CN102542160B - 三维虚拟世界的骨架控制 - Google Patents

三维虚拟世界的骨架控制 Download PDF

Info

Publication number
CN102542160B
CN102542160B CN201110430789.0A CN201110430789A CN102542160B CN 102542160 B CN102542160 B CN 102542160B CN 201110430789 A CN201110430789 A CN 201110430789A CN 102542160 B CN102542160 B CN 102542160B
Authority
CN
China
Prior art keywords
world
hand
control cursor
posture
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110430789.0A
Other languages
English (en)
Other versions
CN102542160A (zh
Inventor
S·拉塔
D·本内特
K·盖斯纳
R·马尔科维奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Technology Licensing LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Technology Licensing LLC filed Critical Microsoft Technology Licensing LLC
Publication of CN102542160A publication Critical patent/CN102542160A/zh
Application granted granted Critical
Publication of CN102542160B publication Critical patent/CN102542160B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/002Specific input/output arrangements not covered by G06F3/01 - G06F3/16
    • G06F3/005Input arrangements through a video camera
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0485Scrolling or panning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • G06F3/0486Drag-and-drop
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T13/00Animation
    • G06T13/203D [Three Dimensional] animation
    • G06T13/403D [Three Dimensional] animation of characters, e.g. humans, animals or virtual beings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/048Indexing scheme relating to G06F3/048
    • G06F2203/04806Zoom, i.e. interaction techniques or interactors for controlling the zooming operation

Abstract

本发明描述了三维虚拟世界的骨架控制。虚拟骨架包括多个关节并提供用三维深度相机观察的人类目标的机器可读表示。虚拟骨架的手关节的相对位置被转换为姿势控制,且响应于该姿势控制来控制三维虚拟世界。<pb pnum="1" />

Description

三维虚拟世界的骨架控制
技术领域
本发明涉及图像捕捉和处理,尤其涉及骨架控制。
背景技术
虽然相机技术允许记录人类的图像,但计算机可能难以使用这样的图像来准确地评估人类如何在图像中移动。最近,技术已经进展到可在特殊相机和跟踪标签的帮助下解释人类移动的某些方面。例如,可用若干跟踪标签(例如向后反射器)来仔细地装饰演员,该跟踪标签可由若干相机从若干不同位置来跟踪。随后可使用三角测量来计算每一反射器的三维位置。因为标签被仔细地放置于演员上,且每一标签与演员身体的对应部位的相对位置是已知的,所以可使用对标签位置的三角测量来推断演员身体的位置。然而,这一技术需要使用特殊反射性标签或其他标记物。
在科幻电影方面,计算机已经被描绘得足够智能以在没有反射性标签或其他标记物的帮助下实际查看人类并解释人类的运动和姿势。然而,使用特殊效果来创建这样的场景,其中演员连同预定移动脚本一起仔细地扮演,以使得看起来好像演员正在控制计算机的脚本动作一样。演员实际上并未控制计算机,而是试图创建控制的幻象。
发明内容
根据本发明的一个方面,虚拟骨架包括多个关节并提供用三维深度相机观察的人类目标的机器可读表示。虚拟骨架的手关节的相对位置被转换为姿势控制,且响应于该姿势控制来控制三维虚拟世界。
提供本发明内容以便以简化的形式介绍在以下具体实施方式中进一步描述的一些概念。本发明内容并不旨在标识所要求保护主题的关键特征或必要特征,也不旨在用于限制所要求保护主题的范围。此外,所要求保护的主题不限于解决在本发明的任一部分中提及的任何或所有缺点的实现。
附图说明
图1示出根据本发明的一实施例的查看观察到的场景的深度图像分析系统。
 图2在某种程度上示意性地示出用虚拟骨架来对人类目标建模。
图3A-13D在某种程度上示意性地示出从虚拟骨架转换的姿势上帝游戏控制。
图14示意性地示出被配置为将虚拟骨架转换成姿势上帝游戏控制的计算系统。
具体实施方式
诸如3D视觉游戏系统等深度图像分析系统可包括能够观察一个或多个玩家的深度相机。在深度相机捕捉所观察的场景内的玩家的图像时,那些图像可被解释并用一个或多个虚拟骨架来建模。如下文更详细地描述的,虚拟骨架可被用作用于控制诸如上帝游戏之类的三维虚拟游戏世界的输入。换言之,深度相机可观察正在执行被设计为控制三维虚拟游戏世界的所有方面的姿势的人类并对其建模,且可用上帝游戏可将其解释为不同控制的虚拟骨架来对人类目标建模。以此方式,人类可仅用姿势来控制三维虚拟游戏世界,从而避免了常规的键盘、鼠标、跟踪垫和其他控制器。
图1示出了深度图像分析系统10的非限制性示例。具体而言,图1示出了游戏系统12,该游戏系统12可以用于玩各种不同的游戏、播放一个或多个不同的媒体类型、和/或控制或操纵非游戏应用和/或操作系统。图1还示出了诸如电视机或计算机监视器之类的可用于向游戏玩家呈现游戏视觉的显示设备16。作为一个示例,显示设备16可用于在视觉上呈现人类目标32用他或她的移动来控制的虚拟化身50。深度图像分析系统10可包括捕捉设备,诸如在视觉上监视或跟踪观察到的场景14内的人类目标32的深度相机22。参考图2和14更详细地讨论深度相机22。
人类目标32这里被示为所观察的场景14内的游戏玩家。人类目标32由深度相机22来跟踪,使得人类目标32的移动可由游戏系统12解释成可用于影响游戏系统12正在执行的游戏的控制。换言之,人类目标32可使用他或她的移动来控制游戏。人类目标32的移动可以被解释成几乎任何类型的游戏控制。人类目标32的某些移动可被解释成服务于除控制虚拟化身50以外的目的的控制。作为非限制性示例,人类目标32的移动可被解释为驾驶虚拟赛车、使虚拟武器发射、以第一人视角在虚拟世界中导航、或者操纵模拟世界的各个方面的控制。移动还可被解释为辅助游戏管理控制。例如,人类目标32可以使用移动来结束、暂停、保存、选择级别、查看高分、与其他玩家交流等。
深度相机22还可以用于将目标移动解释成游戏领域之外的操作系统和/或应用控制。操作系统和/或应用的实际上任何可控方面都可以由人类目标32的移动来控制。图1中所示出的场景是作为示例来提供的,但并不意味着以任何方式进行限制。相反,所示出的场景旨在展示可以在不背离本公开的范围的情况下应用于各种各样不同的应用的一般概念。
在此所述的方法和过程可以绑定到各种不同类型的计算系统。图1示出了以游戏系统12、显示设备16和深度相机22为形式的非限制性示例。一般而言,深度图像分析系统可包括图14中以简化形式示出的计算系统60,计算系统60将在下文更详细地讨论。
图2示出了简化的处理流水线,其中所观察的场景14中的人类目标32被建模为虚拟骨架46,该虚拟骨架46可被用于在显示设备16上绘制虚拟化身50和/或用作控制游戏、应用、和/或操作系统的其他方面的控制输入。可以理解,处理流水线可包括比图2中所描绘的更多的步骤和/或图2中所描绘的替换步骤,而不背离本发明的范围。
如图2所示,人类目标32和所观察的场景14中的其余部分可由诸如深度相机22之类的捕捉设备来成像。深度相机可为每一像素确定在所观察的场景中一表面相对于深度相机的深度。在不偏离本公开的范围的情况下,可以使用实际上任何深度寻找技术。示例深度寻找技术参考图14的捕捉设备68更详细地讨论。
现在回到图2,为每一像素所确定的深度信息可用于生成深度图42。这样的深度图可采用实际上任何合适的数据结构的形式,包括但不限于包括所观察的场景的每个像素的深度值的矩阵。在图2中,深度图42被示意性地示为人 类目标32的轮廓的像素化网格。这一例示是出于理解简明的目的,而不是技术准确性。可以理解,深度图一般包括所有像素(不仅仅是对应于人类目标32的像素)的深度信息,并且深度相机22的透视可能不会得到图2中所描绘的轮廓。
虚拟骨架46可从深度图42导出,以提供对人类目标32的机器可读表示。换言之,从深度图42导出虚拟骨架46以便对人类目标32建模。虚拟骨架46可以按任何合适的方式从深度图中导出。在某些实施例中,可将一个或多个骨架拟合算法应用于深度图。本发明与实际上任何骨架建模技术兼容。
虚拟骨架46可包括多个关节,每一关节对应于人类目标的一部分。在图2中,虚拟骨架46被示为十五个关节的线条画。这一例示是出于理解简明的目的,而不是技术准确性。根据本发明的虚拟骨架可包括实际上任何数量的关节,每一关节都可与实际上任何数量的参数(例如,三维关节位置、关节旋转、对应身体部位的身体姿态(例如,手张开、手合拢等)等)相关联。可以理解,虚拟骨架可采用包括多个骨架关节中的每个关节的一个或多个参数的数据结构的形式(例如,包括每个关节的x位置、y位置、z位置、以及至少一个旋转的关节矩阵)。在某些实施例中,可使用其他类型的虚拟骨架(例如,线框、一组形状图元等)。
如图2所示,可将虚拟化身50呈现在显示设备16上作为虚拟骨架46的视觉表示。由于虚拟骨架46对人类目标32进行建模,并且由于对虚拟化身50的呈现基于虚拟骨架46,因此虚拟化身50用作人类目标32的可视的数字表示。由此,虚拟化身50在显示设备16上的移动反映人类目标32的移动。
在某些实施例中,只有虚拟化身的部分将呈现在显示设备16上。作为一个非限制性示例,显示设备16可呈现人类目标32的第一人视角,并因此可呈现可通过虚拟化身的虚拟眼睛来查看的虚拟化身的各部分(例如,三维虚拟世界中握有方向盘的伸出的手、握有步枪的伸出的手、抓取物体的伸出的手等)。
尽管将虚拟化身50用作可经由深度图的骨架建模由人类目标的移动来控制的游戏的一示例方面,但这并不旨在限制。人类目标可以用虚拟骨架来建模,而虚拟骨架可用于控制除虚拟化身以外的游戏或其他应用的各方面。例如,即使虚拟化身没有被呈现到显示设备,人类目标的移动也可控制游戏或其他应 用。
如上介绍的,上帝游戏可经由深度图的骨架建模由人类目标的移动来控制。例如,图3-13示意性地示出在不同时刻(例如,时间t0、时间t1和时间t2)对人类目标的不同姿势建模的虚拟骨架46。如上讨论的,虚拟骨架46可从深度信息中导出,深度信息从观察人类目标的深度相机获取。虽然虚拟骨架46被示为具有关节的线条画,但应该理解,虚拟骨架可由任何合适的机器可读数据结构来表示。例如,图3A中示为点的关节可由位置坐标和/或其他机器可读信息来表示。由此,计算系统的逻辑子系统可接收虚拟骨架(即,以机器可读形式表示虚拟骨架的数据结构)并处理一个或多个关节的位置和/或其他属性。以此方式,骨架位置/移动并因此被建模的人类目标的姿势可被解释为用于控制计算系统的不同姿势控制。虽然使用上帝游戏作为一说明性示例,但可以理解,本文描述的姿势解释可被应用于任何多维虚拟环境。
作为第一示例,图3A示出面对中间方向(由箭头36表示)的虚拟骨架46。例如,中间方向可以是沿着深度相机的光轴的朝着深度相机。在时间t0,抬起虚拟骨架的右臂(包括右手关节72)并向中间方向伸展。这样的位置可被转换为中间姿势控制。例如,图3B示出可经由显示设备(例如,图1的显示设备16)呈现给游戏玩家的三维(3D)虚拟游戏世界界面300。图3B对应于图3A的时间t0,如图3B所示,右控光标82可由右手关节72来建模。可以理解,对“左”、“右”、“前”、“后”等的引用可基于虚拟骨架的解剖。
右控光标82以及3D虚拟游戏世界的附加的和/或替换的控制光标可位于显示设备(例如,图1的显示设备16)的屏幕空间位置302中。屏幕空间位置302可使用例如包括x轴和y轴的笛卡尔坐标系来表征。屏幕空间位置可跟踪如从人类目标(例如,图1的人类目标32)的对应右手的世界空间位置建模的、虚拟骨架46的右手关节72的位置。图3B在对应于中间位置的屏幕空间位置302处示出右控光标82。屏幕空间位置302可与例如控制光标的质心对齐。虽然在图3B中示出了笛卡尔坐标轴,但这样的轴可从视野中隐藏且不在3D虚拟游戏世界界面中示出。可以明白,左控光标可另外地或另选地跟踪如从人类目标的对应左手的世界空间位置建模的、虚拟骨架的左手关节的位置。例如,如图3A中在时间t1处所示,虚拟骨架46将包括右手关节72的右臂向右上方 移动,从而使得右手关节72远离躯干48伸展。这可被解释为滚动姿势。由此,右控光标82的屏幕空间位置302可通过跟踪右手关节72并到达在如图3C所示的3D虚拟游戏世界界面300的可视边缘处的滚动阈值304来作出响应。越过滚动阈值的控制光标滚动3D虚拟游戏世界,以使得与3D虚拟游戏世界的可视边缘相邻的3D虚拟游戏世界的先前被隐藏的部分变得不隐藏。换言之,计算系统将手关节的相对位置转换为姿势控制并滚动以查看虚拟世界的不同区域。如所示的,右控光标82的至少某一部分可到达右边的滚动阈值304以便发起向右边的滚动控制。
越过滚动阈值可包括检测到超出滚动阈值的预定距离(例如,像素数)。此外,滚动速度可与超出滚动阈值的距离成比例,其中越长的距离可对应于越快的滚动速度,而越短的距离可对应于越慢的滚动速度。作为另一示例,确定滚动速度可包括检测到达滚动阈值的手关节的速度。虽然在图3C中示出滚动阈值304,但可以理解,阈值可在没有相应的可视指示符的情况下实现。
在某些实施例中,一只或多只手的姿态可有助于滚动姿势或其他计算机控制。例如在某些实施例中,如果手具有特定姿态,则手关节的位置和姿势可使得界面滚动,但如果手具有不同的手姿态,则相同的手关节位置和姿势可能不会使得界面滚动。在图3A-3C的非限制性示例中,张开的手姿态实现滚动。例如,在时间t1,图3A示出具有张开的手姿态的右手92。因此,如图3C所示,3D虚拟游戏世界界面300可用对应的方式向右滚动,如上所述的。虽然在某些实施例中手姿态可有助于滚动和/或其他控制,但在某些实施例中可不考虑手姿态。例如,在某些实施例中,界面可仅响应于手关节位置而不考虑手姿态来滚动。
手的姿态可用任何合适的方式来确定。在某些实施例中,可用足够的骨架关节来对手进行建模以仅从骨架数据中识别出手的姿态。在某些实施例中,手关节的位置可被用来在对应深度图和/或对应色彩图像中定位手的位置。在这样的情况下,随后可评估深度图和/或色彩图像中包括手的部分以确定手是张开的姿态还是合拢的姿态。例如,可参照已知手姿态的在先训练的集合来分析深度图和/或色彩图像中包括手的部分以寻找最佳匹配的手姿态。
作为另一滚动姿势示例,在图3A的时间t2,虚拟骨架46将右手关节72 和左手关节74向上移动至基本上接近头关节44的平面上。图3D对应于图3A的时间t2,在图3D中,这样的姿势控制可被解释为向上平摇3D虚拟游戏世界界面300。如所示的,右控光标82和左控光标84的至少某一部分可到达上部滚动阈值306以便发起将3D虚拟游戏世界界面300向上平遥的控制。在另一示例中,左手或右手单独动作可被解释为向上滚动控制。此外,对应于右手关节72和左手关节74的右手92和左手94的姿态可有助于滚动姿势。例如,在时间t2,图3A示出具有张开的手的姿态的右手92和左手94。然而,可以明白,其他的手姿态也可有助于滚动姿势。
虽然提供手关节作为一个示例,但可以理解,其他骨架关节在转换平遥虚拟世界的视图时可等效地良好地工作。在某些实施例中,可考虑一个或多个关节的位置、速度和/或其他属性。
如上文所介绍的,虚拟骨架对游戏玩家(例如,图1的人类目标32)的对应移动进行建模。由此,用虚拟骨架对游戏玩家建模并将骨架移动转换成游戏动作(例如,滚动视图)允许游戏玩家用身体上的移动和姿势来控制游戏。
图4A示出用于姿势放大视图控制的示例骨架放大姿势。在时间t0,虚拟骨架46处在中间位置,从而得到图4B中示出的3D虚拟游戏世界界面400。在时间t1,虚拟骨架46将右手关节72和左手关节74带到躯干48前方。换言之,右手关节72和左手关节74可比躯干48更靠近深度相机。图4C(对应于时间t1)可分别示出从右手关节72和左手关节74建模的右控光标82和左控光标84。
在时间t2,虚拟骨架46将右手关节72和左手关节74分开,以使得右手关节72和左手关节74移开并远离躯干48。这样的移动可被转换为放大姿势。计算系统可被配置为将放大姿势转换为姿势放大查看控制,并放大3D虚拟游戏世界界面400的视图,如图4D所示。换言之,随着3D虚拟游戏世界的视图放大,右控光标的屏幕空间位置和左控光标的屏幕空间位置移开。
虽然提供了使右手关节和左手关节移开作为放大姿势的一个示例,但其他姿势也可被转换为放大虚拟世界的视图,且图4A中示出的姿势是作为一个非限制性示例来提供的。此外,右手92和/或左手94的姿态可有助于放大姿势。例如,图4A将右手92和左手94示为握紧的拳头,尽管其他姿态也可有助于 放大姿势。可以明白,一个或多个其他关节可用于放大姿势且可被转换为姿势放大视图控制。
图5A示出用于姿势收缩视图控制的示例骨架缩小姿势。在时间t0,虚拟骨架46处在中间位置,从而得到图5B中示出的3D虚拟游戏世界界面500。在时间t1,虚拟骨架46将右手关节72和左手关节74移离躯干48。图5C(对应于时间t1)可分别示出从右手关节72和左手关节74建模的右控光标82和左控光标84。
在时间t2,虚拟骨架46将右手关节72和左手关节74移动到一起,以使得右手关节72和左手关节74位于躯干48前方。这样的移动可被转换为缩小姿势。计算系统可被配置为将缩小姿势转换为姿势收缩视图控制,并响应于该姿势收缩视图控制来收缩3D虚拟游戏世界界面500的视图,如图5D所示。换言之,随着3D虚拟游戏世界的视图收缩,右控光标的屏幕空间位置和左控光标的屏幕空间位置移动到一起。
虽然提供了将右手关节和左手关节移动到一起作为缩小姿势的一个示例,但其他姿势也可被转换为收缩虚拟世界的视图,且图5A中示出的姿势是作为一个非限制性示例来提供的。此外,右手92和/或左手94的姿态可有助于缩小姿势。例如,图5A将右手92和左手94示为握紧的拳头,尽管其他姿态也可有助于缩小姿势。可以明白,一个或多个其他关节可用于缩小姿势且可被转换为姿势收缩视图控制。
图6A示出用于将控制光标锁定到3D虚拟游戏世界的屏幕空间位置中的对象的示例骨架姿势。在时间t0,虚拟骨架46处在中间位置,从而得到图6B中示出的3D虚拟游戏世界界面600。在时间t1,虚拟骨架46朝着显示设备(例如,图1的显示设备16)上显示的对象40伸出右手关节72。在时间t1,由右手关节72建模的右手92具有张开的姿态。这样的张开的姿态可由图6C中示出的右控光标82来建模。在时间t2,由右手关节72建模的右手92以抓取运动合拢。计算系统可被配置为响应于抓取手姿态来将控制光标锁定到对象。例如,右控光标82可被锁定到对象40,如图6D所示。
如果越过对象的抓取阈值602,则右控光标82可被锁定到3D虚拟游戏世界中的对象。作为一个示例,如果在光标充分靠近对象40时用户将手合拢的, 则手的世界空间参数可越过对象的抓取阈值。例如,用户可在光标占据与对象相同的屏幕空间坐标时合拢他或她的手以便将光标锁定到该对象。
作为另一示例,如果手的屏幕空间位置(如被光标可视化的)在对象的阈值距离以内持续了一持续时间阈值,则手的世界空间参数可越过对象的抓取阈值。例如,用户可在世界空间中移动他的手以使光标的屏幕空间位置在对象的屏幕空间位置的阈值距离内。一旦光标已在该阈值距离内持续了长于持续时间阈值,光标以及因此用户的手就被锁定到对象。
作为又一示例,如果手的屏幕空间位置在对象的阈值距离内并且手的速度小于速度阈值持续了一持续时间阈值,则手的世界空间参数可越过对象的抓取阈值。例如,用户可在世界空间里移动他或她的手以使得当光标处在对象的阈值距离内时减缓手移动的速度。当手的速度低于速度阈值持续了长于持续时间阈值(例如,光标悬浮于对象上方)时,光标以及因此用户的手就被锁定到该对象。
可以明白,其他关节和/或这些关节的其他姿态可被建模为控制光标并在越过对象的抓取阈值时被锁定到对象。
当控制光标被锁定到对象时,游戏玩家(例如,图1的人类目标32)执行的姿势可用于控制3D虚拟游戏世界中的对象的移动。换言之,姿势可用于将对象向前、向后、向左、向右、向上、向下移动等,以使得控制光标和对象作为一个单元来移动。此外,姿势可用于旋转对象、改变对象的比例或以其他方式控制对象。
例如,图7A示出移动被锁定到对象的控制光标并从控制光标释放对象的示例。在时间t0,虚拟骨架46已经如上所述地抓取了一对象。由此,在图7B中,右控光标82被锁定到对象40。在时间t1,虚拟骨架46将包括右手关节72的右臂向左下方移动。由此,被锁定到对象40的右控光标82向左下方移动,如图7C所示。以此方式,被锁定到对象的控制光标可用控制光标来移动对象,以使得人类目标的对应的手的世界空间位置在3D虚拟游戏世界中移动对象。
作为另一移动姿势示例,虚拟骨架46可将包括右手关节72的右臂向右移动,如时间t2所示。由此,右控光标82和对象40在3D虚拟游戏世界界面700中向右移动,如图7D所示。
如果游戏玩家(例如,图1的人类目标32)对对象的位置满意,则对象可从控制光标解锁。例如,图7A在时间t3处示出具有由具有张开姿态的右手92建模的右手关节72的虚拟骨架46。这样的姿势可被转换为解锁姿势,因此从右控光标82释放对象40,如图7E所示。
如果越过对象的释放阈值702,则可在3D虚拟游戏世界中释放该对象。例如,当用户张开他的手时,手的世界空间参数可越过对象的释放阈值,如图7E所示。作为另一示例,如果非抓取的手(例如,左手)执行释放姿势,则手的世界空间参数可越过对象的释放阈值。
图8A示出用于在3D虚拟游戏世界中旋转对象的示例骨架姿势。在时间t0,虚拟骨架46已经如上所述地抓取了一对象。由此,在图8B中,右控光标82被锁定到对象40。在时间t1,虚拟骨架46将包括右手关节72的右臂向左旋转。换言之,右手关节72向内朝着躯干48旋转。这样的移动可被转换为旋转姿势。如在图8C的3D虚拟游戏世界界面800中所示,被锁定到对象40的右控光标82响应于虚拟骨架46在时间t1的旋转姿势而向左旋转。换言之,人类目标的世界空间姿势在3D虚拟游戏世界中旋转对象。在时间t2,如果游戏玩家对对象的位置满意,则游戏玩家可通过执行解锁姿势来从控制光标释放对象。
图9A示出用于在3D虚拟游戏世界中缩放对象的示例骨架姿势。在时间t0,虚拟骨架46被示为具有处于张开姿态的分别由右手92和左手94建模的右手关节72和左手关节74。图9B示出对应于时间t0的3D虚拟游戏世界界面900。在时间t1,右手92和左手94移动到合拢的姿态。由此,右控光标82和左控光标84锁定到对象40,如图9C所示。在时间t2,右手关节72向右上方移动,同时左手关节74向左下方移动。这样的移动可被转换为缩放姿势。3D虚拟游戏世界中的对象的比例可响应于虚拟骨架的缩放姿势来改变,以使得人类目标的世界空间姿势在3D虚拟游戏世界中缩放对象。如图9D所示,对象40响应于该缩放姿势而变得更大。
作为另一示例,如果对象最初由分得很开的右手关节和左手关节抓取,则对象可被缩放以使得对象变得更小,从而允许右手关节和左手关节朝着彼此移动以执行缩放姿势。
在某些场景中,游戏玩家可选择3D虚拟游戏世界中的多个对象,从而将控制光标锁定到该多个对象。此外,由虚拟骨架建模的姿势可通过移动、旋转和缩放对象来控制该多个对象,类似于对移动、旋转和缩放一个对象描述的以上姿势。
例如,图10A示出用于选择多个对象的示例骨架姿势。在时间t0,虚拟骨架46处在中间位置,从而得到图10B中示出的3D虚拟游戏世界界面100。在时间t1,虚拟骨架46被示为具有右手关节72环状移动以使得多个对象38被右控光标82环绕,如图10C所示。这样的移动可被转换为选择姿势,且3D虚拟游戏世界界面可包括对所选的多个对象的指示。例如,图10C示出围绕所选的多个对象的虚线。在t2,虚拟骨架46可如上所述地通过将右手92的姿态改变成合拢的姿态来抓取多个对象38。因此,多个对象38可被锁定到右控光标82,如图10D所示。换言之,如果越过多个对象的抓取阈值,则在3D虚拟游戏世界中多个对象可被锁定到控制光标。此外,3D虚拟游戏世界界面100可包括多个对象38被锁定到右控光标82的指示。例如,图10D示出围绕所选的多个对象38的实线。
在被锁定时,多个对象可在3D虚拟游戏世界中被移动,类似于对移动一个对象的以上描述。例如,表示图11A的虚拟骨架46的图11B示出在时间t0被锁定到右控光标82的多个对象38。在时间t1,虚拟骨架46将右手关节72向右移动。作为结果,右控光标82向右移动,如图11C所示。多个对象与控制光标一起移动,以使得人类目标的对应的手的世界空间位置移动3D虚拟游戏世界中的多个对象。在时间t2,虚拟骨架46用解锁姿势释放多个对象38。多个对象可响应于手越过多个对象的释放阈值来被释放。
图12A示出用于在3D虚拟游戏世界中旋转多个对象的示例骨架姿势。在时间t0,虚拟骨架46已经抓取了多个对象。由此,右控光标82被锁定到多个对象38,如图12B所示。在时间t1,虚拟骨架46将包括右手关节72的右臂向左旋转。换言之,右手关节72向内朝着躯干48旋转。这样的移动可被转换为旋转姿势。如在图12C的3D虚拟游戏世界界面120中所示,右控光标82和多个对象38响应于虚拟骨架46在时间t1的旋转姿势而向左旋转。换言之,人类目标的世界空间姿势旋转3D虚拟游戏世界中的多个对象。在时间t2,如果 游戏玩家对多个对象的位置满意,则游戏玩家可通过执行解锁姿势来从控制光标释放该多个对象。
图13示出用于在3D虚拟游戏世界中缩放多个对象的示例骨架姿势。在时间t0,虚拟骨架46被示为具有处于张开姿态的分别由右手92和左手94建模的右手关节72和左手关节74。图13B示出对应于时间t0的3D虚拟游戏世界界面130。在时间t1,右手92和左手94移动到合拢的姿态。由此,右控光标82和左控光标84被锁定到多个对象38,如图13C所示。在时间t2,右手关节72向右上方移动,同时左手关节74向左下方移动。这样的移动可被转换为缩放姿势。人类目标的世界空间姿势缩放3D虚拟游戏世界中的多个对象。如对应于时间t2的图13D所示,响应于该缩放姿势,多个对象38作为一个集合单元而变得更大。作为另一示例,多个对象可被缩放以使得对象变得更小。
上述姿势/控制是非限制性示例。其他姿势和控制也在本发明的范围之内。此外,可同时执行和转换上述姿势中的两个或更多个。
在某些实施例中,一个或多个姿势可以是模态相关的——即,同一姿势可取决于系统的模式而产生不同的结果。在某些场景中,可响应于识别虚拟骨架的第一模式发起姿势来设置第一输入模态。例如,第一输入模态可通过包括虚拟骨架用左手轻击左腿的姿势来设置。
在设置第一输入模态的同时,将虚拟骨架的特定动作姿势解释为第一姿势控制。例如,第一输入模态可以是军队命令模态,而第一姿势可以是挑选军队并将他们移动到所需战斗位置的抓取姿势。
可响应于识别虚拟骨架的第二模式发起姿势来设置第二输入模态。例如,第二输入模态可通过包括虚拟骨架用左手轻击左肩的姿势来设置。
在设置第二输入模态的同时,将虚拟骨架的同一特定动作姿势解释为与第一姿势控制不同的第二姿势控制。换言之,第一姿势控制和第二姿势控制可产生对三维虚拟世界的不同控制。继续以上示例,第二输入模态可以是统计模态,而在第一模态中用于挑选和移动军队的同一抓取姿势可改为用于在第二模态中显示军队的战斗统计。
在某些实施例中,一个或多个姿势可以是上下文相关的——即,取决于屏幕的部分和/或姿势针对的虚拟目标,同一姿势可产生不同结果。例如,在抓取 大楼的同时作出特定姿势可使得该大楼开始生产资源,而在抓取士兵的同时作出同一特定姿势可使得士兵进行攻击。类似地,屏幕上的不同类型的目标和/或屏幕上不同位置处的相同类型的目标可对相同类型的姿势指示作出不同的响应。
虽然参考了上帝游戏进行了描述,但上述姿势还可应用于其他游戏或应用。此外,上述姿势可用于控制物理对象,诸如机器人。
虽然参考虚拟骨架的虚拟表示来描述了上述姿势,应该理解,可参考构成虚拟骨架的骨架数据来分析姿势。可使用一个或多个测试来分析每一姿势。每一个这样的测试可考虑一个或多个关节的位置、速度、加速度、方向或其他属性。可在绝对意义上、或者参考一个或多个其他关节来考虑这样的属性。作为非限制性示例,姿势可由关节的绝对位置来标识、由两个或更多个关节相对于彼此的相对位置来标识、由连接两个关节的骨骼段的角度相对于连接两个关节的另一骨骼段的角度来标识、和/或由以上或其他属性的组合来标识。
在某些实施例中,以上所描述的方法和过程可与包括一个或多个计算机的计算系统关联。特别地,此处描述的方法和过程可被实现为计算机应用、计算机服务、计算机API、计算机库和/或其他计算机程序产品。
图14示意性示出了可以执行上述方法和过程之中的一个或更多个的非限制性计算系统60。以简化形式示出了计算系统60。应当理解,可使用基本上任何计算机架构而不背离本公开的范围。在不同的实施例中,计算系统60可以采取大型计算机、服务器计算机、台式计算机、膝上型计算机、平板计算机、家庭娱乐计算机、网络计算设备、移动计算设备、移动通信设备、游戏设备等等的形式。
计算系统60包括逻辑子系统62和数据保持子系统64。计算系统60可以任选地包括显示子系统66、捕捉子系统68和/或在图14中未示出的其他组件。计算系统60还可以任选地包括诸如下列用户输入设备:例如键盘、鼠标、游戏控制器、相机、话筒和/或触摸屏等等。
逻辑子系统62可包括被配置为执行一个或多个指令的一个或多个物理设备。例如,逻辑子系统可被配置为执行一个或多个指令,该一个或多个指令是一个或多个应用、服务、程序、例程、库、对象、组件、数据结构、或其它逻 辑构造的部分。可实现此类指令以执行任务、实现数据类型、变换一个或多个设备的状态、或以其它方式得到所需结果。
逻辑子系统可包括被配置成执行软件指令的一个或多个处理器。另外或另选地,逻辑子系统可包括被配置成执行硬件或固件指令的一个或多个硬件或固件逻辑机器。逻辑子系统的处理器可以是单核或多核,且在其上执行的程序可被配置为并行或分布式处理。逻辑子系统可以任选地包括遍布两个或多个设备的独立组件,所述设备可远程放置和/或被配置为进行协同处理。该逻辑子系统的一个或多个方面可被虚拟化并由以云计算配置进行配置的可远程访问的联网计算设备执行。
数据保持子系统64可包括一个或更多个物理、非瞬时设备,这些设备被配置成保持数据和/或可由该逻辑子系统执行的指令,以实现此处描述的方法和过程。当实现了此类方法和过程时,可变换数据保存子系统64的状态(例如,以保存不同数据)。
数据保持子系统64可以包括可移动介质和/或内置设备。数据保持子系统64尤其是可以包括光学存储器设备(例如,CD、DVD、HD-DVD、蓝光盘等)、半导体存储器设备(例如,RAM、EPROM、EEPROM等)和/或磁存储器设备(例如,硬盘驱动器、软盘驱动器、磁带驱动器、MRAM等)。数据保持子系统64可以包括具有以下特性中的一个或更多个特性的设备:易失性、非易失性、动态、静态、读/写、只读、随机存取、顺序存取、位置可寻址、文件可寻址、以及内容可寻址。在某些实施例中,可以将逻辑子系统62和数据保持子系统64集成到一个或更多个常见设备中,如专用集成电路或片上系统。
图14还示出以可移动计算机可读存储介质70形式的数据保持子系统的一方面,该可移动计算机可读存储介质70可用于存储和/或传输可执行以实现此处所述的方法和过程的数据和/或指令。可移动计算机可读存储介质70尤其是可以采取CD、DVD、HD-DVD、蓝光盘、EEPROM和/或软盘形式。
可以明白,数据保持子系统64包括一个或多个方面物理非瞬态设备。相反,在一些实施例中,本文描述的指令的各方面可以按暂态方式通过不由物理设备在至少有限持续时间期间保持的纯信号(例如电磁信号、光信号等)传播。此外,与本公开有关的数据和/或其他形式的信息可以通过纯信号传播。
在包括显示子系统66时,显示子系统66可用于呈现由数据保持子系统64保持的数据的视觉表示(例如,虚拟化身和/或三维虚拟世界)。由于此处所描述的方法和过程改变由数据保持子系统保持的数据,并由此变换数据保持子系统的状态,因此同样可以变换显示子系统66的状态以在视觉上表示底层数据中的改变。例如,计算系统60可被配置为呈现驾驶游戏以供在显示子系统66的显示设备上显示。由此,计算系统60可包括显示输出以将驾驶游戏界面输出到显示设备。显示子系统66可以包括使用实际上任何类型的技术的一个或多个显示设备。可将这样的显示设备与逻辑子系统62和/或数据保存子系统64组合在共享封装中,或这样的显示设备可以是经由显示输出连接到逻辑子系统的外围显示设备。
在包括通信子系统时,通信子系统可以被配置成将计算系统60与一个或多个其他计算设备可通信地耦合。通信子系统可包括与一个或多个不同的通信协议相兼容的有线和/或无线通信设备。作为非限制性示例,该通信子系统可以被配置成经由无线电话网、无线局域网、有线局域网、无线广域网、有线广域网等进行通信。在一些实施例中,该通信子系统可允许计算系统60经由网络(比如因特网)向其他设备发送消息和/或从其他设备接收消息。
计算系统60还可包括被配置成获得一个或多个目标的深度图像的集成和/或外围捕捉设备68。在任一种情况下,计算系统60可包括外围输入以从深度相机接收深度图像并将接收到的深度图像传递到逻辑子系统以供处理。捕捉设备68可以被配置成通过任何合适的技术(例如,飞行时间、结构化光、立体图像等等)捕捉具有深度信息的视频。如此,捕捉设备68可包括深度相机、摄像机、立体相机、和/或其他合适的捕捉设备。
例如,在飞行时间分析中,捕捉设备68可以向目标发射红外光,然后使用传感器来检测从目标的表面反向散射的光。在一些情况下,可以使用脉冲式红外光,其中可以测量出射光脉冲和相应的入射光脉冲之间的时间并将该时间用于确定从该捕捉设备到目标上的特定位置的物理距离。在一些情况下,出射光波的相位可以与入射光波的相位相比较以确定相移,并且该相移可以用于确定从该捕捉设备到目标上的特定位置的物理距离。
在另一示例中,飞行时间分析可用于通过经由诸如快门式光脉冲成像之类 的技术分析反射光束随时间的强度,来间接地确定从该捕捉设备到目标上的特定位置的物理距离。
在另一示例中,结构化光分析可以被捕捉设备68利用来捕捉深度信息。在这样的分析中,图案化光(即被显示为诸如网格图案、条纹图案或星座点之类的已知图案的光)可以被投影到目标上。在落到目标的表面上以后,该图案可能变为变形的,并且可以研究该图案的这种变形以确定从该捕捉设备到目标上的某一位置的物理距离。
在另一示例中,捕捉设备可以包括两个或更多个物理上分开的相机,这些相机从不同角度查看目标以获得视觉立体数据。在这种情况下,该视觉立体数据可以被解析以生成深度图像。
在其他实施例中,捕捉设备68可以使用其他技术来测量和/或计算深度值。此外,捕捉设备68可以将所计算的深度信息组织为“Z层”,即与从深度相机沿其视线延伸到目标的Z轴垂直的层。
在一些实施例中,两个或更多个不同的相机可以被合并到一集成的捕捉设备中。例如,深度相机和视频相机(例如RGB视频相机)可以被合并到共同的捕捉设备中。在一些实施例中,可以协作式地使用两个或更多个分开的捕捉设备。例如,可以使用深度相机和分开的视频相机。当使用视频相机时,该视频相机可用于提供:目标跟踪数据、对目标跟踪进行纠错的确认数据、图像捕捉、面部识别、对手指(或其他小特征)的高精度跟踪、光感测和/或其他功能。
要理解,至少一些目标分析和跟踪操作可以由一个或多个捕捉设备的逻辑机来执行。捕捉设备可以包括被配置成执行一个或多个目标分析和/或跟踪功能的一个或多个板载处理单元。捕捉设备可以包括便于更新这样的板载处理逻辑的固件。计算系统60可任选地包括诸如控制器52和控制器54之类的一个或多个输入设备。输入设备可被用于控制计算系统的操作。在游戏的上下文中,诸如控制器52和/或控制器54之类的输入设备可被用于控制游戏的那些不是通过这里所述的目标识别、跟踪和分析方法和过程来控制的方面。在某些实施例中,诸如控制器52和/或控制器54之类的输入设备可包括可用于测量控制器在物理空间中的移动的加速计、陀螺仪、红外目标/传感器系统等中的一个或多个。在某些实施例中,计算系统可任选地包括和/或利用输入手套、键盘、鼠标、跟 踪垫、轨迹球、触屏、按钮、开关、拨盘、和/或其他输入设备。如将理解的,目标识别、跟踪和分析可被用于控制或扩充游戏或其他应用的常规上由诸如游戏控制器之类的输入设备控制的方面。在某些实施例中,这里所述的目标跟踪可被用作对其他形式的用户输入的完全替代,而在其他实施例中,这种目标跟踪可被用于补充一个或多个其他形式的用户输入。
应该理解,此处所述的配置和/或方法在本质上是示例性的,且这些具体实施例或示例不是限制意义,因为多个变体是可能的。此处所述的具体例程或方法可表示任何数量的处理策略中的一个或更多个。由此,所示出的各个动作可以按所示顺序执行、按其他顺序执行、并行地执行、或者在某些情况下省略。同样,可以改变上述过程的次序。
本发明的主题包括各种过程、系统和配置的所有新颖和非显而易见的组合和子组合、和此处所公开的其他特征、功能、动作、和/或特性、以及其任何和全部等效物。

Claims (19)

1.一种用于三维虚拟世界的骨架控制的方法,所述方法包括:
呈现三维虚拟游戏世界以供在显示设备上显示;
接收包括多个关节的虚拟骨架,所述多个关节包括左手关节和右手关节,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的所述左手关节或所述右手关节的位置;
响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象;
如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象;
当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象;以及
如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标。
2.如权利要求1所述的方法,其特征在于,如果所述对应的手被所述人类目标合拢,则所述对应的手的世界空间参数越过所述多个对象的所述抓取阈值。
3.如权利要求1所述的方法,其特征在于,如果所述对应的手的屏幕空间位置在所述多个对象的阈值距离之内持续了一持续时间阈值,则所述对应的手的世界空间参数越过所述多个对象的所述抓取阈值。
4.如权利要求1所述的方法,其特征在于,如果所述对应的手的屏幕空间位置在所述多个对象的阈值距离内并且所述对应的手的速度小于速度阈值持续了一持续时间阈值,则所述对应的手的世界空间参数越过所述多个对象的所述抓取阈值。
5.如权利要求1所述的方法,其特征在于,如果所述对应的手被所述人类目标张开,则所述对应的手的世界空间参数越过所述多个对象的所述释放阈值。
6.如权利要求1所述的方法,其特征在于,还包括:
当所述控制光标被锁定到所述多个对象时,响应于所述虚拟骨架的旋转姿势来旋转所述三维虚拟游戏世界中的多个对象,以使得所述人类目标的世界空间姿势旋转所述三维虚拟游戏世界中的多个对象。
7.如权利要求1所述的方法,其特征在于,还包括:
当所述控制光标被锁定到所述多个对象时,响应于所述虚拟骨架的缩放姿势来缩放所述三维虚拟游戏世界中的多个对象,以使得所述人类目标的世界空间姿势缩放所述三维虚拟游戏世界中的多个对象。
8.一种用于三维虚拟世界的骨架控制的系统,包括:
用于呈现三维虚拟游戏世界以供在显示设备上显示的装置;
用于接收包括多个关节的虚拟骨架的装置,所述多个关节包括左手关节和右手关节,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
用于在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示的装置,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的所述左手关节或所述右手关节的位置;
用于响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象的装置;
用于如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象的装置;
用于当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象的装置;以及
用于如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标的装置。
9.一种用于三维虚拟世界的骨架控制的方法,所述方法包括:
呈现三维虚拟游戏世界以供在显示设备上显示;
接收包括多个关节的虚拟骨架,所述多个关节包括左手关节和右手关节,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的所述左手关节或所述右手关节的位置;
响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象;
如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象;
当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象;
如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标;以及
响应于所述控制光标的屏幕空间位置到达所述三维虚拟游戏世界的可视边界处的滚动阈值,滚动所述三维虚拟游戏世界,以使得与所述三维虚拟游戏世界的可视边界相邻的所述三维虚拟游戏世界的先前被隐藏的部分变得不隐藏。
10.如权利要求9所述的方法,其特征在于,还包括:
将放大姿势转换为姿势放大视图控制;以及
响应于所述姿势放大视图控制来放大所述三维虚拟游戏世界的视图。
11.如权利要求10所述的方法,其特征在于,还包括:
在所述三维虚拟游戏世界中呈现左控光标以供在所述显示设备上显示,所述左控光标的屏幕空间位置跟踪如从所述人类目标的左手的世界空间位置建模的、所述虚拟骨架的左手关节的位置;
在所述三维虚拟游戏世界中呈现右控光标以供在所述显示设备上显示,所述右控光标的屏幕空间位置跟踪如从所述人类目标的右手的世界空间位置建模的、所述虚拟骨架的右手关节的位置;
响应于所述放大姿势,随着所述三维虚拟游戏世界的视图放大,所述左控光标的屏幕空间位置和所述右控光标的屏幕空间位置移开。
12.如权利要求9所述的方法,其特征在于,还包括:
将缩小姿势转换为姿势收缩视图控制;以及
响应于所述姿势收缩视图控制来收缩所述三维虚拟游戏世界的视图。
13.如权利要求12所述的方法,其特征在于,还包括:
在所述三维虚拟游戏世界中呈现左控光标以供在所述显示设备上显示,所述左控光标的屏幕空间位置跟踪如从所述人类目标的左手的世界空间位置建模的、所述虚拟骨架的左手关节的位置;
在所述三维虚拟游戏世界中呈现右控光标以供在所述显示设备上显示,所述右控光标的屏幕空间位置跟踪如从所述人类目标的右手的世界空间位置建模的、所述虚拟骨架的右手关节的位置;
响应于所述缩小姿势,随着所述三维虚拟游戏世界的视图收缩,所述左控光标的屏幕空间位置和所述右控光标的屏幕空间位置移动到一起。
14.如权利要求9所述的方法,其特征在于,如果所述对应的手被所述人类目标合拢,则所述对应的手的世界空间参数越过所述多个对象的所述抓取阈值。
15.如权利要求9所述的方法,其特征在于,如果所述对应的手的屏幕空间位置在所述多个对象的阈值距离之内持续了一持续时间阈值,则所述对应的手的世界空间参数越过所述多个对象的所述抓取阈值。
16.如权利要求9所述的方法,其特征在于,如果所述对应的手被所述人类目标张开,则所述对应的手的世界空间参数越过所述多个对象的所述释放阈值。
17.一种用于三维虚拟世界的骨架控制的系统,包括:
用于呈现三维虚拟游戏世界以供在显示设备上显示的装置;
用于接收包括多个关节的虚拟骨架的装置,所述多个关节包括左手关节和右手关节,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
用于在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示的装置,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的所述左手关节或所述右手关节的位置;
用于响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象的装置;
用于如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象的装置;
用于当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象的装置;
用于如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标的装置;以及
用于响应于所述控制光标的屏幕空间位置到达所述三维虚拟游戏世界的可视边界处的滚动阈值,滚动所述三维虚拟游戏世界,以使得与所述三维虚拟游戏世界的可视边界相邻的所述三维虚拟游戏世界的先前被隐藏的部分变得不隐藏的装置。
18.一种用于三维虚拟世界的骨架控制的方法,所述方法包括:
呈现三维虚拟游戏世界以供在显示设备上显示;
接收包括多个关节的虚拟骨架,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的左手关节或右手关节的位置;
响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象;
如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象;
当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象;
如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标;
响应于识别所述虚拟骨架的第一模式发起姿势,设置第一输入模态;
在设置第一输入模态的同时,将所述虚拟骨架的特定动作姿势解释为第一姿势控制;
响应于识别所述虚拟骨架的第二模式发起姿势,设置第二输入模态;以及
在设置所述第二输入模态的同时,将所述虚拟骨架的特定动作姿势解释为第二姿势控制,所述第一姿势控制和所述第二姿势控制产生对所述三维虚拟世界的不同控制。
19.一种用于三维虚拟世界的骨架控制的系统,包括:
用于呈现三维虚拟游戏世界以供在显示设备上显示的装置;
用于接收包括多个关节的虚拟骨架的装置,所述虚拟骨架提供用三维深度相机观察的人类目标的机器可读表示;
用于在所述三维虚拟游戏世界中呈现控制光标以供在所述显示设备上显示的装置,所述控制光标的屏幕空间位置跟踪如从所述人类目标的对应的手的世界空间位置建模的、所述虚拟骨架的左手关节或右手关节的位置;
用于响应于所述虚拟骨架的选择姿势来选择所述三维虚拟游戏世界中的多个对象的装置;
用于如果手的世界空间参数越过所述多个对象的抓取阈值,则将所述控制光标锁定到所述多个对象的装置;
用于当所述控制光标被锁定到所述多个对象时,用所述控制光标来移动所述多个对象,以使得所述人类目标的对应的手的世界空间位置移动所述三维虚拟游戏世界中的多个对象的装置;
用于如果手的世界空间参数越过所述多个对象的释放阈值,则在所述三维虚拟游戏世界内的所述多个对象的释放位置处从所述多个对象解锁所述控制光标的装置;
用于响应于识别所述虚拟骨架的第一模式发起姿势,设置第一输入模态的装置;
用于在设置第一输入模态的同时,将所述虚拟骨架的特定动作姿势解释为第一姿势控制的装置;
用于响应于识别所述虚拟骨架的第二模式发起姿势,设置第二输入模态的装置;以及
用于在设置所述第二输入模态的同时,将所述虚拟骨架的特定动作姿势解释为第二姿势控制的装置,所述第一姿势控制和所述第二姿势控制产生对所述三维虚拟世界的不同控制。
CN201110430789.0A 2010-12-21 2011-12-20 三维虚拟世界的骨架控制 Active CN102542160B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/975,086 US8994718B2 (en) 2010-12-21 2010-12-21 Skeletal control of three-dimensional virtual world
US12/975,086 2010-12-21

Publications (2)

Publication Number Publication Date
CN102542160A CN102542160A (zh) 2012-07-04
CN102542160B true CN102542160B (zh) 2015-10-28

Family

ID=46235081

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110430789.0A Active CN102542160B (zh) 2010-12-21 2011-12-20 三维虚拟世界的骨架控制

Country Status (2)

Country Link
US (3) US8994718B2 (zh)
CN (1) CN102542160B (zh)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9349040B2 (en) * 2010-11-19 2016-05-24 Microsoft Technology Licensing, Llc Bi-modal depth-image analysis
KR101800182B1 (ko) * 2011-03-16 2017-11-23 삼성전자주식회사 가상 객체 제어 장치 및 방법
US8769409B2 (en) * 2011-05-27 2014-07-01 Cyberlink Corp. Systems and methods for improving object detection
MX2014003131A (es) * 2011-09-16 2014-08-27 Landmark Graphics Corp Metodos y sistemas para el control de aplicacion petrotecnica basado en gestos.
US9628843B2 (en) * 2011-11-21 2017-04-18 Microsoft Technology Licensing, Llc Methods for controlling electronic devices using gestures
US9557819B2 (en) * 2011-11-23 2017-01-31 Intel Corporation Gesture input with multiple views, displays and physics
US9324183B2 (en) 2011-11-29 2016-04-26 Apple Inc. Dynamic graphical interface shadows
US9372593B2 (en) * 2011-11-29 2016-06-21 Apple Inc. Using a three-dimensional model to render a cursor
KR20130078490A (ko) * 2011-12-30 2013-07-10 삼성전자주식회사 전자 장치 및 그의 제어 방법
US8782565B2 (en) * 2012-01-12 2014-07-15 Cisco Technology, Inc. System for selecting objects on display
US11493998B2 (en) 2012-01-17 2022-11-08 Ultrahaptics IP Two Limited Systems and methods for machine control
US9507512B1 (en) * 2012-04-25 2016-11-29 Amazon Technologies, Inc. Using gestures to deliver content to predefined destinations
US9747306B2 (en) * 2012-05-25 2017-08-29 Atheer, Inc. Method and apparatus for identifying input features for later recognition
CN102778953B (zh) * 2012-06-28 2015-06-24 华东师范大学 基于Kinect的皮影戏远程数字表演的体感控制方法
WO2014016987A1 (ja) 2012-07-27 2014-01-30 Necソフト株式会社 3次元ユーザインタフェース装置及び3次元操作方法
US9310895B2 (en) * 2012-10-12 2016-04-12 Microsoft Technology Licensing, Llc Touchless input
KR20140052640A (ko) * 2012-10-25 2014-05-07 삼성전자주식회사 커서를 디스플레이에 디스플레이하기 위한 방법과 상기 방법을 수행할 수 있는 시스템
US9632658B2 (en) 2013-01-15 2017-04-25 Leap Motion, Inc. Dynamic user interactions for display control and scaling responsiveness of display objects
WO2014141504A1 (ja) 2013-03-11 2014-09-18 Necソリューションイノベータ株式会社 3次元ユーザインタフェース装置及び3次元操作処理方法
US10620709B2 (en) 2013-04-05 2020-04-14 Ultrahaptics IP Two Limited Customized gesture interpretation
US9747696B2 (en) 2013-05-17 2017-08-29 Leap Motion, Inc. Systems and methods for providing normalized parameters of motions of objects in three-dimensional space
US10220304B2 (en) * 2013-10-14 2019-03-05 Microsoft Technology Licensing, Llc Boolean/float controller and gesture recognition system
CN105765490B (zh) * 2014-01-03 2020-03-10 英特尔公司 用于用户界面控制的系统和技术
GB2523132A (en) * 2014-02-13 2015-08-19 Nokia Technologies Oy An apparatus and associated methods for controlling content on a display user interface
US10416759B2 (en) * 2014-05-13 2019-09-17 Lenovo (Singapore) Pte. Ltd. Eye tracking laser pointer
US20150378440A1 (en) * 2014-06-27 2015-12-31 Microsoft Technology Licensing, Llc Dynamically Directing Interpretation of Input Data Based on Contextual Information
US10168699B1 (en) * 2015-01-30 2019-01-01 Vecna Technologies, Inc. Interactions between a vehicle and a being encountered by the vehicle
US10156908B2 (en) * 2015-04-15 2018-12-18 Sony Interactive Entertainment Inc. Pinch and hold gesture navigation on a head-mounted display
US9507974B1 (en) * 2015-06-10 2016-11-29 Hand Held Products, Inc. Indicia-reading systems having an interface with a user's nervous system
US20170003738A1 (en) * 2015-06-15 2017-01-05 Survios, Inc. Systems and methods for immersive physical interaction with a virtual environment
EP3118722B1 (en) * 2015-07-14 2020-07-01 Nokia Technologies Oy Mediated reality
WO2017061890A1 (en) * 2015-10-08 2017-04-13 3Divi Company Wireless full body motion control sensor
US11609427B2 (en) 2015-10-16 2023-03-21 Ostendo Technologies, Inc. Dual-mode augmented/virtual reality (AR/VR) near-eye wearable displays
US11106273B2 (en) * 2015-10-30 2021-08-31 Ostendo Technologies, Inc. System and methods for on-body gestural interfaces and projection displays
US10345594B2 (en) 2015-12-18 2019-07-09 Ostendo Technologies, Inc. Systems and methods for augmented near-eye wearable displays
US10578882B2 (en) 2015-12-28 2020-03-03 Ostendo Technologies, Inc. Non-telecentric emissive micro-pixel array light modulators and methods of fabrication thereof
KR20170096420A (ko) * 2016-02-16 2017-08-24 삼성전자주식회사 대화형 3차원 디스플레이 장치 및 방법
US10353203B2 (en) 2016-04-05 2019-07-16 Ostendo Technologies, Inc. Augmented/virtual reality near-eye displays with edge imaging lens comprising a plurality of display devices
US10453431B2 (en) 2016-04-28 2019-10-22 Ostendo Technologies, Inc. Integrated near-far light field display systems
US10522106B2 (en) 2016-05-05 2019-12-31 Ostendo Technologies, Inc. Methods and apparatus for active transparency modulation
US20180012197A1 (en) * 2016-07-07 2018-01-11 NextEv USA, Inc. Battery exchange licensing program based on state of charge of battery pack
JP6786762B2 (ja) 2016-08-05 2020-11-18 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 画像収集部及び距離測定部を有する装置を制御する方法、及び装置
CN107885317A (zh) * 2016-09-29 2018-04-06 阿里巴巴集团控股有限公司 一种基于手势的交互方法及装置
CN107885316A (zh) * 2016-09-29 2018-04-06 阿里巴巴集团控股有限公司 一种基于手势的交互方法及装置
EP3316222B1 (en) * 2016-11-01 2020-07-01 Previble AB Pre-visualization device
CN108268227B (zh) * 2017-01-04 2020-12-01 京东方科技集团股份有限公司 显示设备
CN107132917B (zh) * 2017-04-25 2018-05-29 腾讯科技(深圳)有限公司 用于虚拟现实场景中的手型显示方法及装置
WO2018196552A1 (zh) 2017-04-25 2018-11-01 腾讯科技(深圳)有限公司 用于虚拟现实场景中的手型显示方法及装置
JP6643583B2 (ja) * 2017-06-27 2020-02-12 株式会社コナミアミューズメント ゲーム機、及びコンピュータプログラム
CN107390875B (zh) * 2017-07-28 2020-01-31 腾讯科技(上海)有限公司 信息处理方法、装置、终端设备和计算机可读存储介质
KR102013367B1 (ko) * 2017-07-31 2019-08-22 모젼스랩 (주) 가상공간상의 사용자 터치 인터렉션 제공 시스템
FR3068803A1 (fr) * 2017-09-19 2019-01-11 Orange Procede et dispositif de traitement de donnees d'un environnement de realite virtuelle.
US11113887B2 (en) * 2018-01-08 2021-09-07 Verizon Patent And Licensing Inc Generating three-dimensional content from two-dimensional images
US10497179B2 (en) 2018-02-23 2019-12-03 Hong Kong Applied Science and Technology Research Institute Company Limited Apparatus and method for performing real object detection and control using a virtual reality head mounted display system
ES2725128B2 (es) * 2018-03-15 2020-07-22 Univ Rey Juan Carlos Método implementado por ordenador, sistema y producto del programa de ordenador para simular el comportamiento de una mano que interactúa con objetos en un entorno virtual.
CN108765577B (zh) * 2018-04-09 2021-07-09 华南农业大学 一种实时点云数据驱动的四肢畜牧动物骨架增强现实跟踪方法
US11875012B2 (en) 2018-05-25 2024-01-16 Ultrahaptics IP Two Limited Throwable interface for augmented reality and virtual reality environments
US11310226B2 (en) * 2018-12-19 2022-04-19 Paypal, Inc. Gesture and motion detection using a device radar component for user authentication
US11107265B2 (en) * 2019-01-11 2021-08-31 Microsoft Technology Licensing, Llc Holographic palm raycasting for targeting virtual objects
US11397463B2 (en) 2019-01-12 2022-07-26 Microsoft Technology Licensing, Llc Discrete and continuous gestures for enabling hand rays
FR3093578A1 (fr) 2019-03-05 2020-09-11 Orange Procédé et dispositif de traitement de données d'un environnement de réalité virtuelle.
KR20190095184A (ko) * 2019-07-25 2019-08-14 엘지전자 주식회사 멀티미디어 디바이스 및 그 제어 방법
US11551374B2 (en) * 2019-09-09 2023-01-10 Snap Inc. Hand pose estimation from stereo cameras
CN111026277A (zh) * 2019-12-26 2020-04-17 深圳市商汤科技有限公司 一种交互控制方法及装置、电子设备和存储介质
US11340707B2 (en) * 2020-05-29 2022-05-24 Microsoft Technology Licensing, Llc Hand gesture-based emojis
US11599239B2 (en) 2020-09-15 2023-03-07 Apple Inc. Devices, methods, and graphical user interfaces for providing computer-generated experiences
TWI757871B (zh) * 2020-09-16 2022-03-11 宏碁股份有限公司 基於影像的手勢控制方法與使用此方法的電子裝置
CN112435321A (zh) * 2020-12-08 2021-03-02 四川长虹电器股份有限公司 一种Leap Motion手部骨骼运动数据优化方法
CN116328276A (zh) * 2021-12-22 2023-06-27 成都拟合未来科技有限公司 基于健身装置的姿势交互方法及系统及装置及介质
CN115328309A (zh) * 2022-08-10 2022-11-11 北京字跳网络技术有限公司 用于虚拟对象的交互方法、装置、设备和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW543323B (en) * 2000-10-03 2003-07-21 Jestertek Inc Multiple camera control system
US7348963B2 (en) * 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
US7701439B2 (en) * 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method

Family Cites Families (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4695953A (en) 1983-08-25 1987-09-22 Blair Preston E TV animation interactively controlled by the viewer
US4630910A (en) 1984-02-16 1986-12-23 Robotic Vision Systems, Inc. Method of measuring in three-dimensions at high speed
US4627620A (en) 1984-12-26 1986-12-09 Yang John P Electronic athlete trainer for improving skills in reflex, speed and accuracy
US4645458A (en) 1985-04-15 1987-02-24 Harald Phillip Athletic evaluation and training apparatus
US4702475A (en) 1985-08-16 1987-10-27 Innovating Training Products, Inc. Sports technique and reaction training system
US4843568A (en) 1986-04-11 1989-06-27 Krueger Myron W Real time perception of and response to the actions of an unencumbered participant/user
US4711543A (en) 1986-04-14 1987-12-08 Blair Preston E TV animation interactively controlled by the viewer
US4796997A (en) 1986-05-27 1989-01-10 Synthetic Vision Systems, Inc. Method and system for high-speed, 3-D imaging of an object at a vision station
US5184295A (en) 1986-05-30 1993-02-02 Mann Ralph V System and method for teaching physical skills
US4751642A (en) 1986-08-29 1988-06-14 Silva John M Interactive sports simulation system with physiological sensing and psychological conditioning
US4809065A (en) 1986-12-01 1989-02-28 Kabushiki Kaisha Toshiba Interactive system and related method for displaying data to produce a three-dimensional image of an object
US4817950A (en) 1987-05-08 1989-04-04 Goo Paul E Video game control unit and attitude sensor
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US5239463A (en) 1988-08-04 1993-08-24 Blair Preston E Method and apparatus for player interaction with animated characters and objects
US4901362A (en) 1988-08-08 1990-02-13 Raytheon Company Method of recognizing patterns
US4893183A (en) 1988-08-11 1990-01-09 Carnegie-Mellon University Robotic vision system
JPH02199526A (ja) 1988-10-14 1990-08-07 David G Capper 制御インターフェース装置
US4925189A (en) 1989-01-13 1990-05-15 Braeunig Thomas F Body-mounted video game exercise device
US5229756A (en) 1989-02-07 1993-07-20 Yamaha Corporation Image control apparatus
US5469740A (en) 1989-07-14 1995-11-28 Impulse Technology, Inc. Interactive video testing and training system
JPH03103822U (zh) 1990-02-13 1991-10-29
US5101444A (en) 1990-05-18 1992-03-31 Panacea, Inc. Method and apparatus for high speed object location
US5148154A (en) 1990-12-04 1992-09-15 Sony Corporation Of America Multi-dimensional user interface
US5534917A (en) 1991-05-09 1996-07-09 Very Vivid, Inc. Video image based control system
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5295491A (en) 1991-09-26 1994-03-22 Sam Technology, Inc. Non-invasive human neurocognitive performance capability testing method and system
US6054991A (en) 1991-12-02 2000-04-25 Texas Instruments Incorporated Method of modeling player position and movement in a virtual reality system
DE69229474T2 (de) 1991-12-03 2000-03-02 French Sportech Corp Interaktives videosystem zur beobachtung und zum training der leistungsfähigkeit einer person
US5875108A (en) 1991-12-23 1999-02-23 Hoffberg; Steven M. Ergonomic man-machine interface incorporating adaptive pattern recognition based control system
JPH07325934A (ja) 1992-07-10 1995-12-12 Walt Disney Co:The 仮想世界に向上したグラフィックスを提供する方法および装置
US5999908A (en) 1992-08-06 1999-12-07 Abelow; Daniel H. Customer-based product design module
US5320538A (en) 1992-09-23 1994-06-14 Hughes Training, Inc. Interactive aircraft training system and method
IT1257294B (it) 1992-11-20 1996-01-12 Dispositivo atto a rilevare la configurazione di un'unita' fisiologicadistale,da utilizzarsi in particolare come interfaccia avanzata per macchine e calcolatori.
US5495576A (en) 1993-01-11 1996-02-27 Ritchey; Kurtis J. Panoramic image based virtual reality/telepresence audio-visual system and method
US5690582A (en) 1993-02-02 1997-11-25 Tectrix Fitness Equipment, Inc. Interactive exercise apparatus
JP2799126B2 (ja) 1993-03-26 1998-09-17 株式会社ナムコ ビデオゲーム装置及びゲーム用入力装置
US5405152A (en) 1993-06-08 1995-04-11 The Walt Disney Company Method and apparatus for an interactive video game with physical feedback
US5454043A (en) 1993-07-30 1995-09-26 Mitsubishi Electric Research Laboratories, Inc. Dynamic and static hand gesture recognition through low-level image analysis
US5423554A (en) 1993-09-24 1995-06-13 Metamedia Ventures, Inc. Virtual reality game method and apparatus
US5980256A (en) 1993-10-29 1999-11-09 Carmein; David E. E. Virtual reality system with enhanced sensory apparatus
JP3419050B2 (ja) 1993-11-19 2003-06-23 株式会社日立製作所 入力装置
US5347306A (en) 1993-12-17 1994-09-13 Mitsubishi Electric Research Laboratories, Inc. Animated electronic meeting place
JP2552427B2 (ja) 1993-12-28 1996-11-13 コナミ株式会社 テレビ遊戯システム
US5577981A (en) 1994-01-19 1996-11-26 Jarvik; Robert Virtual reality exercise machine and computer controlled video system
US5580249A (en) 1994-02-14 1996-12-03 Sarcos Group Apparatus for simulating mobility of a human
US5597309A (en) 1994-03-28 1997-01-28 Riess; Thomas Method and apparatus for treatment of gait problems associated with parkinson's disease
US5385519A (en) 1994-04-19 1995-01-31 Hsu; Chi-Hsueh Running machine
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
JPH0844490A (ja) 1994-07-28 1996-02-16 Matsushita Electric Ind Co Ltd インターフェイス装置
US5563988A (en) 1994-08-01 1996-10-08 Massachusetts Institute Of Technology Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
US5516105A (en) 1994-10-06 1996-05-14 Exergame, Inc. Acceleration activated joystick
US5638300A (en) 1994-12-05 1997-06-10 Johnson; Lee E. Golf swing analysis system
JPH08161292A (ja) 1994-12-09 1996-06-21 Matsushita Electric Ind Co Ltd 混雑度検知方法およびそのシステム
US5594469A (en) 1995-02-21 1997-01-14 Mitsubishi Electric Information Technology Center America Inc. Hand gesture machine control system
US5682229A (en) 1995-04-14 1997-10-28 Schwartz Electro-Optics, Inc. Laser range camera
US5913727A (en) 1995-06-02 1999-06-22 Ahdoot; Ned Interactive movement and contact simulation game
JP3481631B2 (ja) 1995-06-07 2003-12-22 ザ トラスティース オブ コロンビア ユニヴァーシティー イン ザ シティー オブ ニューヨーク 能動型照明及びデフォーカスに起因する画像中の相対的なぼけを用いる物体の3次元形状を決定する装置及び方法
US5682196A (en) 1995-06-22 1997-10-28 Actv, Inc. Three-dimensional (3D) video presentation system providing interactive 3D presentation with personalized audio responses for multiple viewers
US5702323A (en) 1995-07-26 1997-12-30 Poulton; Craig K. Electronic exercise enhancer
US6430997B1 (en) 1995-11-06 2002-08-13 Trazer Technologies, Inc. System and method for tracking and assessing movement skills in multidimensional space
US6073489A (en) 1995-11-06 2000-06-13 French; Barry J. Testing and training system for assessing the ability of a player to complete a task
US6308565B1 (en) 1995-11-06 2001-10-30 Impulse Technology Ltd. System and method for tracking and assessing movement skills in multidimensional space
US6098458A (en) 1995-11-06 2000-08-08 Impulse Technology, Ltd. Testing and training system for assessing movement and agility skills without a confining field
US6176782B1 (en) 1997-12-22 2001-01-23 Philips Electronics North America Corp. Motion-based command generation technology
US5933125A (en) 1995-11-27 1999-08-03 Cae Electronics, Ltd. Method and apparatus for reducing instability in the display of a virtual environment
US5641288A (en) 1996-01-11 1997-06-24 Zaenglein, Jr.; William G. Shooting simulating process and training device using a virtual reality display screen
JP2000510013A (ja) 1996-05-08 2000-08-08 リアル ヴィジョン コーポレイション 位置検出を用いたリアルタイムシミュレーション
US6173066B1 (en) 1996-05-21 2001-01-09 Cybernet Systems Corporation Pose determination and tracking by matching 3D objects to a 2D sensor
US5989157A (en) 1996-08-06 1999-11-23 Walton; Charles A. Exercising system with electronic inertial game playing
JP2001504605A (ja) 1996-08-14 2001-04-03 ラティポフ,ヌラフメド,ヌリスラモビチ 空間内のユーザの位置及び方向性を追跡及び表示するための方法、ユーザに対し仮想環境を提示するための方法及びこれらの方法を実現するためのシステム
JP3064928B2 (ja) 1996-09-20 2000-07-12 日本電気株式会社 被写体抽出方式
DE69626208T2 (de) 1996-12-20 2003-11-13 Hitachi Europ Ltd Verfahren und System zur Erkennung von Handgesten
US6009210A (en) 1997-03-05 1999-12-28 Digital Equipment Corporation Hands-free interface to a virtual reality environment using head tracking
US6100896A (en) 1997-03-24 2000-08-08 Mitsubishi Electric Information Technology Center America, Inc. System for designing graphical multi-participant environments
US6407762B2 (en) * 1997-03-31 2002-06-18 Intel Corporation Camera-based interface to a virtual reality application
US5877803A (en) 1997-04-07 1999-03-02 Tritech Mircoelectronics International, Ltd. 3-D image detector
US6215898B1 (en) 1997-04-15 2001-04-10 Interval Research Corporation Data processing system and method
JP3077745B2 (ja) 1997-07-31 2000-08-14 日本電気株式会社 データ処理方法および装置、情報記憶媒体
US6188777B1 (en) 1997-08-01 2001-02-13 Interval Research Corporation Method and apparatus for personnel detection and tracking
US6720949B1 (en) 1997-08-22 2004-04-13 Timothy R. Pryor Man machine interfaces and applications
US6289112B1 (en) 1997-08-22 2001-09-11 International Business Machines Corporation System and method for determining block direction in fingerprint images
AUPO894497A0 (en) 1997-09-02 1997-09-25 Xenotech Research Pty Ltd Image processing method and apparatus
EP0905644A3 (en) 1997-09-26 2004-02-25 Matsushita Electric Industrial Co., Ltd. Hand gesture recognizing device
US6141463A (en) 1997-10-10 2000-10-31 Electric Planet Interactive Method and system for estimating jointed-figure configurations
US6130677A (en) 1997-10-15 2000-10-10 Electric Planet, Inc. Interactive computer vision system
US6101289A (en) 1997-10-15 2000-08-08 Electric Planet, Inc. Method and apparatus for unencumbered capture of an object
US6072494A (en) 1997-10-15 2000-06-06 Electric Planet, Inc. Method and apparatus for real-time gesture recognition
AU9808298A (en) 1997-10-15 1999-05-03 Electric Planet, Inc. A system and method for generating an animatable character
AU1099899A (en) 1997-10-15 1999-05-03 Electric Planet, Inc. Method and apparatus for performing a clean background subtraction
US6181343B1 (en) 1997-12-23 2001-01-30 Philips Electronics North America Corp. System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs
JP2002516121A (ja) 1998-03-03 2002-06-04 アリーナ, インコーポレイテッド 多次元空間における運動技術を追跡し、そして評価するためのシステムおよび方法
US6159100A (en) 1998-04-23 2000-12-12 Smith; Michael D. Virtual reality game
US6077201A (en) 1998-06-12 2000-06-20 Cheng; Chau-Yang Exercise bicycle
US7036094B1 (en) 1998-08-10 2006-04-25 Cybernet Systems Corporation Behavior recognition system
US20010008561A1 (en) 1999-08-10 2001-07-19 Paul George V. Real-time object tracking system
US7121946B2 (en) 1998-08-10 2006-10-17 Cybernet Systems Corporation Real-time head tracking system for computer games and other applications
US6801637B2 (en) 1999-08-10 2004-10-05 Cybernet Systems Corporation Optical body tracker
US6681031B2 (en) 1998-08-10 2004-01-20 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
US6950534B2 (en) 1998-08-10 2005-09-27 Cybernet Systems Corporation Gesture-controlled interfaces for self-service machines and other applications
IL126284A (en) 1998-09-17 2002-12-01 Netmor Ltd System and method for three dimensional positioning and tracking
EP0991011B1 (en) 1998-09-28 2007-07-25 Matsushita Electric Industrial Co., Ltd. Method and device for segmenting hand gestures
WO2000034919A1 (en) 1998-12-04 2000-06-15 Interval Research Corporation Background estimation and segmentation based on range and color
US6147678A (en) 1998-12-09 2000-11-14 Lucent Technologies Inc. Video hand image-three-dimensional computer interface with multiple degrees of freedom
WO2000036372A1 (en) 1998-12-16 2000-06-22 3Dv Systems, Ltd. Self gating photosurface
US6570555B1 (en) 1998-12-30 2003-05-27 Fuji Xerox Co., Ltd. Method and apparatus for embodied conversational characters with multimodal input/output in an interface device
US6363160B1 (en) 1999-01-22 2002-03-26 Intel Corporation Interface using pattern recognition and tracking
US7003134B1 (en) 1999-03-08 2006-02-21 Vulcan Patents Llc Three dimensional object pose estimation which employs dense depth information
US6299308B1 (en) 1999-04-02 2001-10-09 Cybernet Systems Corporation Low-cost non-imaging eye tracker system for computer control
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6476834B1 (en) 1999-05-28 2002-11-05 International Business Machines Corporation Dynamic creation of selectable items on surfaces
US6873723B1 (en) 1999-06-30 2005-03-29 Intel Corporation Segmenting three-dimensional video images using stereo
US6738066B1 (en) 1999-07-30 2004-05-18 Electric Plant, Inc. System, method and article of manufacture for detecting collisions between video images generated by a camera and an object depicted on a display
US7113918B1 (en) 1999-08-01 2006-09-26 Electric Planet, Inc. Method for video enabled electronic commerce
US7050606B2 (en) 1999-08-10 2006-05-23 Cybernet Systems Corporation Tracking and gesture recognition system particularly suited to vehicular control applications
US6663491B2 (en) 2000-02-18 2003-12-16 Namco Ltd. Game apparatus, storage medium and computer program that adjust tempo of sound
US6633294B1 (en) 2000-03-09 2003-10-14 Seth Rosenthal Method and apparatus for using captured high density motion for animation
EP1152261A1 (en) 2000-04-28 2001-11-07 CSEM Centre Suisse d'Electronique et de Microtechnique SA Device and method for spatially resolved photodetection and demodulation of modulated electromagnetic waves
US6640202B1 (en) 2000-05-25 2003-10-28 International Business Machines Corporation Elastic sensor mesh system for 3-dimensional measurement, mapping and kinematics applications
US6731799B1 (en) 2000-06-01 2004-05-04 University Of Washington Object segmentation with background extraction and moving boundary techniques
US6788809B1 (en) 2000-06-30 2004-09-07 Intel Corporation System and method for gesture recognition in three dimensions using stereo imaging and color vision
US7227526B2 (en) 2000-07-24 2007-06-05 Gesturetek, Inc. Video-based image control system
US7058204B2 (en) 2000-10-03 2006-06-06 Gesturetek, Inc. Multiple camera control system
US7039676B1 (en) 2000-10-31 2006-05-02 International Business Machines Corporation Using video image analysis to automatically transmit gestures over a network in a chat or instant messaging session
US6539931B2 (en) 2001-04-16 2003-04-01 Koninklijke Philips Electronics N.V. Ball throwing assistant
US8035612B2 (en) 2002-05-28 2011-10-11 Intellectual Ventures Holding 67 Llc Self-contained interactive video display system
US7259747B2 (en) 2001-06-05 2007-08-21 Reactrix Systems, Inc. Interactive video display system
JP3420221B2 (ja) 2001-06-29 2003-06-23 株式会社コナミコンピュータエンタテインメント東京 ゲーム装置及びプログラム
US6937742B2 (en) 2001-09-28 2005-08-30 Bellsouth Intellectual Property Corporation Gesture activated home appliance
US7607509B2 (en) 2002-04-19 2009-10-27 Iee International Electronics & Engineering S.A. Safety device for a vehicle
US7170492B2 (en) 2002-05-28 2007-01-30 Reactrix Systems, Inc. Interactive video display system
US7710391B2 (en) 2002-05-28 2010-05-04 Matthew Bell Processing an image utilizing a spatially varying pattern
US7489812B2 (en) 2002-06-07 2009-02-10 Dynamic Digital Depth Research Pty Ltd. Conversion and encoding techniques
US8460103B2 (en) 2004-06-18 2013-06-11 Igt Gesture controlled casino gaming system
US7576727B2 (en) 2002-12-13 2009-08-18 Matthew Bell Interactive directed light/sound system
JP4235729B2 (ja) 2003-02-03 2009-03-11 国立大学法人静岡大学 距離画像センサ
DE602004006190T8 (de) 2003-03-31 2008-04-10 Honda Motor Co., Ltd. Vorrichtung, Verfahren und Programm zur Gestenerkennung
JP4355341B2 (ja) 2003-05-29 2009-10-28 本田技研工業株式会社 深度データを用いたビジュアルトラッキング
US8072470B2 (en) 2003-05-29 2011-12-06 Sony Computer Entertainment Inc. System and method for providing a real-time three-dimensional interactive environment
EP3190546A3 (en) 2003-06-12 2017-10-04 Honda Motor Co., Ltd. Target orientation estimation using depth sensing
WO2005041579A2 (en) 2003-10-24 2005-05-06 Reactrix Systems, Inc. Method and system for processing captured image information in an interactive video display system
US7667700B1 (en) 2004-03-05 2010-02-23 Hrl Laboratories, Llc System and method for navigating operating in a virtual environment
WO2005104010A2 (en) 2004-04-15 2005-11-03 Gesture Tek, Inc. Tracking bimanual movements
US7308112B2 (en) 2004-05-14 2007-12-11 Honda Motor Co., Ltd. Sign based human-machine interaction
US7704135B2 (en) 2004-08-23 2010-04-27 Harrison Jr Shelton E Integrated game system, method, and device
KR20060070280A (ko) 2004-12-20 2006-06-23 한국전자통신연구원 손 제스처 인식을 이용한 사용자 인터페이스 장치 및 그방법
CN101198964A (zh) 2005-01-07 2008-06-11 格斯图尔泰克股份有限公司 使用红外图案照射创建对象的三维图像
EP1849123A2 (en) 2005-01-07 2007-10-31 GestureTek, Inc. Optical flow based tilt sensor
EP2487624B1 (en) 2005-01-07 2020-02-19 Qualcomm Incorporated(1/3) Detecting and tracking objects in images
US7598942B2 (en) 2005-02-08 2009-10-06 Oblong Industries, Inc. System and method for gesture based control system
JP4686595B2 (ja) 2005-03-17 2011-05-25 本田技研工業株式会社 クリティカルポイント解析に基づくポーズ推定
BRPI0613165A2 (pt) 2005-05-17 2010-12-21 Gesturetek Inc saìda de sinal sensìvel à orientação
EP1752748B1 (en) 2005-08-12 2008-10-29 MESA Imaging AG Highly sensitive, fast pixel for use in an image sensor
US20080026838A1 (en) 2005-08-22 2008-01-31 Dunstan James E Multi-player non-role-playing virtual world games: method for two-way interaction between participants and multi-player virtual world games
US7450736B2 (en) 2005-10-28 2008-11-11 Honda Motor Co., Ltd. Monocular tracking of 3D human motion with a coordinated mixture of factor analyzers
US8094928B2 (en) 2005-11-14 2012-01-10 Microsoft Corporation Stereo video for gaming
US8589824B2 (en) 2006-07-13 2013-11-19 Northrop Grumman Systems Corporation Gesture recognition interface system
JP5395323B2 (ja) 2006-09-29 2014-01-22 ブレインビジョン株式会社 固体撮像素子
US7412077B2 (en) 2006-12-29 2008-08-12 Motorola, Inc. Apparatus and methods for head pose estimation and head gesture detection
US7729530B2 (en) 2007-03-03 2010-06-01 Sergey Antonov Method and apparatus for 3-D data input to a personal computer with a multimedia oriented operating system
US7852262B2 (en) 2007-08-16 2010-12-14 Cybernet Systems Corporation Wireless mobile indoor/outdoor tracking system
CN201254344Y (zh) 2008-08-20 2009-06-10 中国农业科学院草原研究所 植物标本及种子存贮器
EP2377075B1 (en) * 2009-01-05 2015-03-11 SMART Technologies ULC Gesture recognition method and interactive input system employing same
KR101671900B1 (ko) 2009-05-08 2016-11-03 삼성전자주식회사 가상 세계에서의 객체를 제어하는 시스템, 방법 및 기록 매체
US8619029B2 (en) * 2009-05-22 2013-12-31 Motorola Mobility Llc Electronic device with sensing assembly and method for interpreting consecutive gestures
US8972879B2 (en) * 2010-07-30 2015-03-03 Apple Inc. Device, method, and graphical user interface for reordering the front-to-back positions of objects

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW543323B (en) * 2000-10-03 2003-07-21 Jestertek Inc Multiple camera control system
US7348963B2 (en) * 2002-05-28 2008-03-25 Reactrix Systems, Inc. Interactive video display system
US7701439B2 (en) * 2006-07-13 2010-04-20 Northrop Grumman Corporation Gesture recognition simulation system and method

Also Published As

Publication number Publication date
US8994718B2 (en) 2015-03-31
US20160378197A1 (en) 2016-12-29
US9489053B2 (en) 2016-11-08
US20150212585A1 (en) 2015-07-30
US20120157203A1 (en) 2012-06-21
CN102542160A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN102542160B (zh) 三维虚拟世界的骨架控制
CN102542867B (zh) 用于操纵虚拟车辆的方法和系统
CN102592045B (zh) 通过虚拟骨架的第一人称射击者控制
CN102541258B (zh) 双模深度图像分析
CN102707876B (zh) 界面控件的按压个性化
US8497838B2 (en) Push actuation of interface controls
CN102591648B (zh) 用于界面引导的持久性把手
JP6077523B2 (ja) 手動およびカメラ・ベースのアバター制御
CN102129293B (zh) 在运动捕捉系统中跟踪用户组
CN102193624B (zh) 用于基于姿势的用户界面的物理交互区
CN102414641B (zh) 改变显示环境内的视图视角
US9008355B2 (en) Automatic depth camera aiming
US8957858B2 (en) Multi-platform motion-based computer interactions
US8998718B2 (en) Image generation system, image generation method, and information storage medium
US20130077820A1 (en) Machine learning gesture detection
CN103501868A (zh) 对分开的计算机游戏元素的控制
CN103608073B (zh) 形状跟踪做手势
CN102929507A (zh) 运动控制的列表滚动
KR101244646B1 (ko) 가상 공간과 현실 공간을 연계한 로봇 게임 시스템
JP2021068405A (ja) 仮想物体操作システム及び仮想物体操作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: MICROSOFT TECHNOLOGY LICENSING LLC

Free format text: FORMER OWNER: MICROSOFT CORP.

Effective date: 20150723

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20150723

Address after: Washington State

Applicant after: Micro soft technique license Co., Ltd

Address before: Washington State

Applicant before: Microsoft Corp.

C14 Grant of patent or utility model
GR01 Patent grant