CN102528077A - 一种黑色金属超精形面的加工方法 - Google Patents

一种黑色金属超精形面的加工方法 Download PDF

Info

Publication number
CN102528077A
CN102528077A CN2011103863964A CN201110386396A CN102528077A CN 102528077 A CN102528077 A CN 102528077A CN 2011103863964 A CN2011103863964 A CN 2011103863964A CN 201110386396 A CN201110386396 A CN 201110386396A CN 102528077 A CN102528077 A CN 102528077A
Authority
CN
China
Prior art keywords
diamond cutter
cutting
ferrous metal
shape face
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2011103863964A
Other languages
English (en)
Inventor
李勇
谢晓丹
阿蒙
杨锦荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN2011103863964A priority Critical patent/CN102528077A/zh
Publication of CN102528077A publication Critical patent/CN102528077A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明涉及一种黑色金属超精形面的加工方法,其特征在于:在精密或超精密数控车床上采用金刚石刀具直接切削黑色金属工件端部;设置激振装置驱动刀具超声振动,设置喷雾装置并制备含碳切削液;加工时,金刚石刀具在超声振动和含碳切削液氛围保护的复合状态下进行切削,实现了刀具物理减磨、化学减磨机理的耦合,有效减少金刚石刀具切削黑色金属时的磨损。本发明依次采用人造聚晶金刚石、CVD厚膜金刚石、天然单晶金刚石刀具执行粗切、半精切和终切工序,以在同一套设备上完成全部加工过程。本发明还在终切前对工件表面进行渗氮处理以进一步减少天然金刚石刀具磨损。本发明具有良好的可操作性,实现了黑色金属超精形面的高精度、高效率、较低成本加工,可广泛用于航天、光学及模具工业等领域。

Description

一种黑色金属超精形面的加工方法
技术领域
本发明涉及一种超精密形面的加工方法,特别是关于一种黑色金属超精形面的加工方法。
背景技术
在黑色金属材料上加工出超精密形面(一般表面粗糙度<Ra12.5nm,面形精度<0.5μm),在航天、光学及模具工业等领域有着日益重要的应用。对于这类黑色金属超精密形面的加工,当前工业界主流的终加工工序一般为磨削或抛光。如图1所示,此时的工艺路线依次为切削、热处理、磨削和抛光,抛光后的粗糙度一般可达Ra2~5nm。这类方法虽然能够达到良好的表面粗糙度,但是加工成本偏高,效率较低,批量加工时精度一致性不好。而且当形面为球面、曲面或非球形面时,磨削、抛光可能对上一道工序加工出的既有面形精度造成损伤。
SPDT(Single Point Diamond Turning,单点金刚石切削技术)是超精密加工领域中具有革新意义的一项技术。SPDT采用刃口钝圆半径约200nm或更小的单晶金刚石刀具,配用相应的超精密加工机床及数控系统,可直接切削加工出各种平面、球面及非球曲面,一次切削即可达到镜面效果。该方法的加工面形精度高,加工精度一致性好,加工效率高,是一种极为适合超精形面加工的技术手段。但是,现有SDPT仅局限于高纯度无氧铜、无硅铝合金、非电解镍等若干有色金属材料的加工,较少用于黑色金属材料的加工。在加工黑色金属材料时,金刚石刀具的碳原子和工件的铁原子之间将发生剧烈的化学反应,同时伴有严重的机械磨损和破损,导致金刚石刀具磨损极快,切削无法持续、稳定进行。
为解决上述难题,众多研究者从多个层面进行探索,如改善切削工艺过程、刀具改良或涂层、工件材料表层改性等,并实际开展了超声辅助切削、低温切削、切削氛围保护、刀具表面涂层保护、工件表面渗氮等多项具体研究。这些方法对改善金刚石刀具的磨损情况均有一定效果,其中超声辅助切削等手段还是效果较好、报导较多的方法。然而,上述单一方法对减少金刚石刀具磨损的效果终究有限,距离工业上推广和大规模应用的需求尚有差距。
发明内容
针对上述问题,本发明的目的是提供一种操作方便,加工精度高、成本低,可有效抑制因碳铁原子反应导致的金刚石刀具磨损,实现稳定持续地切削黑色金属超精形面的加工方法。
为实现上述目的,本发明采取以下技术方案:一种黑色金属超精形面的加工方法,其包括以下步骤:1)在精密或超精密车床上装夹待加工的黑色金属材料工件,在所述车床上设置超声激振装置,在所述超声激振装置上设置金刚石刀具,在所述金刚石刀具上方设置喷雾润滑装置;2)通过超声激振装置对金刚石刀具施加超声振动;通过喷雾润滑装置对金刚石刀具的刀尖切削区喷洒含碳切削液;金刚石刀具在超声振动和含碳切削液氛围保护的状态下对黑色金属材料工件进行切削加工,具体包括以下步骤:①金刚石刀具采用人造聚晶金刚石刀具,施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件的端部进行粗车加工;②金刚石刀具采用CVD厚膜金刚石刀具(金刚石层厚一般须达0.2~0.8mm;),施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件的端部进行半精车加工;③金刚石刀具采用天然单晶金刚石刀具,在含碳切削液的润滑下,对黑色金属材料工件的端部形面进行超精车削终加工,从而得到所需的超精形面。
所述步骤2)中,在进行所述步骤③之前,对黑色金属材料工件的表面进行离子渗氮处理,渗层深度大于所述步骤③超精车削终加工中切削去除层的厚度。
所述骤2)的所述步骤③中,金刚石刀具采用天然单晶金刚石刀具,并施加超声振动,在含碳切削液的润滑下,对黑色金属材料工件的端部形面进行超精车削终加工,从而得到所需的超精形面。
所述步骤2)中:步骤①中,采用前角0、后角10、圆弧切削刃的圆弧半径为1~2mm的人造聚晶金刚石刀具切削黑色金属材质工件的端面,切削时,主轴转速为600~800rpm,进给为10~20mm/min,切削深度50~100m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅为8~12m;步骤②中,采用前角0、后角10的CVD厚膜金刚石刀具;切削时,主轴转速为400~600rpm,进给为5~10mm/min,切削深度10~20m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅控制在6~10m;步骤③中,采用天然单晶金刚石刀具切削时,主轴转速为400~600rpm,进给为2~4mm/min,切削深度2~5m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅调整为4~8m。
所述步骤②中,CVD厚膜金刚石刀具的切削刃为圆弧切削刃,圆弧半径为1~2mm;所述步骤③中,天然单晶金刚石刀具的刀具前角0、后角10,切削刃为圆弧切削刃,圆弧半径为1~2mm。
所述步骤②中,CVD厚膜金刚石刀具的切削刃为尖角切削刃;所述步骤③中,天然单晶金刚石刀具的刀具前角0、后角5,切削刃为尖角切削刃。
所用含碳切削液为石墨乳化切削液,即在切削液中添加石墨的微小粉末颗粒,并进行超声乳化处理。
所述切削液中添加的石墨微小粉末颗粒,在简便情况下可采用打印机墨粉。
所述步骤1)中,激振装置为夹心式压电陶瓷换能器——变幅杆结构,激振装置竖直设置在车床基座上,换能器在下,变幅杆结构在上;金刚石刀具由金刚石刀尖和船形刀柄钎焊而成;刀柄通过螺钉连接固定在变幅杆结构的顶端。
本发明由于采取以上技术方案,其具有以下优点:1、本发明在单点金刚石切削技术的基础上,提出一种对刀具施加超声振动,同时采用含碳切削液进行氛围保护、采用工件表层离子渗氮处理的复合加工方法,该方法能够有效抑制金刚石刀具在加工中的磨损,实现稳定、持续的切削过程,能够在模具钢等各类黑色金属材料工件上加工出超精形面。2、本发明在切削过程中对金刚石刀具施加超声振动、同时采用含碳切削液进行氛围保护,并在终加工前对工件表层进行离子渗氮处理;通过刀具超声振动和切削液氛围保护的复合,实现了物理减磨、化学减磨机理的耦合:一方面继续保持有超声振动所带来的物理减磨效果;另一方面超声振动特有的刀屑周期分离特性,便利了含碳微粒直接填入刀尖周围空间,较大提升了氛围保护法的化学减磨效果。3、本发明还通过工件表层离子渗氮处理,以更好地保护终切削加工所用的较昂贵天然单晶金刚石刀具。4、本发明对黑色金属材料工件的加工具体分为加工准备、粗切加工、半精切加工、渗氮处理、终切加工五个步骤,依次采用人造聚晶金刚石刀具、CVD厚膜金刚石刀具和天然单晶金刚石刀具,对应执行粗切加工、半精切加工和终切加工,所有切削过程可在同一套加工设备上完成。本发明具有较好的可操作性,所需的金刚石刀具及其超声装置、切削液添加和乳化处理技术、工件渗氮处理技术都不难实现,同时经济性好,实现了黑色金属超精形面的高精度、高效率、较低成本的加工,相比单一的超声辅助切削或氛围保护切削方法,本发明能够进一步地减少刀具磨损,因此,可广泛用于航天、光学及模具工业等领域。
附图说明
图1是现有技术中加工黑色金属超精形面的流程示意图
图2是本发明方法的加工装置示意图
图3是本发明方法加工黑色金属超精形面的流程示意图
图4是本发明中金刚石刀具减磨机理示意图
具体实施方式
下面结合附图和实施例对本发明进行详细的描述。
本发明方法包括以下步骤:
1)如图2所示,采用数控多轴超精密或精密车床1,车床1上至少设置有主轴2、x直线伺服轴3和z直线伺服轴4,为更好实现复杂形面及真圆形面加工还可增设C轴转台5;主轴2上装夹将待加工的黑色金属材料工件6,车床1的基座7上竖直设置超声激振装置8,超声激振装置8的顶端固定安装金刚石刀具9,在金刚石刀具9的上方设置喷雾润滑装置10,喷雾润滑装置10中预置有制备好的含碳切削液。
2)如图3所示,在切削过程中,开启超声激振装置8的电源使得金刚石刀具9超声振动;同时开启喷雾润滑装置10的润滑液喷雾头,对准金刚石刀具9的刀尖切削区喷洒含碳切削液,通过含碳切削液对黑色金属材料工件6进行氛围保护;金刚石刀具9在超声振动和含碳切削液氛围保护的状态下对黑色金属材料工件6进行切削加工,具体包括以下步骤:
①金刚石刀具9采用人造聚晶金刚石刀具,施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件6的端部进行粗车加工;
②金刚石刀具9采用CVD(Chemical Vapor Deposition,化学气相沉积)厚膜金刚石刀具,调整进给、切深等加工用量,施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件6的端部进行半精车加工;CVD厚膜金刚石刀具的金刚石层厚一般达0.2~0.8mm;
③金刚石刀具9采用天然单晶金刚石刀具,根据实际情况可以施加超声振动或者不施加超声振动,在含碳切削液的润滑下,对黑色金属材料工件6的端部形面进行超精车削终加工,从而得到所需的超精形面。
上述实施例中,在步骤②和步骤③之间,可以对黑色金属材料工件6的表面进行离子渗氮处理,渗层深度大于步骤③超精车削终加工中切削去除层的厚度;
本发明方法通过刀具超声振动、含碳切削液氛围保护两种方法的复合应用,能够有效抑制金刚石刀具9的磨损;在终加工前,还可以对黑色金属材料工件6的表面进行离子渗氮处理,更加有利于保护终加工使用的较昂贵的天然单晶金刚石刀具,利于其保持切削精度并长期稳定使用。
上述实施例中,数控多轴超精密或精密车床1为现有技术结构,在此不再详细说明。
上述实施例中,超声激振装置8采用工作在谐振频率的夹心式压电陶瓷换能器——变幅杆结构,这是一种工业上已有应用的结构。超声激振装置8的换能器部分由环状前盖板、压电陶瓷片、电极片、后盖板同心叠合而成,并由紧固螺钉沿轴向压紧;变幅杆部分为阶梯圆柱结构。压电陶瓷驱动电源连接超声激振装置8换能器的电极片;当从电极片输入高频正弦电压时,压电陶瓷环片受激产生沿轴向的同频微幅振动,变幅杆部分负责将微幅振动传导并聚焦至变幅杆顶端的金刚石刀具9。超声激振装置8的谐振工作频率可高达20~40kHz的范围,工作稳定可靠,结构相对简单,便于工业应用。
上述实施例中,超声激振装置8作为功能部件整体安装在车床1的基座7上,竖直安装,轴向垂直于地面,换能器在下、变幅杆结构在上,金刚石刀具9设置在变幅杆顶端。超声激振装置8通过换能器后盖板处设置的法兰盘与车床基座7上的基座螺栓连接。本发明超声激振装置8的安装方式不同于常规的换能器在上,变幅杆在下,刀具处于变幅杆下方最末端的悬臂式安装方式。本发明所述的安装方式有利于增加刀具——工件系统的刚度及切削稳定性,同时有利于振动波能量的顺畅传导至刀尖。在施加超声振动后,断屑过程、刀屑摩擦等方面的切削机理均不同于常规切削,切削力、切削热显著下降,刀具磨损将得到较好抑制。
上述实施例中,金刚石刀具9的结构适用于辅加超声振动。它由金刚石刀尖和船形刀柄钎焊而成。刀柄形状设计考虑了振波传导,刀柄通过螺钉连接固定在变幅杆顶端。本发明制作相同刀柄结构、不同刀尖的一组金刚石刀具:刀尖材质分别选用人造聚晶金刚石(用于粗加工)、CVD厚膜金刚石(用于半精加工)和天然单晶金刚石(用于终加工);切削刃分别设计为圆弧切削刃(用于曲率可导形面)和尖角切削刃(用于曲率不可导形面)。因此,在同一套装置上仅需更换金刚石刀具9的刀尖即可实现对不同工序、不同形面对象的加工。
本发明在加工过程中始终采用含碳切削液润滑,含碳切削液为石墨乳化切削液,在切削液中适量添入石墨的微小粉末颗粒,简便条件下可用打印机墨粉替代;随后对加入石墨微粉的切削液进行超声乳化,以保证石墨粉末充分、均匀分布在切削液中。切削过程中,通过喷雾润滑,使得石墨粉末浸润于刀屑间,营造碳饱和氛围,可抑制金刚石刀具碳原子在铁原子催化下的石墨化反应,从而减少刀具磨损,这是一种有效的氛围保护方法。
本发明对终加工前的黑色金属材料工件6的表面进行渗氮的热化学处理。采用工业上成熟的离子渗氮方法,在黑色金属材料工件6的表层形成合金氮化物。通过渗氮处理,一方面强化了黑色金属材料工件6表面的物理化学性能,特别是提升了硬度和耐腐蚀性;另一方面,渗氮后能够降低金刚石刀具9的化学反应磨损速率。本发明之所以采用离子渗氮,是因为相对于传统的气体渗氮,该方法渗层物理化学性能更好,工件变形量小,适宜于在终加工工序前使用。须注意控制渗氮工艺条件及氮气流量,使得渗层深度大于终加工的切削去除层厚度。
本发明最鲜明的特点在于,首次将刀具超声振动和切削液氛围保护两种方法复合起来,最大限度地阻绝碳铁化学反应。两种方法在减磨机理上是耦合的,起到了1+1>2的减磨效果。如图4所示,单纯的超声振动切削方法,通过减小切削力、切削热,实现了对金刚石刀具9磨损的物理性抑制,但无法直接阻绝金刚石碳原子在铁原子催化下的化学反应。单纯的氛围保护方法,虽可实现对铁碳化学反应的抑制,但由于切削中刀屑始终紧密接触,切削液或保护气体只能毛细渗入,对刀具的减磨效果较为有限。本发明方法将刀具超声振动和切削液氛围保护结合后,一方面具有超声振动自身的物理减磨效果,另一方面由超声振动所带来的刀具与工件切削区、切屑的周期性分离特性,极有利于切削液及石墨粉末充分填入刀尖周围空间,而非传统的毛细渗入,营造良好保护氛围,更好抑制金刚石碳原子在黑色金属催化下的石墨化反应,因此较大程度地提升了氛围保护法的化学减磨效果。
如图3所示,针对不同的加工形面的具体需求,以及考虑加工条件约束,下面列举本发明的三种具体实施方式。
实施方式一:用于加工曲率可导的超精形面,该类形面包括平面、球面、二次及三次曲面等,此时,本发明包括如下实施步骤:
1)加工前准备:须具备一台超精密或精密数控车床,车床至少具有主轴和x、z两个直线伺服轴,以便车削复杂形面;将超声激振装置整体作为功能部件竖直安装至车床基座上,下端通过法兰盘与车床基座连接,上端安装金刚石刀具;准备好压电陶瓷驱动电源,连接至超声激振装置换能器的电极片;制备好含碳切削液,在简便条件下,石墨微粉颗粒可采用打印机墨粉,加入石墨粉末后的切削液需经超声乳化,并注意在析出前使用。
2)粗切加工:采用前角0、后角10、圆弧切削刃的圆弧半径1~2mm的人造聚晶金刚石刀具切削黑色金属材质工件的端面;切削前工件一般应为软退火状态;切削时,主轴转速为600~800rpm,进给为10~20mm/min,切削深度50~100m;开启超声激振装置,驱动金刚石刀具输出超声振动;其工作频率为装置谐振频率,一般处于20~40kHz范围,通过调整压电陶瓷电源的输出电压峰峰值,控制刀具振幅在8~12m;开启喷雾润滑装置,将喷雾头从斜上方凑近并对准刀尖切削区,喷出富含石墨粉末的切削液。该工序可将形面加工至粗糙度Ra0.4~0.2μm。
3)半精加工:采用前角0、后角10、圆弧切削刃的圆弧半径为1~2mm的CVD厚膜金刚石刀具;切削时,主轴转速为400~600rpm,进给为5~10mm/min,切削深度10~20m;开启超声激振装置,驱动金刚石刀具输出超声振动,其工作频率为装置谐振频率,一般处于20~40kHz范围,刀具振幅控制在6~10m;开启喷雾润滑装置。该工序可将形面加工至粗糙度Ra0.1~0.05μm。
4)对经半精加工后的工件进行表面离子渗氮处理:本步骤对标准离子渗氮方法进行两处调整:一是降低渗氮温度范围至400~480摄氏度,以尽可能减少工件尺寸变形;二是适当控制保温时间、气压范围和氮气流量,以保证渗氮后表层物理化学性能,同时控制渗层深度大于终加工的切削去除厚度。
5)终切削加工:采用圆弧刃天然单晶金刚石刀具加工;刀具前角0、后角10、圆弧切削刃的圆弧半径为1~2mm;切削时,主轴转速为400~600rpm,进给为2~4mm/min,切削深度2~5m;开启超声激振装置,驱动金刚石刀具输出超声振动,其工作频率为装置谐振频率,一般处于20~40kHz范围,刀具振幅调整为4~8m。最终切削加工出粗糙度Ra4~8nm、形面精度好于抛光加工的超精形面。
实施方式二:用于加工曲率不可导的超精形面,如菲涅尔镜面、沟槽阵列形面结构等,此时,本发明包括如下实施步骤:
1)加工前准备:同实施方式一。
2)粗切加工:同实施方式一。
3)半精加工:刀具改用前角0、后角10、尖角切削刃的CVD厚膜金刚石刀具;其余同实施方式一;加工过程中,配合使用数控程序,初步切削出形面轮廓。
4)对经半精加工后的工件进行表面离子渗氮处理;同实施方式一。
5)终切削加工:采用尖角切削刃的天然单晶金刚石刀具加工;刀具前角0、后角5,刀尖尖角角度及圆角根据待加工形面作相应设计;加工时,主轴转速为400~600rpm,进给为2~4mm/min,切削深度2~5m;配合使用数控程序切削出形面轮廓;加工时开启喷雾润滑装置,同时可关停超声激振装置,以避免轮廓精度损失及刀具尖头交变应力过大;依靠工件表面渗氮处理和石墨乳化切削液的润滑,亦能达到一定的刀具减磨效果;刀具仍置放于超声激振装置顶端进行切削,无须另外设计刀架。因为关停超声激振,天然金刚石刀具磨损比实施方式一要大,但此时表面质量将比实施方式一进一步提高。最终有望切削加工出粗糙度Ra2~5nm、形面精度明显好于抛光加工的超精形面。
实施方式三:在渗氮处理条件受限,或时间、成本控制较严的情况下,可略去工件表层渗氮处理;因为同时应用刀具超声振动、切削液氛围保护,亦可达到较好的金刚石刀具减磨效果;如同时对工件表面物理化学性能有要求,还可在终加工前增加淬火处理,此时,具体实施方式为:
1)加工前准备:同实施方式一。
2)粗切加工:同实施方式一。
3)半精加工:根据加工形面特性,相应采用实施方式一或实施方式二的对应步骤。
4)如对工件表面有物理化学性能要求,可采用表面淬火处理;如无要求,可省略本步骤。
5)终切削加工:根据加工形面特性,相应采用实施方式一或实施方式二的对应步骤。
上述各实施例仅用于说明本发明,其中各部件的结构、连接方式等都是可以有所变化的,凡是在本发明技术方案的基础上进行的等同变换和改进,均不应排除在本发明的保护范围之外。

Claims (10)

1.一种黑色金属超精形面的加工方法,其包括以下步骤:
1)在精密或超精密数控车床上装夹待加工的黑色金属材料工件,在所述车床上设置超声激振装置,在所述超声激振装置上设置金刚石刀具,在所述金刚石刀具上方设置喷雾润滑装置;
2)通过超声激振装置对金刚石刀具施加超声振动;通过喷雾润滑装置对金刚石刀具的刀尖切削区喷洒含碳切削液;金刚石刀具在超声振动和含碳切削液氛围保护的状态下对黑色金属材料工件进行切削加工,具体包括以下步骤:
①金刚石刀具采用人造聚晶金刚石刀具,施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件的端部进行粗车加工;
②金刚石刀具采用CVD厚膜金刚石刀具,施加超声振动,并在含碳切削液的润滑下,对黑色金属材料工件的端部进行半精车加工;
③金刚石刀具采用天然单晶金刚石刀具,在含碳切削液的润滑下,对黑色金属材料工件的端部形面进行超精车削终加工,从而得到所需的超精形面。
2.如权利要求1所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤2)中,在进行所述步骤③之前,对黑色金属材料工件的表面进行离子渗氮处理,渗层深度大于所述步骤③超精车削终加工中切削去除层的厚度。
3.如权利要求1所述的一种黑色金属超精形面的加工方法,其特征在于:所述骤2)的所述步骤③中,金刚石刀具采用天然单晶金刚石刀具,并施加超声振动,在含碳切削液的润滑下,对黑色金属材料工件的端部形面进行超精车削终加工,从而得到所需的超精形面。
4.如权利要求2所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤2)的所述步骤③中,金刚石刀具采用天然单晶金刚石刀具,并施加超声振动,在含碳切削液的润滑下,对黑色金属材料工件的端部形面进行超精车削终加工,从而得到所需的超精形面。
5.如权利要求1或2或3或4所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤2)中:
步骤①中,采用前角0、后角10、圆弧切削刃的圆弧半径为1~2mm的人造聚晶金刚石刀具切削黑色金属材质工件的端面,切削时,主轴转速为600~800rpm,进给为10~20mm/min,切削深度50~100m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅为8~12m;
步骤②中,采用前角0、后角10的CVD厚膜金刚石刀具,金刚石层厚为0.2~0.8mm;;切削时,主轴转速为400~600rpm,进给为5~10mm/min,切削深度10~20m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅控制在6~10m;
步骤③中,采用天然单晶金刚石刀具切削时,主轴转速为400~600rpm,进给为2~4mm/min,切削深度2~5m;超声激振装置的谐振频率为20~40kHz,金刚石刀具的振幅调整为4~8m。
6.如权利要求5所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤②中,CVD厚膜金刚石刀具的切削刃为圆弧切削刃,圆弧半径为1~2mm;所述步骤③中,天然单晶金刚石刀具的刀具前角0、后角10,切削刃为圆弧切削刃,圆弧半径为1~2mm。
7.如权利要求5所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤②中,CVD厚膜金刚石刀具的切削刃为尖角切削刃;所述步骤③中,天然单晶金刚石刀具的刀具前角0、后角5,切削刃为尖角切削刃。
8.如权利要求1或2或3或4或5或6或7所述的一种黑色金属超精形面的加工方法,其特征在于:所用含碳切削液为石墨乳化切削液,即在切削液中添加石墨的微小粉末颗粒,并进行超声乳化处理。
9.如权利要求8所述的一种黑色金属超精形面的加工方法,其特征在于:所述切削液中添加的石墨微小粉末颗粒为打印机墨粉。
10.如权利要求1~9任一项所述的一种黑色金属超精形面的加工方法,其特征在于:所述步骤1)中,激振装置为夹心式压电陶瓷换能器——变幅杆结构,激振装置竖直设置在车床基座上,换能器在下,变幅杆结构在上;金刚石刀具由金刚石刀尖和船形刀柄钎焊而成;刀柄通过螺钉连接固定在变幅杆结构的顶端。
CN2011103863964A 2011-11-29 2011-11-29 一种黑色金属超精形面的加工方法 Pending CN102528077A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011103863964A CN102528077A (zh) 2011-11-29 2011-11-29 一种黑色金属超精形面的加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011103863964A CN102528077A (zh) 2011-11-29 2011-11-29 一种黑色金属超精形面的加工方法

Publications (1)

Publication Number Publication Date
CN102528077A true CN102528077A (zh) 2012-07-04

Family

ID=46336791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011103863964A Pending CN102528077A (zh) 2011-11-29 2011-11-29 一种黑色金属超精形面的加工方法

Country Status (1)

Country Link
CN (1) CN102528077A (zh)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691969A (zh) * 2013-12-06 2014-04-02 大连理工大学 一种金刚石刀具切削黑色金属的方法
CN104002220A (zh) * 2014-05-30 2014-08-27 河南理工大学 超声振动辅助下单颗磨粒磨削实验装置及方法
CN105234428A (zh) * 2014-07-10 2016-01-13 上海国上机电科技有限公司 一种铝件壳体的数控加工工艺
CN105382941A (zh) * 2014-08-21 2016-03-09 周振嘉 应用于超音波加工的工具单元
CN105522172A (zh) * 2014-10-09 2016-04-27 天津立中车轮有限公司 铝合金车轮镜面加工工艺
CN108422151A (zh) * 2017-06-15 2018-08-21 甘肃虹光电子有限责任公司 一种捷变频磁控管“热卡”的解决方法
CN109622991A (zh) * 2018-11-11 2019-04-16 上海航天控制技术研究所 一种单晶硅透镜的超精密车削加工方法
CN110293442A (zh) * 2019-06-24 2019-10-01 河南科技学院 一种用于切削加工的颗粒流固体润滑方法
CN110480365A (zh) * 2019-07-17 2019-11-22 深圳大学 车削加工机床及车削加工方法
CN111136812A (zh) * 2019-12-11 2020-05-12 中国工程物理研究院机械制造工艺研究所 一种磷锗锌晶体的组合加工方法
CN111300138A (zh) * 2020-03-11 2020-06-19 张安堂 一种带配液箱的金属切削设备
CN111842940A (zh) * 2020-07-30 2020-10-30 中国工程物理研究院机械制造工艺研究所 一种基于复合切削的超精密加工方法及超精密加工装置
CN112513403A (zh) * 2018-07-30 2021-03-16 Xr井下有限责任公司 多晶金刚石推力轴承及其元件
CN112805108A (zh) * 2018-10-26 2021-05-14 西铁城时计株式会社 机床以及控制装置
CN113172486A (zh) * 2021-04-02 2021-07-27 大连理工大学 一种复合材料管状蜂窝曲面的超声辅助磨削加工方法
CN113677462A (zh) * 2019-05-29 2021-11-19 西铁城时计株式会社 机床以及该机床的控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136392A (ja) * 2001-10-26 2003-05-14 Nihon Micro Coating Co Ltd マイクロバレル研磨装置及び方法並びに研磨液
CN101804575A (zh) * 2010-03-05 2010-08-18 清华大学 一种轨迹可调整的椭圆超声振动辅助切削装置
CN101817694A (zh) * 2010-03-22 2010-09-01 天津大学 超精密加工中多物理场作用抑制单晶金刚石刀具磨损方法
CN102059349A (zh) * 2010-11-18 2011-05-18 哈尔滨工业大学 采用金刚石刀具超精密车削模具钢材料的加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003136392A (ja) * 2001-10-26 2003-05-14 Nihon Micro Coating Co Ltd マイクロバレル研磨装置及び方法並びに研磨液
CN101804575A (zh) * 2010-03-05 2010-08-18 清华大学 一种轨迹可调整的椭圆超声振动辅助切削装置
CN101817694A (zh) * 2010-03-22 2010-09-01 天津大学 超精密加工中多物理场作用抑制单晶金刚石刀具磨损方法
CN102059349A (zh) * 2010-11-18 2011-05-18 哈尔滨工业大学 采用金刚石刀具超精密车削模具钢材料的加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周志民: "《天然金刚石精密车削不锈钢技术研究》", 《中国博士学位论文全文数据库》 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103691969A (zh) * 2013-12-06 2014-04-02 大连理工大学 一种金刚石刀具切削黑色金属的方法
CN103691969B (zh) * 2013-12-06 2016-04-13 大连理工大学 一种金刚石刀具切削黑色金属的方法
CN104002220A (zh) * 2014-05-30 2014-08-27 河南理工大学 超声振动辅助下单颗磨粒磨削实验装置及方法
CN104002220B (zh) * 2014-05-30 2016-06-08 河南理工大学 超声振动辅助下单颗磨粒磨削实验装置及方法
CN105234428A (zh) * 2014-07-10 2016-01-13 上海国上机电科技有限公司 一种铝件壳体的数控加工工艺
CN105382941A (zh) * 2014-08-21 2016-03-09 周振嘉 应用于超音波加工的工具单元
CN105522172A (zh) * 2014-10-09 2016-04-27 天津立中车轮有限公司 铝合金车轮镜面加工工艺
CN105522172B (zh) * 2014-10-09 2017-07-07 天津立中集团股份有限公司 铝合金车轮镜面加工工艺
CN108422151B (zh) * 2017-06-15 2019-05-31 甘肃虹光电子有限责任公司 一种捷变频磁控管“热卡”的解决方法
CN108422151A (zh) * 2017-06-15 2018-08-21 甘肃虹光电子有限责任公司 一种捷变频磁控管“热卡”的解决方法
CN112513403A (zh) * 2018-07-30 2021-03-16 Xr井下有限责任公司 多晶金刚石推力轴承及其元件
CN112805108A (zh) * 2018-10-26 2021-05-14 西铁城时计株式会社 机床以及控制装置
CN112805108B (zh) * 2018-10-26 2023-09-26 西铁城时计株式会社 机床以及控制装置
CN109622991A (zh) * 2018-11-11 2019-04-16 上海航天控制技术研究所 一种单晶硅透镜的超精密车削加工方法
CN113677462A (zh) * 2019-05-29 2021-11-19 西铁城时计株式会社 机床以及该机床的控制装置
CN110293442B (zh) * 2019-06-24 2022-03-11 河南科技学院 一种用于切削加工的颗粒流固体润滑方法
CN110293442A (zh) * 2019-06-24 2019-10-01 河南科技学院 一种用于切削加工的颗粒流固体润滑方法
CN110480365A (zh) * 2019-07-17 2019-11-22 深圳大学 车削加工机床及车削加工方法
CN111136812A (zh) * 2019-12-11 2020-05-12 中国工程物理研究院机械制造工艺研究所 一种磷锗锌晶体的组合加工方法
CN111300138A (zh) * 2020-03-11 2020-06-19 张安堂 一种带配液箱的金属切削设备
CN111842940A (zh) * 2020-07-30 2020-10-30 中国工程物理研究院机械制造工艺研究所 一种基于复合切削的超精密加工方法及超精密加工装置
CN113172486B (zh) * 2021-04-02 2022-09-13 大连理工大学 一种复合材料管状蜂窝曲面的超声辅助磨削加工方法
CN113172486A (zh) * 2021-04-02 2021-07-27 大连理工大学 一种复合材料管状蜂窝曲面的超声辅助磨削加工方法

Similar Documents

Publication Publication Date Title
CN102528077A (zh) 一种黑色金属超精形面的加工方法
Tawakoli et al. Ultrasonic assisted dry grinding of 42CrMo4
Lauwers Surface integrity in hybrid machining processes
CN102059349B (zh) 采用金刚石刀具超精密车削模具钢材料的加工方法
CN103722174A (zh) 一种自锐性聚晶金刚石复合片及其制备方法
CN105269284B (zh) 一种内凹形复杂轮廓pcd刀具的超精密高效制备工艺方法
CN107513696B (zh) 金刚石涂层钻/铣刀具研磨预处理的方法
CN106271493A (zh) 一种激光预制微织构辅助超声铣削工艺方法及加工系统
JP2011088264A (ja) ダイヤモンド切削工具及びその製造方法
CN102490088A (zh) 一种超声振动三维螺线磨削方法
CN112496680B (zh) 一种高体分铝基碳化硅螺纹孔复合加工方法
CN101774139A (zh) 用于陶瓷外圆加工的环状车削刀具及其轴向加工方法
CN110509016B (zh) 一种超精微硬质合金铣刀的制造工艺
Li Application of self-inhaling internal cooling wheel in vertical surface grinding
Li et al. Tool wear behavior of alumina abrasive wheels during grinding FGH96 powder metallurgy nickel-based superalloy
CN109277585A (zh) 一种Ti3Al合金导叶内环车削加工方法
US20140013599A1 (en) Method of Manufacturing Fan Blade Shields
Choi et al. NC code generation for laser assisted turn-mill of various type of clovers and square section members
CN100503154C (zh) 集材料去除和超声表面加工一体化的生产方法
CN104625180A (zh) 数控机床导轨面加工工艺
CN113134610B (zh) 粗皮铣刀的制作方法及其五轴数控磨床
Zhan et al. Design and manufacturing of ultra-hard micro-milling tool
Tawakoli et al. Effects of ultrasonic assisted grinding on CBN grinding wheels performance
CN102950339B (zh) 一种圆弧端齿结构钛合金材料数控磨削方法
CN114260549A (zh) 基于微控机器人的引弧诱导微爆轰柔性加工装置及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20120704