CN102516563A - 微磁载体制备方法、微磁载体及其活性污泥固定化方法 - Google Patents

微磁载体制备方法、微磁载体及其活性污泥固定化方法 Download PDF

Info

Publication number
CN102516563A
CN102516563A CN2011103786489A CN201110378648A CN102516563A CN 102516563 A CN102516563 A CN 102516563A CN 2011103786489 A CN2011103786489 A CN 2011103786489A CN 201110378648 A CN201110378648 A CN 201110378648A CN 102516563 A CN102516563 A CN 102516563A
Authority
CN
China
Prior art keywords
magnetic carrier
little magnetic
active sludge
micro magnetic
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2011103786489A
Other languages
English (en)
Other versions
CN102516563B (zh
Inventor
张斌
王景峰
李君文
陈哲
薛斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Original Assignee
Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA filed Critical Institute of Hygiene and Environmental Medicine Academy of Military Medical Sciences of Chinese PLA
Priority to CN 201110378648 priority Critical patent/CN102516563B/zh
Publication of CN102516563A publication Critical patent/CN102516563A/zh
Application granted granted Critical
Publication of CN102516563B publication Critical patent/CN102516563B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及微磁载体的制备方法、微磁载体及其活性污泥固定化方法,微磁载体制备:将Fe3O4微粒按照10-50g/L质量体积比投加到聚乙烯醇溶液中,搅拌,加戊二醛溶液、浓盐酸、海藻酸钠溶液进行反应;丙酮、乙醇、蒸馏水清洗,干燥,即得以磁性Fe3O4微粒为核心包敷聚乙烯醇层的微磁载体;以微磁载体为核心的活性污泥固定化方法,用序批式反应器工艺,接种介质用质量比1∶1~1∶3的微磁载体及常规污水二级生物处理活性污泥,接种后的活性污泥浓度2-4g/L(干污泥质量/反应器有效容积);运行方式:进水-厌氧搅拌-好氧曝气-沉降-排水-闲置。本发明优点是:加快污物降解的生化反应速率,提高污水处理效率及效果。

Description

微磁载体制备方法、微磁载体及其活性污泥固定化方法
技术领域
本发明涉及污水生物处理技术领域,尤其涉及一种微磁载体的制备方法、以该制备方法制备的微磁载体及以微磁载体为核心的活性污泥固定化方法。
背景技术
在污水生物处理工艺中,微生物是去除污染物的主体。其污染物去除过程是一个包括物理、化学、生命等过程的复杂体系,和微生物的多酶体系与有机物间的系列催化反应直接相关,因此微生物的运动、生长、微生物酶活性以及微生物细胞内的传递特性在很大程度上会影响污水处理效率。
每一次污水生物处理工艺的进步所带来的污水处理效果的提高,其原因几乎都可以归结为通过时间或空间上工艺参数的调整,为活性污泥中更多的具有不同代谢特性的微生物群落创造了各自更为适宜的生存环境,从而更大限度地提高了它们的活性和对污染物的分解代谢能力。
早期研究者发现弱磁场对活性污泥中微生物可以产生正的磁生物效应而有效提高了微生物活性,加快了污染物降解的生化反应速率,从而提高了系统的处理效率。但在以往的工艺中只是在活性污泥中投加单一的磁粉,其吸附性能较弱而不能高效地固定和催化微生物活性;特别是在长期的磁场作用下,这些磁粉会产生记忆性磁性,易于在活性污泥中发生团聚,而失去其原有的功效。
纳米级的磁性微粒具有对外加磁场的响应性,在外磁场作用下可以与液相基质分离,且撤去外加磁场后,磁性微粒不会产生磁记忆性,因而在活性污泥中不会发生团聚,可以重新分散在液相基液中,产生提高微生物活性的效应。若能以纳米级的磁性微粒为核心,制备出具有一定粒径及良好吸附性能的承载微生物的微磁载体,并以微磁载体为核心进行活性污泥固定化,将会在现有采用单一的磁粉技术基础上更有效催化微生物活性,进一步加快污染物降解的生化反应速率,进而提高系统的处理效率及效果。
发明内容
本发明的目的在于克服上述传统磁粉法污水处理技术的不足,提供一种微磁载体的制备方法、以该制备方法制备的微磁载体及以微磁载体为核心的活性污泥固定化方法,从而在污水生物处理过程中有效提高了活性污泥中微生物活性,加快了污染物降解的生化反应速率,进一步提高了污水处理系统的处理效率及效果。
本发明的原理是:本发明以纳米级的磁性Fe3O4微粒为核心,采用聚乙烯醇作为包敷材料,运用固定剂戊二醛及交联剂海藻酸钠制备出微磁载体颗粒。在微磁载体表面形成一种多孔的聚乙烯醇聚合物即聚乙烯醇载体,通过其表面的吸附与固定作用,会驱使活性污泥中微生物易于聚集在以磁颗粒为核心的载体表面及孔隙内;这样既可利用磁微粒的弱磁场效应激发微生物的代谢活性,并诱导酶的合成和提高酶活,又可利用聚乙烯醇载体高效地吸附固定活性污泥,从而可提高系统内的活性污泥性能和处理能力。
本发明解决其技术问题所采用的技术方案是:
一种微磁载体的制备方法,其特征在于包括如下步骤:
(1)将粒径为90-110nm的磁性Fe3O4微粒按照10-50g/L的质量体积比投加到质量浓度为8%-20%的聚乙烯醇溶液中,经超声振荡使其均匀分布;
(2)在85℃-95℃的溶液温度下,以500-1500r/min的转速,搅拌30-50min;
(3)依次加入体积比为1%-2%的质量浓度为25%的戊二醛溶液、体积比为1.5%的分析纯浓盐酸、体积比为0.5%-2%的质量浓度为2%的海藻酸钠溶液,继续以步骤(2)的转速搅拌,反应0.5h-1.5h,同时使溶液温度降至45℃-55℃;
(4)将步骤(3)的溶液经滤网过滤,并将截留的粒径≥50μm的微磁载体,依次用丙酮、乙醇和蒸馏水清洗,最终在45℃条件下干燥24h,即得到以磁性Fe3O4微粒为核心表面包敷多孔的聚乙烯醇层的粒径为50-250μm的颗粒状微磁载体。
所述丙酮为分析纯丙酮、乙醇的质量浓度为70%,丙酮、乙醇和蒸馏水清洗的时间分别为15-25min。
根据所述的微磁载体的制备方法制得的微磁载体。
一种以微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺:
(1)进水、反应器及接种介质:进水水质的BOD5/COD大于0.3,反应器的直径高度比为1∶5~1∶10,接种介质采用如权利要求2所述的微磁载体的制备方法制得的微磁载体及常规污水二级生物处理活性污泥,接种后的活性污泥浓度为2-4g/L(干活性污泥质量/反应器有效容积),微磁载体与活性污泥的质量比为1∶1~1∶3;
(2)运行方式为:进水-厌氧搅拌-好氧曝气-沉降-排水-闲置;所述序批式反应器根据进水水质,设置每周期运行时间为4h-8h,其中:进水时间为1~5min,厌氧搅拌时间为60-120min,好氧曝气时间为150-250min,沉降时间为5-15min,排水时间为3-10min,闲置时间为5-20min,每个运行周期体积交换率为60-85%;开始运行后,在活性污泥沉降阶段,通过电磁场将微磁载体吸附在反应器底部,避免流失,直至反应器中粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上,此时,获得培育成熟的以微磁载体为核心的固定化污泥,关闭电磁场。
本发明的有益效果是:提供出一种微磁载体的制备方法、以该制备方法制备的微磁载体及以微磁载体为核心的活性污泥固定化方法,通过微磁载体表面多孔的聚乙烯醇载体的吸附与固定作用,使活性污泥中微生物易于聚集在以磁颗粒为核心的载体表面及孔隙内;既可利用磁微粒的弱磁场效应激发微生物的代谢活性,并诱导酶的合成和提高酶活,又可利用聚乙烯醇载体高效地吸附固定活性污泥,可显著提高微生物对污染物的降解活性,提高系统内的活性污泥性能和处理能力,高效去除水中有机物、氨氮、总氮等污染物质。从而,加快了污染物降解的生化反应速率,进一步提高了污水处理系统的处理效率及效果。本发明提供的微磁载体便于储存运输,可以广泛应用于各种类型污水生物处理工艺,节约工程投资,实现现有工艺的改造和提升。
附图说明
图1为本发明实施例1所制得的微磁载体透射电镜照片。
图2为本发明实施例4-9的生化反应装置结构示意图。
图3为实施例4中以微磁载体为核心的活性污泥固定化后的照片。
图4为实施例4中接种介质为微磁载体及活性污泥的反应器运行100天内进水中有机物(以TOC计)去除率-运行时间关系图。
图5为对比实施例4a接种介质仅为活性污泥的反应器运行100天内进水中有机物(以TOC计)去除率-运行时间关系图。
图6为实施例4中接种介质为微磁载体及活性污泥的反应器运行100天内进水中氨氮和总氮去除率-运行时间关系图。
图7为实施例4a接种介质仅为活性污泥的反应器运行100天内进水中氨氮和总氮去除率-运行时间关系图。
图中:1进水管,2止回阀,3反应器,4液位计,5搅拌器,6PLC控制器,7电磁场装置,8微孔曝气器,9空气流量计,10输气管路,11空气压缩机,12电磁阀,13出水管,14PLC控制线路。
以下结合附图和实施例对本发明详细说明。
具体实施方式
实施例1
本例中提供一种微磁载体的制备方法,其特征在于包括如下步骤:
(1)在盛装500mL质量浓度为10%的聚乙烯醇溶液的容器中,将粒径为90-110nm的磁性Fe3O4微粒按照20g/L的质量体积比,即10g,投加到聚乙烯醇溶液中,经超声振荡使其均匀分布,超声功率200W,时间为30min;
(2)在85℃的溶液温度下,通过搅拌器以1000r/min的转速,搅拌30min;
(3)在步骤(2)的溶液中依次加入体积比为1%即5mL的质量浓度为25%的戊二醛溶液、体积比为1.5%即7.5mL的分析纯浓盐酸、体积比为0.5%即2.5mL的质量浓度为2%的海藻酸钠溶液,继续以步骤(2)的转速搅拌,反应0.5h,同时使溶液温度降至45℃;
(4)将步骤(3)的溶液经滤网过滤,将溶液倒至截留孔径为50μm的筛网上,将截留到的粒径≥50μm的微磁载体重新倒回容器中,在容器底部用磁铁吸附住制得的微磁载体初品,然后依次用分析纯丙酮、质量浓度为70%的乙醇和蒸馏水各清洗15min,最后在45℃条件下放置在干燥箱中干燥24h,即得到以磁性Fe3O4微粒为核心表面包敷多孔的聚乙烯醇层的粒径为50-80μm的颗粒状微磁载体。其透射电镜照片如图1所示。
实施例2
本例中的微磁载体的制备方法,其制备步骤只是改变实施例1的步骤(1)中,粒径为90-110nm的磁性Fe3O4微粒按照30g/L的质量体积比,即15g,投加到质量浓度为15%的聚乙烯醇溶液中;步骤(2)中,在90℃的溶液温度下,通过搅拌器以500r/min的转速,搅拌50min;步骤(3)中,加入体积比为1.5%即7.5mL的质量浓度为25%的戊二醛溶液,加入体积比为1.5%即7.5mL质量浓度为2%的海藻酸钠溶液,反应1h;步骤(4)中,依次用分析纯丙酮、质量浓度为70%的乙醇和蒸馏水各清洗18min、20min、20min,得到以磁性Fe3O4微粒为核心表面包敷多孔的聚乙烯醇层的粒径为100-150μm的颗粒状微磁载体。
其他步骤及参数同实施例1。
实施例3
本例中的微磁载体的制备方法,其制备步骤只是改变实施例1步骤(1)中,粒径为90-110nm的磁性Fe3O4微粒按照50g/L的质量体积比,即25g,投加到质量浓度为20%的聚乙烯醇溶液中;步骤(2)中,在95℃的溶液温度下,通过搅拌器以1400r/min的转速,搅拌40min;步骤(3)中,加入体积比为2%即10mL的质量浓度为25%的戊二醛溶液,加入体积比为2%即10mL质量浓度为2%的海藻酸钠溶液,反应1.5h;步骤(4)中,依次用分析纯丙酮、质量浓度为70%的乙醇和蒸馏水各清洗20min、16min、16min得到以磁性Fe3O4微粒为核心表面包敷多孔的聚乙烯醇层的粒径为200-250μm的颗粒状微磁载体。
其他步骤及参数同实施例1。
实施例4
本例中提供一种以实施例1中制备的粒径为50-80μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺:
(1)进水、反应器及接种介质:进水以实验室人工配水为进水,主要组成成份见表1,进水水质的BOD5/COD为0.5-0.6。如图1所示,小试生化反应器3总高0.6m,内径90mm,直径高度比为1∶6.7,总体积为3.8L,总有效体积为3.5L。污水由反应器底部的进水管1经止回阀2进水,由反应器下部出水管13出水。进水管1、出水管13分别由PLC控制器6通过PLC控制线路14启动液位计4控制出水口电磁阀12进行操作。曝气由PLC控制器6控制空气压缩机11,加压气体经设置在输气管路10上的空气流量计9送至反应器3内的微孔曝气器8,从反应器底部供气,为系统提供溶解氧和水力剪切力。曝气量通过空气流量计9进行计量和调节。
接种介质采用由实施例1的微磁载体制备方法制得的微磁载体及常规污水二级生物处理活性污泥,本例中活性污泥取自某污水处理厂好氧池回流污泥,按照接种后的活性污泥浓度为2.0g/L,微磁载体与活性污泥的质量比为1∶1.5,将7g活性污泥与4.7g微磁载体投加到反应器中。
表1人工配水的主要组分及浓度(mg.L-1)
  组分   浓度   组分   浓度
  乙酸钠   450   KH2PO4   20
  (NH4)2SO4   10   CaCl2   20
  NH4Cl   100   KCl   20
  MgSO4·7H2O   50   FeSO4·7H2O   1
(2)运行方式为:进水-厌氧搅拌-好氧曝气-沉降-排水-闲置;上述序批式反应器每周期运行时间为4h,每天运行6周期,其中:进水时间为2min,厌氧搅拌时间为60min,好氧曝气时间为160min,沉降时间为5min,排水时间为5min,闲置时间为10min。每运行周期体积交换率为80%。
在反应器3开始运行后,在活性污泥沉降阶段,通过PLC控制器开启外加电磁场装置7,以便通过电磁场将微磁载体吸附在反应器3底部,避免流失。在运行过程中,通过激光粒度仪监测活性污泥粒径及量的变化,随着以微磁载体为核心的活性污泥的培育成熟,在系统运行50天后,通过激光粒度仪检测,当粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上时,说明以微磁载体为核心的活性污泥固定化完成,获得培育成熟的以微磁载体为核心的固定化活性污泥,通过PLC控制器6关闭电磁场装置7。
对比实施例4a:与实施例4采用完全相同的反应器、工艺步骤及参数,不同处在于接种介质仅为相同量的活性污泥,不投加微磁载体。
按照国家环境保护总局编写、中国环境科学出版社出版的《水和废水监测分析方法(第四版)》规定的国家标准方法对各实施例进水、出水主要指标(TOC、氨氮、总氮)进行测定。TOC采用TOC分析仪测定,品牌型号为:岛津TOC-V CPH。
图3为实施例4中以微磁载体为核心的固定化活性污泥的照片。这种固定化活性污泥可在低温下长期保存,不会裂解。
图4示出实施例4生化反应器运行100天内进水中有机物(以TOC计)的去除效果。如图所示,反应器接种后,在第5天对TOC的去除率即达到90%以上,第12天去除率即达到100%。在运行期间虽偶有波动但总体上保持着很高的去除效率。图5示出对比实施例4a接种介质仅为活性污泥的反应器运行100天内进水中有机物(以TOC计)去除效果。通过将图4与图5对比可见,投加微磁载体固定化后的活性污泥对TOC的去除率要比接种介质仅采用活性污泥高出约10%。图6示出上述生化反应器运行100天内进水中氨氮(NH4 +-N)和总氮(TN)的去除效果。如图所示,在第3天对氨氮的去除率即达到98%,并连续保持在100%。而对总氮的去除主要依靠微生物的反硝化能力,这与以微磁载体为核心的固定化活性污泥的培育成熟程度相关。由图可见,在反应器运行初期,上述固定化活性污泥尚未培育成熟,此时对总氮的去除效果较差。而随着时间的延长,反应系统活性污泥固定化程度越来越高,对总氮去除率也逐渐提高,最终可达50%。通过与图7对比,可见,以微磁载体及活性污泥为接种介质和仅以活性污泥为接种介质两种情况,在长期运行条件下对氨氮的去除效果差别不大,但是对总氮的去除,仅以活性污泥为接种介质的情况,总氮去除率低于20%,而添加微磁载体则使得固定化后的活性污泥总氮去除率达50%,显示出了较为明显的处理优势。
实施例5
本例中提供一种以实施例1中制备的粒径为50-80μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺,与实施例4的不同点在于:
以某小区实际生活污水为进水,BOD5/COD为0.3-0.4,主要水质指标见表2。根据进水水质,设置反应器3总高1.2m,内径130mm,直径高度比为1∶9.2,总体积为15.92L,总有效体积为13.27L,按照接种后的活性污泥浓度为3.0g/L,微磁载体与活性污泥的质量比为1∶2.5,将39.8g活性污泥与16g由实施例1制备得到的微磁载体投加到反应器中,。
因进水水质可生化性较低,需适当延长每周期运行时间,并降低体积交换率。运行方式为:进水5min,厌氧搅拌90min,曝气240min,静置沉淀10min,出水10min,闲置10min。共6h为一周期,每天运行4周期。每周期体积交换率为60%。其他步骤及参数同实施例4。
对比实施例5a:与实施例5采用完全相同的反应器、工艺步骤及参数,不同处在于接种介质仅为相同量的活性污泥,不投加微磁载体。
在系统运行40天后,通过激光粒度仪检测,粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上,活性污泥固定化完成,获得培育成熟的以微磁载体为核心的固定化活性污泥。处理效果见表2,由表2可见,在原水可生化降解性不高的情况下,对有机物(CODCr)和氨氮的去除效果分别大于80%和90%。而且,通过比较可见,投加以微磁载体为核心的固定化活性污泥,其污水处理效果各项指标均优于接种介质仅采用活性污泥的情况。
表2实施例5a、5、7、9进、出水水质及处理效果数据表
Figure BDA0000112041810000091
实施例6
本例中提供一种以实施例2中制备的粒径为100-150μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺,与实施例4的不同点在于:
微磁载体与活性污泥的质量比为1∶2.5,将7g活性污泥与2.8g微磁载体投加到反应器中。
反应器运行方式为:进水3min,厌氧搅拌70min,曝气150min,静置沉淀7min,出水6min,闲置7min。
其他步骤及参数同实施例4。
在系统运行30天后,通过激光粒度仪检测,粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上,活性污泥固定化完成,获得培育成熟的以微磁载体为核心的固定化活性污泥。反应器处理效果见表3;可见,同实施例4相比,两实施例对TOC和氨氮的处理效果较为接近,均可达到98-100%的高污染物去除率。但对总氮的去除效果低于实施例4中总氮去除率50%约五个百分点。通过与图5、图7对比可以看出,TOC、氨氮和总氮的去除率均优于仅采用活性污泥作为接种介质的处理结果。
表3实施例6、8进、出水水质及处理效果数据表
Figure BDA0000112041810000101
*总氮数据为系统运行50天后的出水水质监测数据
实施例7
本例中提供一种以实施例2中制备的粒径为100-150μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺,与实施例5的不同点在于:
反应器运行方式:进水4min,厌氧搅拌80min,曝气250min,静置沉淀8min,出水5min,闲置17min。
其他步骤及参数同实施例5。
在系统运行40天后,通过激光粒度仪检测,粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上,活性污泥固定化完成,获得培育成熟的以微磁载体为核心的固定化活性污泥。反应器处理效果见表2;由表可见,其处理效果与实施例5基本相同。
实施例8
本例中提供一种以实施例3中制备的粒径为200-250μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺,与实施例4的不同点在于:
微磁载体与活性污泥的质量比为1∶3,将7g活性污泥与2.3g微磁载体投入反应器中。
反应器运行方式中:厌氧搅拌70min,曝气150min,静置沉淀6min,出水7min,闲置7min。
其它步骤及参数同实施例4。
由于所投加微磁载体粒径较大,在系统运行20天后,活性污泥固定化完成,反应器处理效果见表3;可见,同实施例4和6相比,其活性污泥固定化所需时间缩短,对总氮的去除效果为30-45%,有所下降,但仍明显优于接种介质仅采用活性污泥的实施例4a的处理效果。
实施例9
本例中提供一种以实施例3中制备的粒径为200-250μm的微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺,与实施例5的不同点在于:
接种后的活性污泥浓度为4.0g/L,将53.1g活性污泥与21.2g由实施例3制得的微磁载体投入反应器中。
反应器运行方式中:厌氧搅拌110min,曝气220min,静置沉淀14min,出水8min,闲置8min。
其他步骤及参数同实施例5。
由于所投加微磁载体粒径较大,以微磁载体为核心的活性污泥固定化过程完成较快,在系统运行30天后,通过激光粒度仪检测,粒径大于0.6mm的活性污泥量占活性污泥总量的比例即达70%以上,获得培育成熟的以微磁载体为核心的固定化活性污泥。反应器处理效果见表2;可见,由于投加微磁载体粒径较大,所形成的固定化活性污泥厚度较薄,使得处理效果有所下降,如有机物CODCr为75-85mg/L低于实施例5、7的80-90mg/L,但综合各项指标仍优于接种介质仅采用活性污泥的实施例5a的处理效果。
以上所述,仅是本发明的优选实施例而已,并非对本发明的内容作任何形式上的限制。凡是依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。

Claims (4)

1.一种微磁载体的制备方法,其特征在于包括如下步骤:
(1)将粒径为90-110nm的磁性Fe3O4微粒按照10-50g/L的质量体积比投加到质量浓度为8%-20%的聚乙烯醇溶液中,经超声振荡使其均匀分布;
(2)在85℃-95℃的溶液温度下,以500-1500r/min的转速,搅拌30-50min;
(3)依次加入体积比为1%-2%的质量浓度为25%的戊二醛溶液、体积比为1.5%的分析纯浓盐酸、体积比为0.5%-2%的质量浓度为2%的海藻酸钠溶液,继续以步骤(2)的转速搅拌,反应0.5h-1.5h,同时使溶液温度降至45℃-55℃;
(4)将步骤(3)的溶液经滤网过滤,并将截留的粒径≥50μm的微磁载体,依次用丙酮、乙醇和蒸馏水清洗,最终在45℃条件下干燥24h,即得到以磁性Fe3O4微粒为核心表面包敷多孔的聚乙烯醇层的粒径为50-250μm的颗粒状微磁载体。
2.根据权利要求1所述的微磁载体的制备方法,其特征在于所述丙酮为分析纯丙酮、乙醇的质量浓度为70%,丙酮、乙醇和蒸馏水清洗的时间分别为15-25min。
3.根据权利要求1或2所述的微磁载体的制备方法制得的微磁载体。
4.一种以微磁载体为核心的活性污泥固定化方法,其特征在于采用序批式反应器工艺:
(1)进水、反应器及接种介质:进水水质的BOD5/COD大于0.3,反应器的直径高度比为1∶5~1∶10,接种介质采用如权利要求2所述的微磁载体的制备方法制得的微磁载体及常规污水二级生物处理活性污泥,接种后的活性污泥浓度为2-4g/L(干活性污泥质量/反应器有效容积),微磁载体与活性污泥的质量比为1∶1~1∶3;
(2)运行方式为:进水-厌氧搅拌-好氧曝气-沉降-排水-闲置;所述序批式反应器根据进水水质,设置每周期运行时间为4h-8h,其中:进水时间为1~5min,厌氧搅拌时间为60-120min,好氧曝气时间为150-250min,沉降时间为5-15min,排水时间为3-10min,闲置时间为5-20min,每个运行周期体积交换率为60-85%;开始运行后,在活性污泥沉降阶段,通过电磁场将微磁载体吸附在反应器底部,避免流失,直至反应器中粒径大于0.6mm的活性污泥量占活性污泥总量的比例达70%以上,此时,获得培育成熟的以微磁载体为核心的固定化污泥,关闭电磁场。
CN 201110378648 2011-11-24 2011-11-24 微磁载体制备方法、微磁载体及其活性污泥固定化方法 Expired - Fee Related CN102516563B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201110378648 CN102516563B (zh) 2011-11-24 2011-11-24 微磁载体制备方法、微磁载体及其活性污泥固定化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201110378648 CN102516563B (zh) 2011-11-24 2011-11-24 微磁载体制备方法、微磁载体及其活性污泥固定化方法

Publications (2)

Publication Number Publication Date
CN102516563A true CN102516563A (zh) 2012-06-27
CN102516563B CN102516563B (zh) 2013-06-12

Family

ID=46287659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201110378648 Expired - Fee Related CN102516563B (zh) 2011-11-24 2011-11-24 微磁载体制备方法、微磁载体及其活性污泥固定化方法

Country Status (1)

Country Link
CN (1) CN102516563B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113002A (zh) * 2013-03-04 2013-05-22 广东新大禹环境工程有限公司 有机污水的处理方法
CN103351062A (zh) * 2013-07-08 2013-10-16 华侨大学 一种磁性微生物载体及其制备方法
CN104961228A (zh) * 2015-07-03 2015-10-07 中山大学 一种核@壳结构的磁性污泥碳生物填料及其制备方法和应用
CN105859017A (zh) * 2016-06-14 2016-08-17 四川理工学院 一种膜分离的前处理方法
CN105967322A (zh) * 2016-07-18 2016-09-28 胡勇飞 一种用在污水处理装置中的固定化微生物球与其操作方法
CN108176370A (zh) * 2017-12-22 2018-06-19 苏州纳贝通环境科技有限公司 一种磁性凝胶重金属吸附剂的制备方法
CN109231745A (zh) * 2018-09-17 2019-01-18 知和环保科技有限公司 一种加速污泥颗粒化的方法
CN110655183A (zh) * 2019-07-31 2020-01-07 武汉大学 一种弱磁场强化好氧污泥颗粒化及除污性能的方法
CN114920352A (zh) * 2022-05-19 2022-08-19 中建环能科技股份有限公司 一种异养反硝化脱氮载体及其制备方法和使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004862A1 (de) * 1995-07-31 1997-02-13 Mueller Schulte Detlef Magnetische polymerpartikel auf der basis von polyvinylalkohol, verfahren für ihre herstellung und verwendung
CN1204625A (zh) * 1997-07-02 1999-01-13 科学技术振兴事业团 磁性微生物固定载体,生产这种载体的方法以及处理废水的方法
CN1566169A (zh) * 2003-06-20 2005-01-19 中国科学院过程工程研究所 一种超顺磁性聚合物微球的制备方法及其装置
CN101724620A (zh) * 2008-10-27 2010-06-09 广东中科天元新能源科技有限公司 一种微生物固定化载体及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997004862A1 (de) * 1995-07-31 1997-02-13 Mueller Schulte Detlef Magnetische polymerpartikel auf der basis von polyvinylalkohol, verfahren für ihre herstellung und verwendung
CN1204625A (zh) * 1997-07-02 1999-01-13 科学技术振兴事业团 磁性微生物固定载体,生产这种载体的方法以及处理废水的方法
CN1566169A (zh) * 2003-06-20 2005-01-19 中国科学院过程工程研究所 一种超顺磁性聚合物微球的制备方法及其装置
CN101724620A (zh) * 2008-10-27 2010-06-09 广东中科天元新能源科技有限公司 一种微生物固定化载体及其制备方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113002A (zh) * 2013-03-04 2013-05-22 广东新大禹环境工程有限公司 有机污水的处理方法
CN103113002B (zh) * 2013-03-04 2014-11-19 广东新大禹环境工程有限公司 有机污水的处理方法
CN103351062A (zh) * 2013-07-08 2013-10-16 华侨大学 一种磁性微生物载体及其制备方法
CN103351062B (zh) * 2013-07-08 2014-11-12 华侨大学 一种磁性微生物载体
CN104961228A (zh) * 2015-07-03 2015-10-07 中山大学 一种核@壳结构的磁性污泥碳生物填料及其制备方法和应用
CN105859017B (zh) * 2016-06-14 2019-02-19 四川理工学院 一种膜分离的前处理方法
CN105859017A (zh) * 2016-06-14 2016-08-17 四川理工学院 一种膜分离的前处理方法
CN105967322A (zh) * 2016-07-18 2016-09-28 胡勇飞 一种用在污水处理装置中的固定化微生物球与其操作方法
CN108176370A (zh) * 2017-12-22 2018-06-19 苏州纳贝通环境科技有限公司 一种磁性凝胶重金属吸附剂的制备方法
CN109231745A (zh) * 2018-09-17 2019-01-18 知和环保科技有限公司 一种加速污泥颗粒化的方法
CN110655183A (zh) * 2019-07-31 2020-01-07 武汉大学 一种弱磁场强化好氧污泥颗粒化及除污性能的方法
CN114920352A (zh) * 2022-05-19 2022-08-19 中建环能科技股份有限公司 一种异养反硝化脱氮载体及其制备方法和使用方法
CN114920352B (zh) * 2022-05-19 2023-03-31 中建环能科技股份有限公司 一种异养反硝化脱氮载体及其制备方法和使用方法

Also Published As

Publication number Publication date
CN102516563B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
CN102516563B (zh) 微磁载体制备方法、微磁载体及其活性污泥固定化方法
Yuan et al. Woodchips as sustained-release carbon source to enhance the nitrogen transformation of low C/N wastewater in a baffle subsurface flow constructed wetland
CN101508485A (zh) 好氧颗粒污泥培养及其处理有机废水的系统及方法
CN102173506B (zh) 一种生物活性复合填料
CN101831392B (zh) 一种自养异养共生氨氧化菌剂及用途
CN102583721B (zh) 用于低浓度废水的耐负荷波动性好氧颗粒污泥的培养方法
CN102614839B (zh) 复合型磁性生物吸附剂及其制备方法
CN103382049B (zh) 一种用于污水处理的序批式活性污泥反应器及处理工艺
CN101386448A (zh) 一种好氧硝化颗粒污泥的制备与修复方法
CN102173504A (zh) 一种联合fa和fna双重抑制培养短程硝化颗粒污泥的方法
CN113636640B (zh) 一种生物滴滤中试装置及利用其短程硝化驯化的方法
CN108585224A (zh) 一种利用复合微生物菌剂处理污水并减量污泥产生的方法
CN102776140B (zh) 一株耐冷假单胞菌Den-05及其筛选方法和应用
CN101665308B (zh) 一种深度处理垃圾渗滤液的方法
Lin et al. Solving the problem of high concentration aniline inhibiting nitrogen removal: starting the SBBR with the prolonged aeration mode
CN107235552B (zh) 一种应用纳米磁铁促进絮状活性污泥颗粒化的方法
CN107337283A (zh) 一种用于生猪养殖污水活性污泥快速培养的方法
CN102730898A (zh) 一种小区生活污水处理技术
CN214880538U (zh) 一种快速培养好氧颗粒污泥及处理低碳比城市污水的装置
CN113998778A (zh) 处理高盐废水的好氧颗粒污泥快速培养方法
CN202968242U (zh) 一种用于污水处理的序批式活性污泥反应器
Cao et al. Disintegration of Partial Denitrification Granules at High Nitrate Concentration
CN112374713B (zh) 一种两相折板流生物沥浸反应器调理污泥的方法
CN1541956A (zh) 一体式高浓度有机废水处理装置
Li et al. Algal-bacterial granular sludge for simultaneous denitrification and yttrium removal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130612

Termination date: 20141124

EXPY Termination of patent right or utility model