obstacle uniform distribution in space, M is the current position of the UAV, V is the velocity vector UAV, r is a threat to the obstacle, R is the distance to the obstacle UAV distance, in order to ensure not to enter the drone threat area, unmanned aerial vehicles can fly along the left side of the track MA may also fly along the right track MB, set away from the nearest sources of threats UAV 0 as the center, ideal for threat avoidance navigation 0 is the inscribed circle trace and the velocity vector of two outer OpO V tangent circle, arc MA and MB, define cut points a, B is a threat avoidance waypoint; solution application method of turning radius triangular strike, in AOOW the application of the law of cosines get:
Figure CN102591358AC00041
得出无人机威胁回避的转弯半径: Come UAV threat avoidance of turning radius:
Figure CN102591358AC00042
相应的侧向加速度的表达式为: Lateral acceleration corresponding to the expression:
Figure CN102591358AC00043
其中\、&1分别表示无人机沿圆弧MB、MA进行避障所需要的侧向加速度;最终的避障过载指令: Wherein \, & UAV 1 respectively along a circular arc MB, MA lateral acceleration for obstacle avoidance needed; the final avoidance command overload:
Figure CN102591358AC00044
最终避障速度指令选择与长机速度对齐指令72* : The final obstacle avoidance lead aircraft speed and the speed command selected alignment instruction 72 *:
Figure CN102591358AC00045
其中\表示长机的速度;步骤三:基于行为的编队过程;(1)行为分解过程:将任务行为分解为三个互相平行的子行为:异常情况处理,队形保持方法和威胁回避方法,同时为每个子行为赋予相应的重要性,用权值表示;队形保持方法中无人机通过无线通信网络获得长机的信息,具体包括长机速度偏航角速度和航迹偏角;无人机通过自身本机导航设备获得导航信息,具体包括速度、、角速度和偏角,按照步骤一公式(8)和公式(12)生成编队过载指令<和编队速度指令Pf;避障方法中无人机通过光学传感器获取障碍物的信息包括:无人机距离障碍物的距离R,速度矢量与无人机与障碍物连线的夹角为b,按照步骤二公式(17)和公式(18)生成避障过载指令冗和避障速度指令异常情况处理是指飞行器在执行飞行任务时,遇到通信链路中断等无法维持编队的原因,无人 Wherein \ represents the speed of the lead aircraft; three steps: formation process based on behavior; (1) decomposition behavior: the task behavior into three mutually parallel child behavior: exception handling, and a method of holding formation threat avoidance method, for each child behavior while imparting a respective importance weights expressed; formation method UAV holding information obtained through the wireless communication network lead aircraft, comprises lead aircraft speed and track angle yaw rate; no machine obtained by the navigation apparatus itself native navigation information, including the speed and the angular velocity ,, angle, generating a formation following the procedure of equations (8) and formula (12) overload command <Pf and formation speed command; in no obstacle avoidance machine acquired obstacle information by an optical sensor comprising: a UAV distance to the obstacle distance R, the angle between the velocity vector and the drone connection with the obstacle is b, following the procedure of two equations (17) and formula (18) generates obstacle avoidance instruction overload and redundancy avoidance speed instruction exception handling refers to the aircraft performing flight tasks encountered reasons for interruption of the communication link can not be maintained fleet of unmanned 机飞控计算机进入异常处理状态,异常处理要保证无人机按照单机最优的策略执行任务或飞离搜索区域到达指定位置准备降落,异常处理在执行任务中优先级最高,无人机按照单机最优的策略执行任务需要的过载指令和速度指令分别为《;;、V:;(2)控制实现过程指无人机根据运动模型和当前运动状态,加权计算无人机实际的控制指令,进而输入执行机构:无人机的偏航通道产生方向舵偏,从而实现对无人飞行器编队的运动控制;根据步骤一和步骤二中的队形保持方法和避障方法,各个子行为的过载指令和速度指令获得后按照公式(17)进行加权: Aircraft flight control computer into the state of exception handling, exception handling to ensure that the UAV in accordance with the single best strategy to perform a task or fly away from the search area arrived at the designated location for a landing, exception handling in the performance of their duties with the highest priority, according to the single UAV overload command and speed command optimal strategy to perform the required tasks are ";;, V:; (2) the UAV control implementation means a motion model and the current state of motion of the actual weighted UAV control commands, input means further performs: UAV yaw rudder bias generating channels, so as to realize the movement control of the UAVs; holding method and obstacle avoidance method of formation steps one and two, each sub-instruction overload behavior after the obtained speed command and weighted in accordance with equation (17):
Figure CN102591358AC00051
其中,Wntl表示异常处理时过载指令权值、Wvtl表示异常处理时速度指令权值、Wnl表示队形保持时过载指令权值、Wvi表示队形保持时速度指令权值、Wn2表示避障时过载指令权值、 Wv2表示避障时速度指令权值;1)符合异常处理的条件:wn(l = Wvo = I. O, wnl = wvl = Wn2 = Wy2 = O. O,这时队形保持和避障方法已经不再有效,无人机采取单机飞行的方式执行任务,或者沿指定导航点进入降落阶段;2)未符合异常处理条件时,队形保持方法与避障方法有效,按照光学传感器是否发现障碍物进行权值计算:Ki=wKi=1-0 « 光学传感器未发现障碍物 Wherein, Wntl represents overload command weights exception handling, Wvtl represents speed command value when the exception handling, Wnl represents overload command weight value formation keeping, Wvi indicates formation remains speed command value, Wn2 indicates overload avoidance command weight, Wv2 represents speed command value obstacle avoidance; 1) meet the conditions of the exception handling: wn (l = Wvo = I. O, wnl = wvl = Wn2 = Wy2 = O. O, retention time and formation obstacle avoidance method is no longer valid, take the single UAV flight mission manner, into the landing phase or in a specified waypoint; 2) does not meet the exception processing conditions, and formation method of maintaining an effective method of obstacle avoidance, according to the optical sensor whether the obstacle found is calculated weights: Ki = wKi = 1-0 «No obstacle optical sensor
Figure CN102591358AC00052
光学传感器发现障碍物 The optical sensor obstacle found
Figure CN102591358AC00053
其中,wn2, Wv2的取值取决于地面障碍物尺度与障碍物威胁范围的比值,Wnl = I. O-Wn2,Wyi I · O Wy2 O Wherein, wn2, Wv2 obstacle depends on the ratio of the value scale ground obstacle threat range, Wnl = I. O-Wn2, Wyi I · O Wy2 O
CN201210088140.XA 2012-03-12 2012-03-12 Multi-UAV (unmanned aerial vehicle) dynamic formation control method CN102591358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210088140.XA CN102591358B (en) 2012-03-12 2012-03-12 Multi-UAV (unmanned aerial vehicle) dynamic formation control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210088140.XA CN102591358B (en) 2012-03-12 2012-03-12 Multi-UAV (unmanned aerial vehicle) dynamic formation control method

Publications (2)

Publication Number Publication Date
CN102591358A true CN102591358A (en) 2012-07-18
CN102591358B CN102591358B (en) 2015-07-08

Family

ID=46480177

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210088140.XA CN102591358B (en) 2012-03-12 2012-03-12 Multi-UAV (unmanned aerial vehicle) dynamic formation control method

Country Status (1)

Country Link
CN (1) CN102591358B (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901498A (en) * 2012-09-21 2013-01-30 北京航空航天大学 Method for cooperative search and dynamic task allocation of unmanned aerial vehicle teams under uncertain environment
CN103116280A (en) * 2013-01-16 2013-05-22 北京航空航天大学 Microminiature unmanned aerial vehicle longitudinal control method with random delay of distributed network
CN103577702A (en) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 Method for determining airplane critical circumvention parameters in low-altitude wind shear
CN103592949A (en) * 2013-11-28 2014-02-19 电子科技大学 Distributed control method for UAV team to reach target at same time
CN103631141A (en) * 2013-12-11 2014-03-12 北京航空航天大学 Light transmission hypothesis based intensive autonomous aerial vehicle formation control method
CN103676955A (en) * 2013-12-19 2014-03-26 北京航空航天大学 Satellite autonomous orbit control system for achieving distributed formation flight
CN103699106A (en) * 2013-12-30 2014-04-02 合肥工业大学 Multi-unmanned aerial vehicle cooperative task planning simulation system based on VR-Forces simulation platform
CN103713641A (en) * 2013-12-19 2014-04-09 北京航空航天大学 Formation splitting method of aircraft intensive autonomous formation
CN103941728A (en) * 2014-04-24 2014-07-23 北京航空航天大学 Formation changing method for intensive autonomous formations of unmanned aerial vehicle
CN103995537A (en) * 2014-05-09 2014-08-20 上海大学 Indoor and outdoor mixed autonomous cruising system and method of aircraft
CN103995539A (en) * 2014-05-15 2014-08-20 北京航空航天大学 Unmanned aerial vehicle autonomous formation evaluation index and MPC formation control method
CN104216382A (en) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 Spatial small aircraft formation flying control system
CN104656663A (en) * 2015-02-15 2015-05-27 西北工业大学 Vision-based UAV (unmanned aerial vehicle) formation sensing and avoidance method
CN104820431A (en) * 2015-05-08 2015-08-05 西北工业大学 Multi-unmanned-aerial-vehicle cluster to-the-ground observation system and formation control method
CN104880961A (en) * 2015-04-29 2015-09-02 北京理工大学 Real-time simulation experiment system of multi-unmanned plane distributed synergetic hardware in loop
CN104901727A (en) * 2014-02-26 2015-09-09 清华大学 Unmanned aerial vehicle queue formation cooperative communication control system and method
CN105182998A (en) * 2015-10-08 2015-12-23 北京航空航天大学 Formation controller construction method based on rolling optimization artificial physical mixing
CN105242544A (en) * 2015-10-30 2016-01-13 山东科技大学 Non-linear multi-unmanned-aerial-vehicle-system fault-tolerance formation control method with consideration of random disturbance
CN105425817A (en) * 2015-12-09 2016-03-23 周润华 Multi-unmanned plane marshalling flight control system
CN105549617A (en) * 2016-01-13 2016-05-04 北京航空航天大学 Method for controlling unmanned aerial vehicle formation by imitating bird flock behaviors and using virtual structures
CN105892476A (en) * 2016-06-03 2016-08-24 腾讯科技(深圳)有限公司 Control method and control terminal of aircraft
CN105912020A (en) * 2016-05-26 2016-08-31 北京航空航天大学 Spacecraft formation flying method in weak-stability boundary area
CN105974939A (en) * 2016-07-25 2016-09-28 零度智控(北京)智能科技有限公司 Unmanned aerial vehicle formation form automatic generation method and device
CN106292712A (en) * 2016-10-25 2017-01-04 中国人民解放军海军航空工程学院 A kind of unmanned vehicle barrier-avoiding method based on Speed Obstacles arc method
CN106383524A (en) * 2016-10-10 2017-02-08 北京航空航天大学 Missile autonomous formation conflict prediction method in formation pattern control process
CN106406359A (en) * 2016-08-30 2017-02-15 南京航空航天大学 Virtual object-based guidance method used for fixed wing unmanned aerial vehicle to track ground object
CN106406348A (en) * 2016-10-31 2017-02-15 易瓦特科技股份公司 Unmanned aerial vehicle formation control method and apparatus
CN103763723B (en) * 2014-01-08 2017-04-19 北京航空航天大学 Distributed boundary decision-making protocol of autonomous formation supporting network for aircrafts
CN106774336A (en) * 2017-01-04 2017-05-31 广东华中科技大学工业技术研究院 A kind of unmanned boat yi word pattern team to inverted V-shape team order switching method
CN106873621A (en) * 2017-02-26 2017-06-20 南京航空航天大学 A kind of unmanned plane flight pattern control algolithm based on Lagrange's equation
CN107015571A (en) * 2017-05-12 2017-08-04 南京航空航天大学 A kind of formation unmanned plane follows the trail of the algorithm with evading mobile target
CN107065922A (en) * 2017-02-14 2017-08-18 中国科学院自动化研究所 Multiple no-manned plane formation formation method based on formation storehouse
CN107121986A (en) * 2017-05-24 2017-09-01 浙江大学 The method that a kind of unmanned plane flight pattern of Behavior-based control is kept
CN107608385A (en) * 2017-10-25 2018-01-19 南京航空航天大学 Depopulated helicopter formation control method and control system
CN107807663A (en) * 2017-11-29 2018-03-16 南京航空航天大学 Unmanned plane based on Self Adaptive Control, which is formed into columns, keeps control method
CN107831670A (en) * 2017-12-06 2018-03-23 浙江工业大学 It is a kind of based on it is asymmetric when constant obstacle liapunov function the limited backstepping control method of quadrotor output
CN107831671A (en) * 2017-12-06 2018-03-23 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on asymmetric time-varying obstacle liapunov function
CN107942672A (en) * 2017-12-06 2018-04-20 浙江工业大学 It is a kind of based on it is symmetrical when constant obstacle liapunov function the limited backstepping control method of quadrotor output
CN108037662A (en) * 2017-12-06 2018-05-15 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on Integral Sliding Mode obstacle liapunov function
CN108052115A (en) * 2017-12-06 2018-05-18 浙江工业大学 It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor total state be limited backstepping control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123761A (en) * 2007-09-10 2008-02-13 北京航空航天大学 Clustering method for air mobile node and air-ground integrated clustering system
US20090118875A1 (en) * 2007-11-01 2009-05-07 Stroud Ken A Systems and methods for coordination of entities and/or communicating location information

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101123761A (en) * 2007-09-10 2008-02-13 北京航空航天大学 Clustering method for air mobile node and air-ground integrated clustering system
US20090118875A1 (en) * 2007-11-01 2009-05-07 Stroud Ken A Systems and methods for coordination of entities and/or communicating location information

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何真 等: "无人机编队队形保持控制器的分散设计方法", 《航空学报》, vol. 29, 31 May 2008 (2008-05-31), pages 55 - 60 *
刘星,吴森堂 等: "多无人机自主编队协同制导技术的概念、设计和仿真(英文)", 《系统仿真学报》, vol. 20, no. 19, 31 October 2008 (2008-10-31) *
宗令蓓 等: "基于MAS的无人机编队飞行智能优化控制", 《航空学报》, vol. 29, no. 5, 30 September 2008 (2008-09-30), pages 1326 - 1333 *

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901498A (en) * 2012-09-21 2013-01-30 北京航空航天大学 Method for cooperative search and dynamic task allocation of unmanned aerial vehicle teams under uncertain environment
CN102901498B (en) * 2012-09-21 2015-03-25 北京航空航天大学 Method for cooperative search and dynamic task allocation of unmanned aerial vehicle teams under uncertain environment
CN103116280B (en) * 2013-01-16 2016-03-02 北京航空航天大学 A kind of exist the longitudinal control method of the microminiature unmanned vehicle becoming distributed network random delay
CN103116280A (en) * 2013-01-16 2013-05-22 北京航空航天大学 Microminiature unmanned aerial vehicle longitudinal control method with random delay of distributed network
CN103577702A (en) * 2013-11-13 2014-02-12 中国航空工业集团公司西安飞机设计研究所 Method for determining airplane critical circumvention parameters in low-altitude wind shear
CN103592949A (en) * 2013-11-28 2014-02-19 电子科技大学 Distributed control method for UAV team to reach target at same time
CN103592949B (en) * 2013-11-28 2016-03-02 电子科技大学 A kind of formation for unmanned plane arrives the distributed control method of target simultaneously
CN103631141A (en) * 2013-12-11 2014-03-12 北京航空航天大学 Light transmission hypothesis based intensive autonomous aerial vehicle formation control method
CN103631141B (en) * 2013-12-11 2016-08-17 北京航空航天大学 A kind of intensive autonomous formation control method of aircraft based on light transmission hypothesis
CN103713641B (en) * 2013-12-19 2016-02-17 北京航空航天大学 The formation method for splitting of the intensive autonomous formation of a kind of aircraft
CN103676955B (en) * 2013-12-19 2016-03-02 北京航空航天大学 A kind of satellite Autonomous control system realizing distributed formation flight
CN103676955A (en) * 2013-12-19 2014-03-26 北京航空航天大学 Satellite autonomous orbit control system for achieving distributed formation flight
CN103713641A (en) * 2013-12-19 2014-04-09 北京航空航天大学 Formation splitting method of aircraft intensive autonomous formation
CN103699106A (en) * 2013-12-30 2014-04-02 合肥工业大学 Multi-unmanned aerial vehicle cooperative task planning simulation system based on VR-Forces simulation platform
CN103763723B (en) * 2014-01-08 2017-04-19 北京航空航天大学 Distributed boundary decision-making protocol of autonomous formation supporting network for aircrafts
CN104901727A (en) * 2014-02-26 2015-09-09 清华大学 Unmanned aerial vehicle queue formation cooperative communication control system and method
CN104901727B (en) * 2014-02-26 2018-02-09 清华大学 The communication control system and method for unmanned plane queue formation collaboration
CN103941728A (en) * 2014-04-24 2014-07-23 北京航空航天大学 Formation changing method for intensive autonomous formations of unmanned aerial vehicle
CN103995537B (en) * 2014-05-09 2017-04-05 上海大学 Aircraft indoor and outdoor mixes autonomous cruise System and method for
CN103995537A (en) * 2014-05-09 2014-08-20 上海大学 Indoor and outdoor mixed autonomous cruising system and method of aircraft
CN103995539B (en) * 2014-05-15 2016-04-20 北京航空航天大学 A kind of unmanned plane autonomous formation evaluation index and MPC formation control method
CN103995539A (en) * 2014-05-15 2014-08-20 北京航空航天大学 Unmanned aerial vehicle autonomous formation evaluation index and MPC formation control method
CN104216382A (en) * 2014-09-19 2014-12-17 北京航天长征飞行器研究所 Spatial small aircraft formation flying control system
CN104656663A (en) * 2015-02-15 2015-05-27 西北工业大学 Vision-based UAV (unmanned aerial vehicle) formation sensing and avoidance method
CN104656663B (en) * 2015-02-15 2017-12-01 西北工业大学 A kind of unmanned plane formation of view-based access control model perceives and bypassing method
CN104880961A (en) * 2015-04-29 2015-09-02 北京理工大学 Real-time simulation experiment system of multi-unmanned plane distributed synergetic hardware in loop
CN104820431A (en) * 2015-05-08 2015-08-05 西北工业大学 Multi-unmanned-aerial-vehicle cluster to-the-ground observation system and formation control method
CN105182998A (en) * 2015-10-08 2015-12-23 北京航空航天大学 Formation controller construction method based on rolling optimization artificial physical mixing
CN105242544A (en) * 2015-10-30 2016-01-13 山东科技大学 Non-linear multi-unmanned-aerial-vehicle-system fault-tolerance formation control method with consideration of random disturbance
CN105425817A (en) * 2015-12-09 2016-03-23 周润华 Multi-unmanned plane marshalling flight control system
CN105425817B (en) * 2015-12-09 2018-06-22 深圳市峰创科技有限公司 A kind of multiple no-manned plane organizes into groups flight control system
CN105549617A (en) * 2016-01-13 2016-05-04 北京航空航天大学 Method for controlling unmanned aerial vehicle formation by imitating bird flock behaviors and using virtual structures
CN105549617B (en) * 2016-01-13 2019-05-03 北京航空航天大学 A kind of unmanned plane formation control method of imitative swarm behavior and virtual architecture
CN105912020A (en) * 2016-05-26 2016-08-31 北京航空航天大学 Spacecraft formation flying method in weak-stability boundary area
CN105892476B (en) * 2016-06-03 2019-02-05 腾讯科技(深圳)有限公司 A kind of control method and controlling terminal of aircraft
CN105892476A (en) * 2016-06-03 2016-08-24 腾讯科技(深圳)有限公司 Control method and control terminal of aircraft
CN105974939B (en) * 2016-07-25 2018-12-28 天津远度科技有限公司 Unmanned plane formation formation automatic generation method and device
CN105974939A (en) * 2016-07-25 2016-09-28 零度智控(北京)智能科技有限公司 Unmanned aerial vehicle formation form automatic generation method and device
CN106406359B (en) * 2016-08-30 2019-08-02 南京航空航天大学 A kind of fixed-wing unmanned plane Tracking Ground Targets method of guidance based on virtual target
CN106406359A (en) * 2016-08-30 2017-02-15 南京航空航天大学 Virtual object-based guidance method used for fixed wing unmanned aerial vehicle to track ground object
CN106383524B (en) * 2016-10-10 2019-04-12 北京航空航天大学 A kind of conflict prediction method of guided missile autonomous formation in formation control process
CN106383524A (en) * 2016-10-10 2017-02-08 北京航空航天大学 Missile autonomous formation conflict prediction method in formation pattern control process
CN106292712B (en) * 2016-10-25 2018-12-07 中国人民解放军海军航空大学 A kind of unmanned vehicle barrier-avoiding method based on Speed Obstacles arc method
CN106292712A (en) * 2016-10-25 2017-01-04 中国人民解放军海军航空工程学院 A kind of unmanned vehicle barrier-avoiding method based on Speed Obstacles arc method
CN106406348A (en) * 2016-10-31 2017-02-15 易瓦特科技股份公司 Unmanned aerial vehicle formation control method and apparatus
CN106774336A (en) * 2017-01-04 2017-05-31 广东华中科技大学工业技术研究院 A kind of unmanned boat yi word pattern team to inverted V-shape team order switching method
CN107065922A (en) * 2017-02-14 2017-08-18 中国科学院自动化研究所 Multiple no-manned plane formation formation method based on formation storehouse
CN106873621A (en) * 2017-02-26 2017-06-20 南京航空航天大学 A kind of unmanned plane flight pattern control algolithm based on Lagrange's equation
CN107015571A (en) * 2017-05-12 2017-08-04 南京航空航天大学 A kind of formation unmanned plane follows the trail of the algorithm with evading mobile target
CN107121986A (en) * 2017-05-24 2017-09-01 浙江大学 The method that a kind of unmanned plane flight pattern of Behavior-based control is kept
CN107608385B (en) * 2017-10-25 2019-10-11 南京航空航天大学 Unmanned helicopter formation control method and control system
CN107608385A (en) * 2017-10-25 2018-01-19 南京航空航天大学 Depopulated helicopter formation control method and control system
CN107807663B (en) * 2017-11-29 2019-12-24 南京航空航天大学 Unmanned aerial vehicle formation maintaining control method based on self-adaptive control
CN107807663A (en) * 2017-11-29 2018-03-16 南京航空航天大学 Unmanned plane based on Self Adaptive Control, which is formed into columns, keeps control method
CN108052115A (en) * 2017-12-06 2018-05-18 浙江工业大学 It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor total state be limited backstepping control method
CN108037662A (en) * 2017-12-06 2018-05-15 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on Integral Sliding Mode obstacle liapunov function
CN107942672A (en) * 2017-12-06 2018-04-20 浙江工业大学 It is a kind of based on it is symmetrical when constant obstacle liapunov function the limited backstepping control method of quadrotor output
CN107831670A (en) * 2017-12-06 2018-03-23 浙江工业大学 It is a kind of based on it is asymmetric when constant obstacle liapunov function the limited backstepping control method of quadrotor output
CN108037662B (en) * 2017-12-06 2019-11-08 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on Integral Sliding Mode obstacle liapunov function
CN107831671B (en) * 2017-12-06 2019-11-08 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on asymmetric time-varying obstacle liapunov function
CN108052115B (en) * 2017-12-06 2019-11-08 浙江工业大学 It is a kind of based on it is asymmetric when constant obstacle liapunov function quadrotor total state be limited backstepping control method
CN107831671A (en) * 2017-12-06 2018-03-23 浙江工业大学 A kind of limited backstepping control method of quadrotor output based on asymmetric time-varying obstacle liapunov function

Also Published As

Publication number Publication date
CN102591358B (en) 2015-07-08

Similar Documents

Publication Publication Date Title
Lawrence et al. Lyapunov vector fields for autonomous unmanned aircraft flight control
Dong et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies
Cai et al. Design and implementation of a robust and nonlinear flight control system for an unmanned helicopter
Park et al. Performance and lyapunov stability of a nonlinear path following guidance method
Scherer et al. Flying fast and low among obstacles
Saunders et al. Static and dynamic obstacle avoidance in miniature air vehicles
Frew et al. Coordinated standoff tracking of moving targets using Lyapunov guidance vector fields
CN101286071B (en) Multiple no-manned plane three-dimensional formation reconfiguration method based on particle swarm optimization and genetic algorithm
Nagaty et al. Control and navigation framework for quadrotor helicopters
CN102867073A (en) Flight program design system for performance-based navigation, verification platform and verification method
Tahk et al. Line-of-sight guidance laws for formation flight
CN103941747B (en) The control method of unmanned aerial vehicle group and system
CN102541069B (en) Loss of separation avoidance maneuvering
CN102591358B (en) Multi-UAV (unmanned aerial vehicle) dynamic formation control method
Liao et al. Distributed formation and reconfiguration control of VTOL UAVs
Saska et al. Coordination and navigation of heterogeneous UAVs-UGVs teams localized by a hawk-eye approach
Yang et al. Stability analysis and implementation of a decentralized formation control strategy for unmanned vehicles
CN103116280A (en) Microminiature unmanned aerial vehicle longitudinal control method with random delay of distributed network
He et al. Acceleration-feedback-enhanced robust control of an unmanned helicopter
CN103557867B (en) The collaborative path planning method of a kind of many UAV of three-dimensional based on sparse A* search
CN102419596A (en) Vector-field-based small-sized unmanned plane wind-field anti-interference self-adaptive control method
CN102809970A (en) Method for controlling attitude of aircraft based on L1 adaptive control
Low A dynamic virtual structure formation control for fixed-wing UAVs
Kuriki et al. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control
Ghabcheloo et al. Coordinated path following control of multiple wheeled robots with directed communication links

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
C14 Grant of patent or utility model