CN102583236B - Method for growing nanopillar arrays - Google Patents

Method for growing nanopillar arrays Download PDF

Info

Publication number
CN102583236B
CN102583236B CN 201110356194 CN201110356194A CN102583236B CN 102583236 B CN102583236 B CN 102583236B CN 201110356194 CN201110356194 CN 201110356194 CN 201110356194 A CN201110356194 A CN 201110356194A CN 102583236 B CN102583236 B CN 102583236B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
nano
metal film
growing
pillar array
growth
Prior art date
Application number
CN 201110356194
Other languages
Chinese (zh)
Other versions
CN102583236A (en )
Inventor
王志高
黄增立
蔡德敏
王建峰
徐科
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
苏州纳维科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Abstract

本发明属于材料制备领域。 The present invention belongs to the field of material preparation. 本发明提供一种生长纳米柱阵列的方法,包括步骤:1)在具有一斜切角度的蓝宝石片的裸露表面上生长一金属膜;2)对蓝宝石片表面生长的金属膜实施退火;3)将生长有金属膜的蓝宝石片置于氢化物气相外延生长系统的反应腔中,在金属膜的表面生长化合物半导体材料的纳米柱阵列。 The present invention provides a method of growing a nano-pillar array, comprising the steps of: 1) growing a metal film on the exposed surface of the sapphire substrate having a chamfered angle; 2) on the surface of the metal film grown sapphire sheet annealing; 3) the sapphire growth substrate placed in a reaction chamber of a metal film hydride vapor phase epitaxial growth system, the growth of nano-pillar array on a surface of the compound semiconductor material of the metal film. 本发明的优点在于,提供了一种生长纳米柱阵列的方法,利用HVPE生长系统中原生的高温HCl气体对于不同金属的腐蚀作用,调控金属的催化作用,进而控制纳米柱阵列的形态。 Advantage of the invention is to provide a method of growing a nano-pillar array, using a high temperature HCl gas natively HVPE growth system for the corrosive effects of different metals, regulation of catalytic metal, and thus control the morphology of the nano-pillar array.

Description

一种生长纳米柱阵列的方法 A method of growing a nano-pillar array

技术领域 FIELD

[0001] 本发明涉及材料制备领域,尤其涉及一种生长纳米柱阵列的方法。 [0001] The present invention relates to the field of preparation of materials, in particular, relates to a method for growing a nano-pillar array.

背景技术 Background technique

[0002] 随着信息技术的迅猛发展,发展高功率、高频,高温电子器件以及短波长光电器件已经成为迫切需求。 [0002] With the rapid development of information technology, the development of high power, high frequency, high temperature short-wavelength optoelectronic devices, and electronic devices have become an urgent demand. 因此研究发展带隙宽度比Ge、S1、GaAs, InP更宽,又有独特技术应用价值的宽带隙半导体材料,以突破现有半导体器件的工作高温限制和短波限制,日益受到人们的高度重视。 Therefore research and development than the band gap Ge, S1, GaAs, InP wider, there is a unique value of wide bandgap semiconductor materials technology, to break through the work of the high temperature limit of the conventional semiconductor device and the short wavelength limit, increasing people's attention. 以GaN为代表的第三代半导体材料的研究开始于上世纪六十年代,但由于高质量的GaN单晶制备以及P型掺杂无法实现,导致了在很长一段时间内被多数研究人员所放弃。 Research third-generation semiconductor materials GaN-represented began in the 1960s, but due to the high-quality GaN single crystal and a P-type doping can not be achieved, resulting in a majority of researchers are in a very long period of time give up. 然而,经过1.Akasaki (1.Akasaki, H.Amano, Y.Koide etc al., 98, 209,1989),H.Amano (H.Amano, M.Kito, K.Hiramatsu, etc al., Jpn.J.App1.Phys.,28, L2112 , 1989)以及Shuji Nakamura (S.Nakamura, T.Mukai, M.Senoh, Jpn.J.App1.Phys., Part2_Letters, 30, L1998,1991)等人不懈的努力研究,终于突破了上述两大难题。 However, after 1.Akasaki (1.Akasaki, H.Amano, Y.Koide etc al., 98, 209,1989), H.Amano (H.Amano, M.Kito, K.Hiramatsu, etc al., Jpn .J.App1.Phys., 28, L2112, 1989) and Shuji Nakamura (S.Nakamura, T.Mukai, M.Senoh, Jpn.J.App1.Phys., Part2_Letters, 30, L1998,1991), who unremitting research efforts, finally broke through the above two problems. Shuji Nakamura及其研究小组分别于1991和1996年制造出了第一支GaN基蓝光LED和LD,从此GaN材料又回到了学术界和产业界相关人员的视线中。 Shuji Nakamura and his team were manufactured in 1991 and 1996, the first branch GaN-based blue LED and LD, from GaN material back to the line of sight from academia and industry related personnel in.

[0003] GaN具有许多Si和GaAs等半导体材料所不具备的优异性能,包括能够满足大功率、高温高频和高速半导体器件的工作要求。 [0003] GaN has many semiconductor materials such as Si and GaAs do not have excellent properties, including the ability to meet the high power, high frequency and high speed requires high temperature working of the semiconductor device. 但是在追求高性能的同时,发现GaN晶体质量大大限制了其器件应用,因而科学界和工业界将如何尽可能的提高GaN晶体质量作为重点。 But in the pursuit of high performance, we found that GaN crystal quality greatly limits its device applications, so the scientific community and industry will be how to improve the quality GaN crystal as much as possible as the focus. 其中有一个非常实用的方法是在氢化物气相外延(Hydride Vapour Phase Epitaxy,以下简称HVPE)生长系统中,先生长特定长径比的GaN纳米柱阵列,然后在改变生长参数,在纳米柱阵列上继续生长GaN薄膜,采用这样的方法能够将位错密度降低两个量级,从而大大提闻晶体质量。 There is a very practical approach in the hydride vapor phase epitaxy (Hydride Vapour Phase Epitaxy, hereinafter referred to as HVPE) growth system, Mr. long GaN specific aspect ratio nano-pillar array, and then changing the growth parameters, in the nano-pillar array continue to grow GaN thin film, such a method can reduce the dislocation density two orders of magnitude, thus greatly improving the crystal quality of the smell.

[0004] 同时,GaN纳米柱阵列是一种非常有应用价值的结构,可以用于制作很多纳米级的器件,比如燃料敏化电池,气体传感器等等。 [0004] Meanwhile, GaN nano-pillar array is a very valuable application structure can be used to make many nanoscale devices, such as a fuel cell sensitization, the gas sensor and the like.

[0005] 但是在实际的HVPE生长纳米柱阵列时候,很难做到控制纳米柱阵列的形态。 [0005] However, in the actual time HVPE growth nano-pillar array, shape control is difficult to achieve the nano-pillar array.

发明内容 SUMMARY

[0006] 本发明所要解决的技术问题是,提供一种生长纳米柱阵列的方法,能够控制纳米柱阵列的形态。 [0006] The present invention solves the technical problem is to provide a method of growing a nano-pillar array, it is possible to control the morphology of the nano-pillar array.

[0007] 为了解决上述问题,本发明提供了一种生长纳米柱阵列的方法,包括步骤:1)在具有一斜切角度的蓝宝石片的裸露表面上生长一金属膜;2)对蓝宝石片表面生长的金属膜实施退火;3)将生长有金属膜的蓝宝石片置于氢化物气相外延生长系统的反应腔中,在金属膜的表面生长化合物半导体材料的纳米柱阵列。 [0007] In order to solve the above problems, the present invention provides a method of growing a nano-pillar array, comprising the steps of: 1) growing a metal film on the exposed surface of the sapphire substrate having a chamfered angle; 2) on the sapphire substrate surface annealing the metal film growth; 3) has a metal layer grown sapphire substrate placed in a reaction chamber a hydride vapor phase epitaxial growth system, the growth of nano-pillar array on a surface of the compound semiconductor material of the metal film.

[0008] 所述步骤I中金属膜的生长方式为电子束蒸镀或溅射,材料为金、钼、镍、铁中任意一种或几种,厚度的范围为lnm-5nm。 [0008] Growth of step I described metal film electron beam evaporation or sputtering of materials, molybdenum, nickel, iron or several of any one of the range of gold to a thickness of lnm-5nm.

[0009] 所述步骤3中的混合气体还包括载气。 [0009] mixed gas in the step 3 further comprises a carrier gas. [0010] 本发明的优点在于,提供了一种生长纳米柱阵列的方法,利用HVPE生长系统中原生的高温HCl气体对于不同金属的腐蚀作用,调控金属的催化作用,进而控制纳米柱阵列的形态。 [0010] The advantage of the invention is to provide a method of growing a nano-pillar array, using a high temperature HCl gas natively HVPE growth system for the corrosive effects of different metals, regulation of catalytic metal, and thus control the morphology of the nano-pillar array .

附图说明 BRIEF DESCRIPTION

[0011] 图1是本发明提供的一种生长纳米柱阵列的方法的步骤流程图。 [0011] FIG. 1 is a step of a method of growing a nano-pillar array of the present invention provides a flow chart.

具体实施方式 detailed description

[0012] 下面结合附图对本发明提供的一种生长纳米柱阵列的方法的具体实施方式做详细说明。 [0012] DETAILED DESCRIPTION The following drawings method of growing a nano-pillar array of the present invention to provide a detailed explanation of the binding.

[0013] 图1所示为本发明提供的一中生长纳米柱阵列的方法的步骤流程图。 The method of the present growth of the nano-pillar array as shown in step provided herein [0013] FIG. 1 is a flowchart.

[0014] 本实施例提供一种生长纳米柱阵列的方法,包括:步骤100,在具有一斜切角度的蓝宝石片的裸露表面上生长一金属膜;步骤101,对蓝宝石片表面生长的金属膜实施退火;步骤102,将生长有金属膜的蓝宝石片置于氢化物气相外延生长系统的反应腔中,在金属膜的表面生长化合物半导体材料的纳米柱阵列。 [0014] The embodiment provides a method of growing a nano-pillar array of the present embodiment includes: Step 100, the growth of a metal film on the exposed surface of the sapphire substrate having a chamfered angle; step 101, the metal film grown on the sapphire substrate surface annealing; step 102, the metal film is grown sapphire substrate placed in a reaction chamber a hydride vapor phase epitaxial growth system, the growth of nano-pillar array on a surface of the compound semiconductor material of the metal film.

[0015] 步骤100中,本实施例采用电子束蒸镀或者溅射的方式在具有一斜切角度(0.2-0.3度)的蓝宝石(Al2O3)片的裸露表面上生长一金属膜,其中金属膜的材料为金(Au)、钼(Pt)、镍(Ni)、铁(Fe)中的一种或几种,金属膜的厚度范围为lnm-5nm。 [0015] In step 100, the present embodiment in which the metal film is grown by a metal film on the exposed surface of the sapphire having a chamfer angle (0.2-0.3 degrees) (Al2O3) plate or the electronic beam evaporation sputtering, material is one or more of, a metal film thickness in the range of gold (Au), molybdenum (Pt), a nickel (Ni), iron (Fe) is from lnm-5nm. 由于钼和金等金属的惰性,具有较高效的催化性能,可以催化生长高长径比的纳米柱阵列,适用于制作燃料敏化电池和高灵敏度的气体探测器等。 Since molybdenum and inert metals such as gold, having a more efficient catalytic properties, can catalyze the growth of high aspect ratio nano-pillar array, sensitizers for the production of fuel cell and the high sensitivity of the gas detector and the like.

[0016] 本发明的金属膜的生长方式不限于电子束蒸镀和溅射,还可以采用如PVD(物理气相沉积)等。 [0016] The growth pattern of the metal film of the present invention is not limited to electron beam evaporation and sputtering, it may also be employed, such as PVD (physical vapor deposition) or the like.

[0017] 步骤101中,对蓝宝石片表面生长的金属膜实施退火。 [0017] In step 101, the metal film grown on the surface of the sapphire sheet annealing. 本步骤使金属在表面张力的作用下形成规则的颗粒状,提供纳米柱生长的所需优先成核点。 In this step, the metal is formed under the rules of the surface tension of the particulate, to provide the desired priority nanocolumn growth nucleation sites.

[0018] 本实施例中的退火气氛包括H2, N2, Ar—种或多种。 [0018] Examples of the present embodiment in the annealing atmosphere comprises H2, N2, Ar- or more. 退火过程可以在HVPE生长系统中进行,也可以在HVPE生长系统外的退火炉中进行。 The annealing process may be performed in the HVPE growth system may be performed in an annealing furnace outside HVPE growth system.

[0019] 步骤102中,将生长有金属膜的蓝宝石片置于氢化物气相外延生长系统的反应腔中,在金属膜的表面生长化合物半导体材料的纳米柱阵列,本实施方式中的半导体材料为GaN。 [0019] Step 102, the growth of the metal film is placed in a reaction chamber a sapphire substrate by hydride vapor phase epitaxy system, nano-pillar array compound semiconductor material grown on the surface of the metal film, a semiconductor material of the present embodiment is GaN. 由于在生长温度下,HCl气体对不同的金属具有不同的腐蚀作用,因而可以调控金属催化剂的作用时间,从而生长出不同长径比的GaN纳米柱阵列。 Since the growth temperature, HCl gas has different effects on different metal corrosion, it is possible to effect regulation time for the metal catalyst to a different aspect ratios grown GaN nano-pillar array. 这里所提到的HCl气体即是HVPE生长中本来存在的HCl,只是流量一般要低于HVPE生长厚膜所需的流量。 HCl gas that is mentioned here as it exists in the HVPE growth HCl, but generally lower than the flow rate of the flow rate required for HVPE growth of a thick film. GaN纳米柱阵列的生长需要金属催化剂来促进形核,从而使得材料沿一个特定的方向择优生长,最终形成GaN纳米柱阵列。 Growth of GaN nano-pillar array of a metal catalyst required to promote the nucleation, such that a particular direction along the preferential growth, eventually forming a GaN nano-pillar array material.

[0020] 对于镍和铁等金属,在生长的过程中,易于被HCl气体腐蚀,因而生长的GaN纳米线具有较低的长径比,因而在生长到一定阶段后,改变生长参数,可以在GaN纳米柱的阵列上,直接再生长自剥离的高质量自支撑GaN厚膜。 [0020] For a metal such as nickel and iron, in the growth process, HCl gas is prone to corrosion, and thus the growth of GaN nanowires having a low aspect ratio, and thus after growth to a certain stage, changing the growth parameters can be on the array of GaN nanocolumns directly from peeling regrown GaN free-standing thick film of high quality.

[0021] 本实施例中的混合气体还包括载气,例如可以是H2, N2, Ar中的一种或多种。 [0021] Examples of the present embodiment of the mixed gas further comprises a carrier gas, for example, be H2, N2, Ar, one or more.

[0022] 以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。 [0022] The above are only preferred embodiments of the present invention, it should be noted that for those of ordinary skill in the art, without departing from the principles of the present invention is provided, can make various improvements and modifications, improvements and modifications of these also it is considered the scope of the present invention.

Claims (3)

  1. 1.一种生长纳米柱阵列的方法,其特征在于,包括步骤: 1)在具有一斜切角度的蓝宝石片的裸露表面上生长一金属膜; 2)对蓝宝石片表面生长的金属膜实施退火; 3)将生长有金属膜的蓝宝石片置于氢化物气相外延生长系统的反应腔中,利用氢化物气相外延生长系统中原生的高温HCl气体对金属膜进行腐蚀,在金属膜的表面生长化合物半导体材料的纳米柱阵列。 1. A method of growing a nano-pillar array, characterized by comprising the steps of: 1) growing a metal film on the exposed surface of the sapphire substrate having a chamfered angle; 2) on the sapphire substrate surface of metal film growth annealing ; 3) has a metal layer grown sapphire substrate placed in a reaction chamber a hydride vapor phase epitaxy system, etching the metal film using a high temperature gaseous HCl hydride vapor phase epitaxial growth system natively, the growth surface of the metal compound film nano-pillar array semiconductor material.
  2. 2.根据权利要求1所述的生长纳米柱阵列的方法,其特征在于,所述步骤I中金属膜的生长方式为电子束蒸镀或溅射,所述金属为金、钼、镍、铁中任意一种或几种,金属膜厚度的范围为lnm_5nm。 The method of growing the nano-pillar array as claimed in claim 1, wherein in step I the growth pattern of the metal film to electron beam evaporation or sputtering, the metal is gold, molybdenum, nickel, iron, any one or more of, a metal film thickness range of lnm_5nm.
  3. 3.根据权利要求1所述的生长纳米柱阵列的方法,其特征在于,所述步骤3中的混合气体还包括载气。 3. The method of growing a nano-pillar array according to claim 1, wherein said step of mixing gas 3 further comprising a carrier gas.
CN 201110356194 2011-11-11 2011-11-11 Method for growing nanopillar arrays CN102583236B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110356194 CN102583236B (en) 2011-11-11 2011-11-11 Method for growing nanopillar arrays

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110356194 CN102583236B (en) 2011-11-11 2011-11-11 Method for growing nanopillar arrays

Publications (2)

Publication Number Publication Date
CN102583236A true CN102583236A (en) 2012-07-18
CN102583236B true CN102583236B (en) 2013-12-18

Family

ID=46472604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110356194 CN102583236B (en) 2011-11-11 2011-11-11 Method for growing nanopillar arrays

Country Status (1)

Country Link
CN (1) CN102583236B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363730A (en) 2001-12-13 2002-08-14 南京大学 Process for controlling polarity of GaN
CN101353818A (en) 2007-07-23 2009-01-28 周明奇;中美硅晶制品股份有限公司 Gallium nitride growth method using CVD and HVPE

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101070614A (en) * 2007-05-30 2007-11-14 北京科技大学 Single-crystal zinc-oxide nano column array and preparing method
CN101510504B (en) * 2009-03-13 2010-09-08 Suzhou Nanocrystal Photoelectric Co Ltd Transversal epitaxial growth method for nano area of semiconductor film
US8786852B2 (en) * 2009-12-02 2014-07-22 Lawrence Livermore National Security, Llc Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1363730A (en) 2001-12-13 2002-08-14 南京大学 Process for controlling polarity of GaN
CN101353818A (en) 2007-07-23 2009-01-28 周明奇;中美硅晶制品股份有限公司 Gallium nitride growth method using CVD and HVPE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
修向前 等.《额外HCl对HVPE生长GaN性质的影响》.《固体电子学研究与进展》.2004,第22卷(第4期),

Also Published As

Publication number Publication date Type
CN102583236A (en) 2012-07-18 application

Similar Documents

Publication Publication Date Title
Tomioka et al. Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si (111) substrate
Uda et al. Thin CdS films prepared by metalorganic chemical vapor deposition
Ikejiri et al. Growth characteristics of GaAs nanowires obtained by selective area metal–organic vapour-phase epitaxy
Kim et al. Fabrication of the hybrid ZnO LED structure grown on p-type GaN by metal organic chemical vapor deposition
JPH11233391A (en) Crystalline substrate, semiconductor device using the same and manufacture of the semiconductor device
CN1508284A (en) Method for growing epitaxial chip of nitride LED structure by MOCVD
JP2005213075A (en) GaN SINGLE CRYSTAL SUBSTRATE, ITS PRODUCING METHOD, AND LIGHT EMITTING DEVICE
He et al. Growth and characterization of ternary AlGaN alloy nanocones across the entire composition range
US20050211988A1 (en) Method for production of a layer of silicon carbide or a nitride of a group III element on a suitable substrate
Kim et al. Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition
Lin et al. Mechanism of selective area growth of GaN nanorods by pulsed mode metalorganic chemical vapor deposition
JP2002093720A (en) Formation method of semiconductor layer
CN101661878A (en) Method of double-element delta doped growth P-type GaN base material
JP2010182872A (en) Semiconductor epitaxial wafer and method of manufacturing the same, and field effect transistor
CN1900386A (en) Method for epitaxial growing AlxGa1-xN single crystal film on saphire lining bottom material
CN101060076A (en) A manufacture method for GaN insulation or semi-insulation epitaxy layer
CN102925968A (en) Strain control method of nitride single crystal thin film
JP2007515791A (en) Nitride semiconductor light emitting device which method and use it to grow a nitride semiconductor layer
CN101445956A (en) Method for epitaxial growth of nitride films
Guo et al. A study of indium incorporation in In-rich InGaN grown by MOVPE
CN103296151A (en) Method for reducing warping stress of LED epitaxy
JP2010030877A (en) Group iii nitride semiconductor substrate and method for producing the same
JP2006108656A (en) Manufacturing method of group iii nitride semiconductor
Deura et al. Dislocation-free InGaAs on Si (111) using micro-channel selective-area metalorganic vapor phase epitaxy
CN1599032A (en) Growth GaN film on silicon substrate using hydride vapaur phase epitaxial method

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted